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A Converse Theorem and the Saito-Kurokawa Lift

W. Duke and Ö. Imamoḡlu

1 Introduction

The study of liftings is of considerable importance in the theory of automorphic forms.

A particular lifting of interest is that of Saito-Kurokawa. This is a correspondence be-

tween classical modular forms and a subspace, Maass’s spezialschar of Siegel modular

forms of degree 2. In a series of papers by Maass, Andrianov, and Zagier (see [EZ]), this

correspondence has been shown to be the composition of three isomorphisms involving

intermediately Kohnen’s space and a space of Jacobi forms. The technique of theta lift-

ings has also been successfully applied to this correspondence (see [Koj]), and it has been

treated more generally from the point of view of automorphic representations in [PS].

Early examples of liftings, such as those of Doi and Naganuma [DN] and Shimura

[S], were first proved using converse theorems. In this paper, we give another proof of

the lifting from Kohnen’s space to Maass’s space in the spirit of Doi and Naganuma by

using a converse theorem, thus bypassing the use of Jacobi modular forms. This converse

theorem, due to Imai, calls for proving functional equations for certain Dirichlet series

with GL(2) twists which, for lifts, reduce to Rankin-Selberg convolutions. This reduction

is nontrivial and requires the identification of a sum over Heegner points of a weight-zero

Maass form as Fourier coefficients of a form of weight 1/2. Such an identification was first

observed in a cocompact situation by Maass [M] and was later exploited in [D] to prove

equidistribution results for the Heegner points and cycles. An important refinement (and

a self-contained proof) of Maass’s formula for the modular group was recently given by

Katok and Sarnak [KS]. In the case of Eisenstein series, this identification is achieved by

combining formulas of Goldfeld and Hoffstein [GH] and a classical result of Dirichlet.
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348 Duke and Imamoḡlu

For the constant eigenfunction, the corresponding weight-1/2 form is not a Maass form

but satisfies a certain inhomogeneous equation (see the end of Section 4). This interesting

function has class numbers for its negative Fourier coefficients and is closely related (by

a Maass operator) to a similar function introduced by Hirzebruch and Zagier [HZ].

After the fundamental work of Jacquet, Piatetski-Shapiro, and Shalika [JPSS] on

the converse theorem for GL(3) and its application to the lifting of Gelbart and Jacquet

[GJ], there has been much work on higher-rank converse theorems (see, for example, [CPS1]

and [CPS2]). The L-functions involved in these works are, naturally, Euler products. To

our knowledge, our proof is the first application of a converse theorem to a lifting where

the Dirichlet series are not Euler products.

Finally, we remark that it seems very likely that the technique of this paper can

be adapted to handle the lift in the nonholomorphic case.

2 Statement of the main theorem

We shall assume that the reader is familiar with the basic properties of 1/2-integral

weight holomorphic modular forms,Maass forms, and Siegel modular forms. Some good

references are [S], [Iw], and [Kl].

Recall that a Siegel modular form of degree 2 and weight k is a holomorphic

function F defined on H2 = {Z = X + iY ∈ M(2,C) | tZ = Z, Y > 0} such that, for all

M ∈ Γ2 = Sp(2,Z),

F(MZ) = F((AZ+ B)/(CZ+D)−1) = |CZ+D|kF(Z).

Such a form F has a Fourier series expansion F(Z) =∑T≥0A(T )e(tr TZ) where the sum runs

over all 2× 2 1/2-integral, positive semidefinite symmetric matrices T . Also, F is a cusp

form exactly when A(T ) = 0 for |T | = 0.

Suppose k is an even integer. Let Sk−1/2 denote the space of holomorphic cusp

forms of weight k− 1/2 for Γ0(4). Let S+
k−1/2 be the subspace of Sk−1/2 consisting of those

forms whose nth Fourier coefficient vanishes unless n ≡ 0, 3 mod 4 (see [Koh]). Our main

purpose is to provide a new direct proof of the following result.

Theorem 1. Suppose f ∈ S+
k−1/2 has the Fourier expansion

f(z) =
∑

n≡0,3mod4

c(n)e(nz).

For each T > 0, define

A(T ) = A
(
m r/2

r/2 n

)
=
∑

d|(n,r,m)

dk−1c

(
4nm− r2

d2

)
.

