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1. Introduction

In the series of papers [4]-[7] we have developed several techniques for
estimating the coefficients of L-functions which satisfy standard functional
equations. Inspired by these works we now begin to examine convolution series
formed by multiplying the coefficients.

Suppose we have two Dirichlet series

which converge absolutely in the half-plane Re s &#x3E; 1, which have analytic
continuation to entire functions and which satisfy functional equations of the
type

Here 03A6(s) and IV (s) are certain holomorphic functions in Re s &#x3E; 0 which have

at most a polynomial growth on vertical lines. Furthermore we assume that
A(s), R(s) have Euler products of degree k, l, i.e.,
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If Re s &#x3E; 1, where Wp (T), Ap (T) are polynomials in T of degree k, 1 respectively
with the constant term Ap(0) = Rp(0) = 1. We shall study the convolution
series

Clearly, this convolution series converges absolutely in Re s &#x3E; 2. Our objective
will be to prove the absolute convergence in Re s &#x3E; 1 and to establish the

analytic continuation up to Re s &#x3E; 1/2 subject to some further natural

conditions.

Motivating examples are the symmetric power L-functions attached to an
automorphic form. These have been intensively studied along the lines of
Langlands program (see the survey articles by F. Shahidi [8] and D. Bump
[2]). In this context our approach to analytic continuation is more elementary
but the results are not quite complete since we cannot reach the critical line Re
s = 1/2 and prove a functional equation for the convolution series C(s).
Nevertheless our applications illustrate what can be concluded directly from
the existence of functional equations for Dirichlet series without appealing to
automorphic theory.
As in [4]-[7] our approach requires suitable functional equations for the

twisted series

We assume that for any primitive character x (mod q) the twisted series are
entire functions of finite order and that they satisfy the compatible functional
equations

with |03B1~| = |03B2~| = 1. Here we allow the factors 03A603BD(s), 03A803BD(s) to depend on the
parity index v = ~(-1) = ± 1 but not on x itself. It is assumed that (D,(s), 03C803BD(s)
are holomorphic in Re s &#x3E; 0 where they have a polynomial growth on vertical
lines, i.e.,
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where B &#x3E; 0 and the implied constant depend on a. Usually the factors 03A603BD(s),
03A803BD(s) of functional equations are products of suitable gamma functions but we
do not need to assume this property because the s-aspect plays no role in the
method.

However the signs ax, 03B2~ of functional equations play the key part. Usually
they are expressible in terms of the Gauss sum

where

denotes the additive character. Let e. = 03C4(~)q -1/2 be the sign of Gauss sum. It
satisfies ex = vex = 03B5-1~ for any primitive character.

Let us give two examples. If A(s) is the k - 1 th symmetric power L-function
attached to a cusp form for the modular group then one expects (in accordance
with the Langlands program) the functional equation for A(s, ~) to have the
sign 03B1~ = 03B5k~. Another interesting example is the shifted Riemann zeta-function
des) = 03B6(ks 2013 (k - 1)/2) which is useful for generating kth powers. In this case
we have the functional equation for A(s, x) = L(ks - (k - 1)/2, X’) with the
sign 03B1~ = IgXkprovided X’ is primitive.
What truly matters in our argument is the Fourier transform

where the star restricts the summation to primitive characters. We can compute
Kq(c) in two cases:

Case 1. Suppose ax = fi,. Then if (c, q) = 1 we have

For c = 1 this yields the number of primitive characters to modulus q,

If c:o 1 then Kq(c) is bounded on average in q. Moreover one senses a
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"reciprocity law" for Kq(c) as w is switched into the complementary divisor of
!c-l!in(5).

