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ON CODES AND SIEGEL MODULAR FORMS

W. DUKE

1. Introduction. In this paper I will connect the theory of Siegel modular forms
to the study of multiple weight enumerators of certain binary linear codes. As an
application, it will be shown that the algebras spanned by the biweight enumerators
of doubly-even codes containing the all-ones vector and of doubly-even self-dual
codes are finitely generated over C, and explicit generators for them will be given.
This will be based on results of Igusa and Ozeki on the structure of algebras of
Siegel modular forms of degree two.

Let cg
2 be the set of all doubly-even codes containing the all-ones vector and cg

the set of all doubly-even self-dual codes, so that cgl c cg
2 (see 2 for definitions).

Codes in cg are of special interest, and those of length < 32 have been classified (see
[4]). On the other hand, the number of equivalence classes H(n) of such codes of
length n satisfies log H (n) >> n2 as n - with 8In (see [19, Chapter 19]). This fact
makes it desirable to have class invariants which can distinguish between different
classes of a given length but which spafi a finitely generated algebra.

Natural candidates for such invariants are the following multiple weight enumer-
ators. For any binary linear code C of length n and r Z+, we define the r-fold
weight enumerator of C to be

(1.1) W(x; C)= Z 1--I x’’to’ cr)

(cl c,.) C F

where x (x,) is a 2r-tuple of variables with e e F and co,(c, cr) is the number
of occurrences of e as a row in the matrix of column vectors (cl,..., c,). The
polynomial e Z Ix] is homogeneous of degree n and can be written using multi-
indices m (m,) as

W(x; C)-- E Amxm’

where , m, n and A is the number of r-tuples (c t, c,) from C which have
m, occurrences of e in their rows for each e. Thus W(x; C) W(Xo, xt; C) is the
ordinary weight enumerator of C, while W2(x; C) W2(xoo, Xo, Xo, Xlt; C)is the
biweight enumerator of C introduced in [18] (see also [19]). The variables Xoo, Xo,
Xo, xtl, will also be denoted by Xo, x, x2, x3, corresponding to the binary
expansion of their subscripts.
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126 w. DUKe.

Now W(x; C) is a class invariant, and it holds that

W(x; Cl c2)= W,(x; Cl)W,(x; c).

As cdN is closed under for N 1 or 2, the set /,(N) of all finite C-linear
combinations of 1 and (x; C) for C cdn forms a (graded) subalgebra of C[x]. In
fact,

d=O {rnod 8IN)

where a(N) is the vector space of polynomials in /(N) which are homogeneous
of degree d. Let

P(t) P,,N(t)= dim fCa(N)t
d-=O (mod 8/N)

be the associated "Poincar6 series". Two basic problems are (i) to show that
is finitely generated and (ii) to compute P(t).
When r N 1, these problems were solved by Gleason in 1970 [9-1, from which

it follows that W1 (1) is actually freely generated by

x + 14x’x + xs and x4 + 759x6x8 + 2576x2x2 + 759XoSX 6 + x24.

These polynomials are the weight enumerators of the [8, 4] Hamming code and the
[24, 12] Golay code, both of which are in c1. Thus, one also has

PI, (t) (1 t8)(1 t24)

Gleason obtained this result by identifying /(1) with the algebra of invariant
polynomials for a finite unitary reflection group of order 192. Later proofs were
given based on a connection with classical modular forms (see [2], [3], and [5]).
This approach also leads to a solution of these problems for r 1 and N 2. It
follows from [20, Theorem 9-1 that W(2) is freely generated by

x+x and Xos+xs,

which are the weight enumerators of the [4, 1] and [8, 1] repetition codes and are
in cd2, and so

P1,2(t) (1 t’)(1 s)

It is apparently not known whether /(N) is in general finitely generated for r > 1.
This result will be proved here for r 2 by developing a connection with Siegel
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ON CODES AND SIEGEL MODULAR FORMS 127

modular forms. Associated to a doubly-even code C of length n is an even integral
lattice L(C) of rank n defined by

(1.2) L(C) {ve R: x/e Z and x/ve c (mod 2), for some c e C}.