Then F(Z) =∑T>0A(T )e(tr TZ) is a Siegel cusp form of weight k and degree 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/1996/7/347/749670 by U
C

LA Biom
edical Library Serials user on 27 N

ovem
ber 2021



A Converse Theorem and the Saito-Kurokawa Lift 349

3 Hecke correspondence for Sp(2,Z)

In this section we will give a generalization of Hecke’s correspondence to Siegel modular

forms of degree 2. The “converse” part, due to Imai, will be our main tool for proving

Theorem 1.

The statement entails twisting by the spectral eigenfunctions of

∆ = y2(∂2
x + ∂2

y)

for L2(Γ\H) where Γ = SL(2,Z).There are three types,namely, the constant functionφ0(z) =√
3/π, an orthonormal basis of cusp forms φ1(z), φ2(z), . . . , and the unitary Eisenstein

series E(z, 1/2+ ir), r ≥ 0 (see [Iw]). We may assume that φj is real and either even or odd

in the sense that φj(−z̄) = ±φj(z). The Eisenstein series is given explicitly for Res > 1 by

E(z, s) = 1

2

∑
Γ∞\Γ

Im(γz)s

and has analytic continuation with only a simple pole at s = 1. We shall use φ to denote

any of these eigenfunctions and denote the corresponding eigenvalue of ∆ by 1/4+ r2.

Suppose we are given a set of complex numbersA(T ) for every 2×2 positive definite

1/2-integral matrix T such that A(T ) << (t11t22)C for some C and A(tUTU) = (detU)kA(T ),

∀U ∈ GL(2,Z). Define the function

F(Z) =
∑
T>0

A(T )e(tr TZ),

which is clearly holomorphic on H2. For φ as above, define the Dirichlet series

Ψ(s, φ) =
∑∗

T>0/GL(2,Z)

A(T )φ(zT )
|T |s+(k−1)/2

which is well defined and absolutely convergent for Re(s) sufficiently large. Here the sum

is weighted by the order of the stabilizer of T, and T is identified with a point zT ∈ H.

The following generalization of the Hecke correspondence to cusp forms of degree

2 is proved in Imai [Im].

Theorem 2. Suppose k is a positive integer. The following two statements are equivalent.

(1) F(Z) is a Siegel cusp form of degree 2 and weight k.

(2) For every φ of the same parity as k, the function

Λ(s, φ) = (2π)−2sΓ (s+ k/2− 3/4+ ir/2)Γ (s+ k/2− 3/4− ir/2)Ψ(s, φ)

is entire and bounded in every vertical strip in s and satisfies the functional equation

Λ(1− s, φ) = (−1)kΛ(s, φ).
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350 Duke and Imamoḡlu

In order to apply this to produce lifts, we need the following lemma, whose easy

proof is left to the reader.

Lemma 3. For n ∈ N, let c(n) ∈ C be given and define

A(T ) = A
(
m r/2

r/2 n

)
=
∑

d|(n,r,m)

dk−1c

( |2T |
d2

)
.

Then

Ψ(s, φ) = 22s+k−1ζ(2s)
∞∑
n=1

c(n)b(−n)n−s−k/2+1

where b(−n) = n−1/2∑∗
T>0
|2T |=n

φ(zT ).

4 Fourier coefficients of weight-1/2 forms

We next show that b(−n) are Fourier coefficients of a function which has suitable prop-

erties for applying the Rankin-Selberg method.

Suppose g is a smooth function on H which satisfies, for all γ ∈ Γ0(4), the trans-

formation rule

g(γz) = J(γ, z)g(z),

and has a polynomial growth in the cusps of Γ0(4)\H, where J(γ, z) = ϑ(γz)/ϑ(z) with

ϑ(z) = y1/4∑ e(n2z). Such g has a Fourier expansion of the form

g(z) =
∑
n∈Z

B(n, y)e(nx).

Denote by Tr the space of all such g for which B(n, y) for n < 0 can be written

B(n, y) = b(n)(4πy|n|)−1/4W−1/4,(ir)/2(4πy|n|)

for some number b(n), the nth Fourier coefficient. Here Wα,β(y) is the usual Whittaker

function [MO] which decays exponentially for large y. Let T+r be the subspace of Tr con-

sisting of those functions gwhose Fourier coefficients satisfy B(n, y) = 0 if n ≡ 2, 3 mod 4.