Case 2. Suppose ax = 03BD-h03B5k~ and 03B2~ = 03B5l~ with h = l - k &#x3E; 0. Then 2k Gauss

sums out of 1 + k annihilate themselves leaving 03B1~03B2~ = 03B5h~. Using (5) we infer
that

where s denotes the multiplicative inverse of s modulo w. Observe that the
innermost sum is the generalized Kloosterman sum for which P. Deligne [3]
has established the bound 03C4h(w)w(h-1)/2 (for prime modulus only but the.
extension to all moduli is straightforward). Employing Deligne’s bound we get

Of particular interest is the case of h = 1 because the sum

can be transformed by means of the following ’reciprocity’ formula

2. Statement of results

In this paper we explore Case 2 for k = 2 and 1 = 3. It has been shown in [5]
that both series formed by squaring the coefficients of A(s) and R(s) converge
absolutely in Re s &#x3E; 1. Hence by Cauchy’s inequality the convolution series
W(s) also converges absolutely in Re s &#x3E; 1. Now we look deeper into the
critical strip to prove analytic continuation in Re s &#x3E; 1/2. For simplicity we
shall assume more than the absolute convergence in Re s &#x3E; 1, namely that the
local polynomials Ap(T) and Rp(T) have bounded coefficients. This is indeed
the case for L-functions attached to holomorphic cusp forms (the Ramanujan
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conjecture proved by P. Deligne [3]). In general, one can probably avoid this
condition by using the bounds on average.

THEOREM 1. Suppose A(s), R(s) are Euler products of degree two and three
with bounded coefficients such that d (s, X), R(s, X) are entire functions of finite
order which satisfy the functional equations with signs ax = 03B52~ and 03B2~ = 03B53~
respectively for all primitive characters. Then the convolution series W(s) has

analytic continuation without poles to the region Re s &#x3E; 1/2.

If we take for d(s) the Hecke L-function attached to a cusp form for the
modular group

and for -4(s) we take the Shimura symmetric square L-function

then the convolution series (s) becomes L1(s)L3(s))P(s) where

is the symmetric cube L-function and P(s) is given by the product

which converges absolutely in Re s &#x3E; 1/2. By Theorem 1 we infer

COROLLARY. The symmetric cube L-function L3(s) attached to a Hecke

eigencusp-form for the modular group has meromorphic continuation to the

region Re s &#x3E; 1/2 whereas L1(s)L3(s) is holomorphic.

REMARKS. The corollary is not new, it was proved in greater generality by
F. Shahidi and others (see [8]) using quite different methods.

3. Applying the S-symbol

Our approach to analytic continuation of (s) features estimates for finite sums
of the type
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where q is any smooth function supported in the interval [1/2,1]. We shall
prove that

and this shows through the Mellin transform that (s) is holomorphic in
Re s &#x3E; 1/2.
We begin by writing

where bmn is the diagonal symbol of Kronecker. Then, as in [4], we use the
formula

where 03C9 is any smooth function, compactly supported in R+ and Y = E w(q).
We choose w(z) = ~(z/~X), so Y  fi and

where

Notice that f(x, y, z) is smooth and supported in the box [1/2,1] x
[1/2,1] x [0,1].
Next we write by means of multiplicative characters

Further transformation of D(X) requires factoring the coefficients a,., brn as
well as relaxing the condition (mn, t) = 1. To this end we exploit the Euler
products for A(s) and 4(s). There are numbers ar(a) « r03B5 defined for a 1 r such
that for all m it holds that
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Also there are numbers b,(b) « rt defined for b| r2 such that for all n it holds
that

The above factorizations yield

To relax the co-primality condition we again appeal to the Euler products. One
can define numbers ct(c) « te for c t2 with the property that

if (m, t) = 1, or else the sum vanishes. Also one can define numbers dt (d) « tE for
d |t3 with the property that

if (n, t) = 1, or else the sum vanishes. The above relations yield

4. Applying the functional equations

Now we are ready to execute the summation in m and n. Let us first consider
a general character sum of the type

where g is a smooth function, compactly supported in R+ x R+. Employing
the functional equations for A(s, x) and 4(s, x) by way of Mellin’s transform
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we infer

where g03BD is an integral transform of g given by

with 03C31, 03C32 &#x3E; 0 and

Note that gv depends only on the parity index v = ~(-1) = ± 1 but not on the
character itself. We put g+ = g1 + g-1 and g- = g 1 - g-1 so 2g., = g+ + vg - .
Summing over the primitive characters we evaluate the Fourier transform of
0394(~) as follows

for any (e, q) = 1. In particular this together with (9) gives

where we have put

and F± = F 1 ± F-1, where F (u, v, z) are the integral transforms of f(x, y, z)
given by

with

on the lines Resl = 03C31 &#x3E; 0 and Re s2 = U2 &#x3E; 0.
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5. Applying the reciprocity transformation