If C cg
2, then L L(C) has level 1 or 2 according as C cg or not. The associated

Siegel analytic class invariant of degree r is given by

(1.3) ,(z; L)
dt drL

e trzw(dl,...,,)

where w(d, ’,) is the nonnegative r x r matrix with entries (vet, dj) and
the Siegel upper half-space ofdegree r. Let d/g’,(N)td be the graded algebra generated
by all Siegel modular forms of degree r for F(N) with weights divisible by d:

where d/g’k(N) is the vector space of degree r Siegel modular forms of weight k for

F(N).Finally, letO(z)=(OI](2zlO)) be the 2’-vector of second-order theta
F

constants, where, for , fl F, H’, and z C’,

(1.4) 0[;](’clz)= Zb e((b+cz/2)z’(b+/2)+(b+/2)’(z+ fl/2))

Our main result is the following.

THEOREM 1. For r > 1 and N 1 or 2, the map W-- W(O(z)) defines an algebra
homomorphism from W’,(N) to dg,(N)t4/N) with W,(0(z); C) oa,(z; L(C)) for C
If r < 2, this map is an isomorphism.

This was shown in [3-1 when r 1, N 1, and in [20] when r 1, N 2. Since
it is known that d/t’,(N) is finitely generated (see !-7]), it follows that 2(N) is as well.
In fact, more precise information is available in this case. Let rn, d,, d+, g24 be the
codes of length n defined in (2.2)-(2.5) of 2, with r,, d e cg

2 for n 0 (mod 4) and
d+, g24 6 c01 for n 0 (mod 8).

THEOREM 2. (i) 2(2) is freely generated by the biweight enumerators of r,, ra,
r2, and d8 so that

(1 t4)(1 t8)2(1 x2)
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128 w. DUKE

(ii) 2(1)= 03 W2(x; d2)#, where " is freely generated by the biweight
enumerators of d, d4, do, and g2,, so that

P, x(t)
1 -bt32

(1 ta)(1 t2’)2(1 ’)

In order to express symmetric weight enumerators succinctly, it is convenient to
introduce a symmetrizing operator on polynomials. This is defined on monomials
x by

1
Symxm--l{Sk:rcm m}l ,sZ xnm’

where zm (mto), m,tk-1)), and is extended linearly.
It is readily verified that

W2(x; rn) Sym xt’’’n)

and

W2(x; d8) Sym(xt’’’8) + 6xt’’4’g) + 24x(2’2’2’2)).

It follows that V2(2) (hence also /’2(1)) consists ofpolynomials which are symmetric
in Xo, xl, x2, and x3. A calculation [6] gives

W2(x’ g24) Sym(xt’’’24) + 759xt’’a’16) + 2576xt’’12’2) + 22770xt’a’8’8)

+ 340032X2’6’6’x) + 212520X4’4’4’2) + 1275120X4’’’8’s)

+ 4080384x6, 6, 6, 6)),

while for general dn, d+, we have the identities

1 v( (_l)(a,ij>x2)n/2W:(x; dn)
a o,

for n 0 (mod 4)

and

for n 0 (mod 8).

One can use these explicit generators to compute the biweight enumerator of an
extremal code in cg of length 48, as well as the biweight enumerator that extremal
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ON CODES AND SIEGEL MODULAR FORMS 129

codes oflength 72 and 96, if they exist, would have; see [6]. The computation shows
that these enumerators are in fact unique. For example, if e48 is an extremal code
of length 48 (one is known to exist; see [19]), then

Wz(X; e48)= Sym(xto,o,o,48) + 17296xto, o,12, 36) + 535095xto,o,16, 32)

+ 3995376xt,,2,28) + 7681680xto, o, 24, 2’*) + 10896480xt,12,12, 24)

+ 59930640xt,12,16,2) + 153037170xt,6,x6,16)

+ 143833536xt2,1,-,26) + 2054764800xt2,,-4,22)