Theorem 4. Let φ be an even spectral eigenfunction of ∆ for the modular group with

eigenvalue 1/4+ r2. There exists a g ∈ T+r whose Fourier coefficients b(−n) for n > 0 are

given by

b(−n) = n−1/2
∑∗

T>0
|2T |=n

φ(zT ).
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A Converse Theorem and the Saito-Kurokawa Lift 351

Proof. If φ is a cusp form, this follows from [KS, pp. 197, 207] where g is computed as

a theta lift of φ and is in fact a Maass cusp form of weight 1/2, so

∆1/2 g+ (1/4+ (r/2)2)g = 0

where

∆1/2 = y2(∂2
x + ∂2

y)− (1/2)iy∂x.

If φ = E(z, 1/2+ ir), the theorem follows from the next lemma, part of which is a

consequence of the work of Goldfeld and Hoffstein [GH],where they explicitly calculated

the Fourier coefficients of Eisenstein series of weight 1/2 for Γ0(4) (see Propositions 1.2,

1.4, 1.5 in [GH]). We require those at cusps∞ and 0, which are given by

E
1/2
∞ (z, s) =

∑
γ∈Γ∞\Γ0(4)

Im(γz)sJ(γ, z)−1

and

E
1/2
0 (z, s) = eiπ/4

(
z

|z|
)−1/2

E
1/2
∞ (−1/(4z), s),

respectively.

Lemma 5. Let

g(z, s) = Λ(s)
(
E

1/2
0 (z, s/2+ 1/4)+ 2sE1/2

∞ (z, s/2+ 1/4)
)

where Λ(s) = π−s/2Γ (s/2)ζ(s). Then g(z, 1/2+ ir) ∈ T+r with Fourier coefficients

b(−n) = n−1/2
∑∗

T>0
|2T |=n

E(zT , 1/2+ ir)

for n > 0.

To deal with the constant function φ = √
3/π, we use the fact that E(z, s) has a

simple pole at s = 1 with residue 3/π and the fact, revealed by a calculation (see [Ku]),

that Λ−1(s)g(z, s) has a simple pole at s = 1 with residue cϑ(z) for some c 6= 0. Next we

define

g(z) =
√
π/3 lim

s→1

(
Λ−1(s)g(z, s)− c ϑ(z)

s− 1

)
.

It can be shown that

∆1/2 g+ (3/16)g = c1ϑ(z)

for c1 = (c/4)
√
π/3. It follows that g ∈ T+

i/2 by separation of variables and by using the

fact that the Fourier coefficients of ϑ(z) are supported on the positive squares.
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352 Duke and Imamoḡlu

5 Rankin-Selberg convolution

We complete the proof of Theorem 1 by establishing the required properties of Λ(s, φ) in

Theorem 2. In view of Lemma 3 we must consider a Rankin–Selberg convolution.

Theorem 6. Suppose f(z) ∈ S+
k−1/2 has Fourier coefficients c(n), and g(z) ∈ T+r has Fourier

coefficients b(−n), for n > 0. Define

Λ∞(s; f, g) = π−2sΓ (s+ k/2− 3/4+ ir/2)Γ (s+ k/2− 3/4− ir/2)ζ(2s)Φ∞(s)

where

Φ∞(s) =
∞∑
n=1

c(n)b(−n)n−s−k/2+1.

Then Λ∞(s; f, g) is entire, bounded in vertical strips, and satisfies the functional equation

Λ∞(1− s; f, g) = Λ∞(s; f, g).

Proof. A standard application of the Rankin-Selberg method gives the integral repre-

sentation

Λ∞(s; f, g) = 22s
∫
Γ0(4)\H

yk/2−1/4f(z)g(z)Ẽ∞(z, s)
dxdy

y2
,

where

Ẽ∞(z, s) = (4π)k/2−1 Γ (s+ k/2)

Γ (s)
Λ(2s)E−k∞ (z, s)

with

E−k∞ (z, s) = 1

2

∑
γ∈Γ∞\Γ0(4)

((cz+ d)/|cz+ d|)k Im(γz)s.

Here, as before, Λ(s) = π−s/2Γ (s/2)ζ(s).

To proceed, we need the functional equation of Ẽ∞(z, s). Let

Ẽ0(z, s) = (−z/|z|)kẼ∞(−1/4z, s)

and

Ẽ1/2(z, s) = ((−2z+ 1)/| − 2z+ 1|)kẼ∞(−1/(4z− 2), s).