Let (uv, q) = 1. By (6) and (7) we get

Since ~(qt)-1 = ~(st)-1~(w)-103C3((t, w)) with 03C3(h) = ~(h)h-1 we obtain

where for notational simplicity we have put

In the sequel we shall denote u = ± acn03B4-1, 03C5 = bdm03B4-1 where b = (acn, bdm).
Furthermore we split 6 = 60 + 01, where

6. Estimating G(m, n, q)

First let us estimate the transform (11). The partial derivatives of f (x, y, z) are
bounded by

with the implied constant depending on i, j, k only. Hence, by a repeated partial
integration the Mellin transform satisfies
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for sl, s2 on the vertical lines Re sl = al &#x3E; 0, Re s2 = 03C32 &#x3E; 0, where A is an
arbitrary positive number, the implied constant depending on 03C31, a 2’ A and k

only. Since 03A603BD(s1) and ’Pv(S2) have at most a polynomial growth we obtain

for any 03C31, 03C32 &#x3E; 0 and some constant B &#x3E; 0. This yields

for any E, A &#x3E; 0 and some constant B &#x3E; 0. Finally, by a change of variables we
conclude from the above and (12) that

for m, n, q  1, where e, A &#x3E; 0 are arbitrary and the implied constant depends
on e, A, i, j, k only.

Recall that G(m, n, q) vanishes if qrt &#x3E; fi. Therefore, by (13) all terms in
60 and 1 are very small except for

Notice that the above conditions imply M  XE, N  X1/2+03B5, and Q  X1/2.

7. Estimating 60

First we execute the summation over n in 60 by an appeal to the following
general result:

LEMMA 1. Let G(n) be a smooth function on R+ whose derivatives satisfy

for some N  1 and any A &#x3E; 0. Then we have
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Proof. Using the functional equation for £3(s) by contour integration we infer
that

Hence

The sum over n in lfo is of the type (15). More precisely we have

Therefore, by Lemma 1 we obtain

8. Estimating 81

We replace (1«t, w)) by

and relax the condition (w, bu) = 1 using Môbius inversion to get

First, we shall show that small s contribute very little. To this end we establish
the following general result:

LEMMA 2. Let G(w) be a smooth function supported in [0, W] whose derivatives



156

satisfy Gli" « W-j. Let g  W1-£. Then

Proof. The Poisson summation gives

where G is the Fourier transform of G. Integrating by parts one proves that

Hence our sum is equal to g -1 G(0) + O (W - A). This shows that the sum does
not depend on a (mod g) up to the error term O(W -A), giving the result.

COROLLARY. If (a, g) = 1 and g  W1-03B5 then

The hypothesis of the above corollary to Lemma 2 is satisfied for

G(w) = G (m, n,’rvsw) in the range g = 03C5s  (03C403BDs)-1QX-203B5 by virtue of (13),
where Q = (rt)- IX112. We put

so (17) can be used for all s  S. Therefore, the contribution of this range to
61 is

In the remaining range of s &#x3E; S we estimate the contribution of the part
-03BC(03C5s)~(03C5s)-1 trivially as follows:



157

Now we are left with

After changing the order of summation we estimate as follows:

where H is a sum in s, w, n given by

By virtue of (13) we can restrict the summation to the range (14) up to a small
error term O(X-A). Moreover we can separate n from the other variables of
G(m, n, q) by any standard technique at no cost. In fact the integral represen-
tation (11) yields the desired separation without effort. We obtain

for some Pn « bn. For estimating this sum we shall use the large sieve inequality
(see [1]).

LEMMA 3. For any complex numbers 03B2n it holds that

From Lemma 3 by Cauchy’s inequality we deduce the following:

COROLLARY. If (ab, v) = 1 it holds that
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The corollary provides an estimate for a sum of the type we have in A. It gives

because b|r2, d|t3, so bd  r2t3. Hence by (20) we derive

Gathering together (18), (19), and (21) we conclude that

From (16) and (22) we obtain

Finally by (10) and (23) we conclude (8). This completes the proof of
Theorem 1.
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