+ 4954266240xt2,x,18,18) + 14383353600xt2,14,14,18)

+ 128422800xt’ 8’ 8’ 28) + 5094104400xt, 8,12, 2)

+ 29845458720xt4’8’16’2) + 104279313600xt4’12’12’2)

+ 279876088800xt4, 2,16,16) + 15981504Xt6’ 6,6, 30)

-I- 1917780480x6’6’1’26) + 29006429760xt6’ 6’14’ 22)

+ 69040097280xt6’6’18’18) + 131367962880xt6’x’x’22)

+ 963684691200xt6’’14’18) + 2970162518400x6’x4’14’14)

+ 34224676200xt8’8’8’2’) + 743439589200xt8,8,12,2)

+ 1970391020400xt8’8’x6’6) + 7304226541920xt8,x2’x2’16)

+ 4631359951680x1’1’1’18) + 14095686528000xt1’1’14’14)

+ 26737956967680xt12’ 12’ 2’ 12)).

The direct computation of this biweight enumerator from the code is thereby
avoided.

It is also possible to use invariant theory to study biweight enumerators, as was
done for certain classes of codes in [18]. It was shown in [10] that 2(1) z’tS,
where z’ is the algebra of polynomial invariants for a finite unitary reflection group
of order 46080 (group number 31 in [25]). The invariant theory of this group was
studied as early as 1887 by Maschke [21]. It follows from Theorem 2 that actually
W2(1) (8) since the generators of ’ have degrees 8, 12, 24, 20. It is actually
possible to express the generators of8) in terms of W2(x; C), for C d- d4, d/32
d+o, 4 and thus give another proof of Theorem 2(ii).
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130 w. DUKE

Nothing seems to be known about our basic problems when r > 3. The
homomorphism W-- W(O) of Theorem 1 is certainly not injective when r 3. In
fact, a computation [6] shows that

W(x) ae=f W3(x; a- d) W3(x; d-6) # 0

while a result of Igusa [15] on the genus 4 Schottky relation together with Lemma
5 shows that W(O) O.

Acknowledgements. I would like to thank H. Bass, Z. Rudnick, and N. J. A.
Sloane for their comments, and I. Vardi for several contributions.

2. Codes and associated lattices. By a code of length n, we mean a binary linear
code of length n, which is a subspace of Fz, where F2 is the field with two elements.
We can identify Fz with {0, 1} c Rn and, letting (., .) denote the usual inner
product in R", define the weight of a codeword c e C to be o91 (c) (c, c). An In, k]
code is a code of length n with dimension k. Two codes are equivalent if there is a
permutation of coordinates taking one to the other. The dual code is

C+/- {c Fz: (c, b) 0 (mod 2) for all b e C}

and is a code with C+/-- C. If C C+/-, then C is called self-dual. If (c, c) 0
(mod 4) for all c C, then C is called doubly-even.

LEMMA 1. A code C is doubly-even if and only if C c C+/- and C has a basis
(cl Ck) with (ci, ci) 0 (mod 4) for 1,..., k.

Proof. This follows from the identity (in R")

(2.1) (a + b, a + b) (a, a) + 2(a, b) + (b, b),

together with the observation that (a + b, a + b) is the same mod 4 if a + b is
computed mod 2 or mod 4. El

Define the level N of a doubly-even code C to be the smallest N e Z/ such that
N(c, c) 0 (mod 4) for all c e C-. Clearly N 1, 2, or 4.

LEMMA 2. Let C be a doubly-even code.
(i) C has level 1 or 2 if and only/f I (1, 1) C.
(ii) C has level 1 if and only if C is self-dual.

Proof. (i) C has level 1 or 2 if and only if, for all c C+/-,

(c, 1) (c, c) =- 0 (mod 2),

which happens if and only if I C+/- +/- C.
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ON CODES AND SIEGEL MODULAR FORMS 131

(ii) If C has level 1, then C+/- is doubly-even, and so by Lemma 1, C +/- c C+/-+/- C
and C c C+/-; so C C+/-. Conversely, if C C+/-, then (e, e) -= 0 (mod 4) for all
c C+/-, and so C has level 1. El

Let cg
2 be the set of all doubly-even codes containing 1 and cg the set of all

doubly-even self-dual codes. By Lemma 2 we have that 1 ccg
2 and by [9] that the

length n of any C cg
N satisfies n 0 (mod 8IN) for N 1 or 2.