Lemma 7. For even k, we have the functional equation

Ẽ∞(z, 1− s) = 24s−3

1− 22s−2
Ẽ∞(z, s)+ 22s−2(1− 22s−1)

1− 22s−2
(Ẽ0(z, s)+ Ẽ1/2(z, s)).
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A Converse Theorem and the Saito-Kurokawa Lift 353

Proof. The functional equation in the case k = 0 is found by computing the scattering

matrix in [Iw, Theorem 6.5]. The functional equation for general even k < 0 is deduced

from this by successively applying the Maass operator Lk = −iy∂x + y∂y − k/2, since

L−kE−k = (s+ k/2)E−k−2. This is a consequence of the commutation relation (Lkh)|(k−2) γ =
Lk(h|kγ) where, as usual,

h|kγ =
(
cz+ d
|cz+ d|

)−k
h(γz), γ =

(
a b

c d

)
.

It is perhaps worth remarking that we make use of the fact that the scaling matrices

σ0 =
(

0 −1/2

2 0

)
and σ1/2 =

(
1 −1/2

2 0

)
,

for the cusps 0 and 1/2 normalize Γ0(4).

Now for j = 0, 1, we set

Λj/2(s; f, g) = π−2sΓ (s+ k/2− 3/4+ ir/2)Γ (s+ k/2− 3/4− ir/2)ζ(2s)Φj/2(s)

where

Φj/2(s) =
∑

n≡ jmod2

c(n)b(−n)n−s−k/2+1.

Then it can be shown that these give the Rankin-Selberg convolutions at the cusps 0 and

1/2. Namely, the following holds.

Lemma 8. When f ∈ S+
k−1/2 and g ∈ T+r , we have for j = 0, 1

Λj/2(s) = 2
∫
Γ0(4)\H

yk/2−1/4f(z)g(z)Ẽj/2(z, s)
dxdy

y2
.

Proof. After [KS], consider the transformations

σg(z) =
√

2
4

∑
νmod4

g

(
z+ ν

4

)
,

τ2g(z) = eiπ/4
(
z

|z|
)−1/2

g

(
− 1

4z

)
.

We note that, as in the holomorphic case [Koh, p. 255], any function g in T+r satisfies

Lg = τ2σg = g. For f ∈ S+
k−1/2, g ∈ T+r and i = 0, 1, let

fi(z) =
∑
n≡i(2)

c(n)e(nz/4)
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354 Duke and Imamoḡlu

and

gi(z) =
∑
n≡i(2)

B(n, y/4)e(nx/4).

It follows as in [KZ, p. 190] that

(2z/i)−k+1/2f

(−1

4z

)
= i

k2−k

2k−1
f0(z),

(2z/i)−k+1/2f

(−1
4z
+ 1

2

)
= i

k2−k

2k−1
f1(z),

eiπ/4
(
z

|z|
)−1/2

g

(
− 1

4z

)
=
√

2g0(z),

and

eiπ/4
(
z

|z|
)−1/2

g

(−1

4z
+ 1

2

)
=
√

2g1(z).

Making the change of variables z → −1/4z in the case of i = 0, and z → −1/4z

and z→ z− 1/2 in the case of i = 1, we deduce the identities∫
Γ0(4)\H

yk/2−1/4fi(z)gi(z)Ẽ∞(z, s)
dxdy

y2
= 2k−1

√
2

∫
Γ0(4)\H

yk/2−1/4f(z)g(z)Ẽj/2(z, s)
dxdy

y2
.

The Rankin-Selberg method, applied to the functions fi and gi, now gives the result of

the lemma.

The desired functional equation forΛ∞ follows from Lemma 7, since clearlyΛ∞ =
Λ0 +Λ1/2.
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Imamoḡlu: Department of Mathematics, University of California–Santa Barbara, Santa Barbara,

California 93106, USA

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/1996/7/347/749670 by U
C

LA Biom
edical Library Serials user on 27 N

ovem
ber 2021


	A Converse Theorem and the Saito-Kurokawa Lift
	1. Introduction
	2. Statement of the main theorem
	3. Hecke correspondence for Sp(2; Z)
	4. Fourier coefficients of weight-1/2 forms
	5. Rankin-Selberg convolution
	Acknowledgments
	References