Important examples of codes for us are denoted by r,, d,, d,+, g24, and are defined
as follows:

(2.2) The code r, is the In, 1] repetition code spanned by I with
r, (2 (1 if n --- 0 (mod 4).

(2.3) The code d, is the In, n/2 1] code for n _= 0 (mod 4) with generator matrix

1 0 0 0
0 0 1 1 1 0 0 0

Oo
0 0 0 1 1 1

meaning that its rows form a basis for d,. Now d, cg
2 cx by Lemma 1 and 2.

(2.4) The code d,+ d, w (a + d,), where a (1, 0, 1, 0, 1, 0), and
n =_ 0 (mod 8). This is denoted by E, in [23, p. 320], and d.+ .

(2.5) The code 924 is the [24, 12] Golay code defined, for example, in [19],
with g24 f 61-

Recall that a full lattice L = R" is a discrete subgroup with det(L) vol2(R"/L)
finite. Two lattices are equivalent if there is an orthogonal transformation taking
one to the other. The dual lattice is

L +/- { R": (t, m) Z for all m L},

and is a full lattice with L -+/- L. If L L +/-, L is called self-dual. If (Y, Y) 0
(mod 2) for all L, then L is called even. By (2.1) a lattice L is even if and only if
L c L +/- and L has a Z-basis , with (, ) 0 (mod 2) for 1, n.
The level of an even lattice L is the smallest N Z+ such that N(, ) 0 (mod 2)
for all L +/-. An even lattice is self-dual if and only if it has level 1.

Associated to any [n, k] code C is the full lattice L(C) R" defined in (1.2) and
called construction A in [5, p. 182], which is a basic reference for this section. From
[5], if (I, B) is a generator matrix for C, where B Mat.,_(F), and I is the k x k
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132 w. DUKE

identity matrix, then L(C) has a Z-basis given by the rows of

(2.6)
x/ 2I._k

Using this and the above lemmas, it is straightforward to establish the following
result.

LEMMa 3. For any codes C, C1, C2,
(i) L(C-) L(C) +/-,

(ii) L(CI O) C2) L(C)O) L(C2),
(iii) C c C2ifandonlyifL(C)c L(C2),inwhichcaselC2/Cl IL(C2)/L(CI)I,
(iv) L(C) is even if and only if C is doubly-even, in which case their levels coincide.

In particular, Lemma 2, (2.6), and Lemma 3(iv) lead to the following result.

LEMMA 4. If C 2, then L(C) is an even lattice of level 1 or 2 dependin9 on
whether C qx or not. Furthermore, det(L(C)) is a square integer.

Although we do not need this fact here, it can be shown that for N 1 or 2 an
even lattice of level N can be expressed as L(C) for some C cg

N of length n exactly
when x//Z" c L, and two such lattices are equivalent if and only if the associated
codes are equivalent (see [17, Theorem 2]).

3. Weight enumerators and analytic class invariants. In this section the first
statement in Theorem 1 will be proved. Recall definitions (1.1)-(1.4).

LEMMA 5. For any code C and r > 1, one has

W(0(z); C)= 0r(Z; L(C)),

for any z HL

Proof. From (1.3)

0,(; L(C))
tl ereUC) e( tr(’:,...,/’,)’(x,..., ,)),

where each is written as a column vector in R" and this is

Z e((b + /2)z’(b + /2))
ceC be Z

upon using the definition of L(C) in (1.2) and collecting together those columns of
(Yx, ...,/’,) which receive the same contribution from c (cx, cr) e C". Thus
O,(z; L(C)) W(0(z); C). El
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ON CODES AND SIEGEL MODULAR FORMS 133

Recall that ’k(N) is the C-vector space of all Siegel modular forms of weight k
and degree r for F6(N) (see [1-1 for definitions). The following standard result can
be found in [1, p. 64].

LEMMA 6.
for each r > 1

If L c R" for 4In is an even lattice of level N with det(L) a square, then

,9,(r; L) .Jlf/2(N).

Recall that /(N) for N 1 or 2 is the C-algebra of finite C-linear combinations
of 1 and W(x; C) for C . For W //,(N), we have to consider the map

w w(o()).

In view of Lemmas 4, 5, and 6, this gives a map from /(N) to /lr(N)(4IN) since
4IN divides n/2 for codes of length n in N (recall below Lemma 2). It is clearly an
algebra homomorphism. This proves the first statement in Theorem 1.

4. Algebraic independence of theta constants. Turning to the proofofthe second
statement in Theorem 1, we may assume that r 2 since the case r 1 is known
from [3] and [20]. To show that our homomorphism is injective, consider the theta
constants from (1.4) when r 2:

0() (0o(), 0(), 0(),

__(o[0 0 o 0

Injectivity follows immediately from the next lemma.

LEMMA 7. The functions 00(z), 01(z), 02(), and 03(z) on H2 are algebraically
independent over C.

Proof. Consider the determinant

D(z)

0o(r) 0 () 0,.(r)

t9100() 3101(z) t9102(z) (91 03(z)

a:0o() a0() ao,.() aoa()

aOo() ,9o() o:() 3o()

where ti t/tzi with z A sufficient condition for algebraic indepen-
’172 "17 3

dence is the nonvanishing of D(z) at a point and hence in a nonempty open set
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134 w. DUKE

a, c H2. This follows in a standard way by differentiating a purported homoge-
neous algebraic relation together with Euler’s relation and using the chain rule to
derive a nonzero homogeneous linear solution, hence a contradiction.

Recall that is reducible if it is equivalent under Sp(4, Z) to a matrix of the form

 02).
LEMMA 8.

D(z) =-t-4n3i I-I 0Il(zl0)(at, fl =-0 (mod 2)

and D(z) vanishes exactly when is reducible.

Proof. Using the heat equation, see [14, p. 187], it follows that

In [24, p. 119] this determinant is evaluated using Rosenhain’s derivative formula
from [8, p. 248] to yield the formula of the lemma. The fact that D(z) 0 if and
only if is reducible follows from [24] or [16, p. 115]. E!

Choosing irreducible in Lemma 8 now yields the proof of Lemma 7. El

5. The basis problem for degree-two modular forms. Finally, I will apply known
results about the structure of algebras of degree-two Siegel modular forms to finish
the proof of Theorem and to prove Theorem 2. In the last section the map
W W(O) was shown to be injective, and it will now be shown that this map is also
surjective for N 1, 2. This fact is based ultimately on the fundamental results of
Igusa (see [12], !-133, and [14]).

In case N 1, it follows from [22] that .///’2(1)(4) is generated by 2(; L(d+)) for
n 8, 24, 32, 40, and by 92(; L(#2g)). This proves surjectivity. Part (ii) of Theorem
2 now follows since a computer calculation of their Jacobian determinant shows
that the biweight enumerators ofd, d, do, and 02 are algebraically independent
over and since W2(x, d2)2 can be expressed as a polynomial in the biweight
enumerators ofdff, d, d2, do, and 92, in which only the first power of W2(x; d-2)
Occurs.
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ON CODES AND SIEGEL MODULAR FORMS 135

In case N 2, it follows from [11, p. 33] that ,/’2(2)(2) is freely generated by forms
of weights 2, 4, 4, and 6. On the other hand, a computer calculation shows that
W2(x; r4), W2(x; r8), W2(x; r12), and W2(x; d8) are algebraically independent. Hence
the surjectivity follows, as does Theorem 2(i).

Added in proof: After this paper was written, I learned that some of its results
were also obtained by N. Herrmann in his (unpublished) Diplomthesis.
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