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CLASS GROUP L-FUNCTIONS

W. DUKE, J. FRIEDLANDER, AND H. IWANIEC

To Professor Wolfoan9 Schmidt on the occasion of his sixtieth birthday.

1. Introduction. We consider the imaginary quadratic field K (x//-D) of
discriminant -D. Our main interest here is to study the L-functions of K which
are attached to the characters of the class group . Letting ;t g be such a
character, we denote

Lr(s, Z)= ;(a)(Na)-, (1.1)

where a ranges over nonzero integral ideals, and Na is the norm. Thus we have
h h(-D) lal such L-functions. It is known that the "class number" h satisfies

D/2- << h << D/2 log D. (1.2)

Here the lower bound (ineffective) is due to C. L. Siegel [Si], and the upper
bound is elementary.

For the trivial character ;t 1, the L-function is just the Dedekind zeta-
function of K and can be expressed as (K(s)= ((s)L(s, ZD), where ((s) is the
Riemann zeta-function and L(s, ZD) is the Dirichlet L-function for the field
character ZD(n)= (--D/n). More generally, if Z is real we have Kronecker’s
factorization

LK(s, Z)= L(s, Z/I)L(s Z/)2), (1.3)

where -D D1D2 is some factorization into fundamental discriminants -Dx
and --D2, see [Si2, pp. 81 and 91]. Of course the number 2ot)- of such real
characters is quite small in comparison to h when D is large.
The L-functions defined in (1.1) for Re s > 1, where the series converges abso-

lutely, possess an analytic continuation to the whole complex s-plane. They are
entire functions except for (r(s), which has a simple pole at s 1 of residue

res (r(s) L(1, D) 2zchw-D-X/2, (1.4)
s=l
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where w is the order of the unit group. This is the famous Dirichlet class number
formula. Moreover every LK(s, 7.) satisfies the functional equation

(s, Z) .(1 s, Z),

where

e(s, Z)= (2z)-T(s)D’/2L:(s, Z). (1.6)

All the above properties follow at once from the integral representation due to
E. Hecke [He];

(s, 7.) + 6xhw-ls-l(1 s)- (u-1 + u-)S(u, 7.)du, (1.7)

where 6x 1 if 7. 1 or else it vanishes, and

S(u, 7.)= Z 7.(a)exp(--2rcuNa/x//). (1.8)

Our primary purpose is to give bounds for LK(S, 7.) at points on the critical line
s 1/2 + it. We shall concentrate on the dependence of these bounds on D rather
than s. By the trivial estimate ILK(s, 7.)1 < ((or)2 < a2(tr 1)-2 on the vertical line
Re s tr 1 + (log D)-, the functional equation (1.5), and the convexity princi-
ple of Phragmen-Lindel6f, one gets immediately that

LK(S, 7.) << s(1 s)DX/4(log D)2 (1.9)

on the critical line s 1/2 + it. One can do a bit better with respect to D by using
the integral representation (1.7). Indeed we get IO(s, 7.)1 < 4hw-l+ (1/2, 1) if
7. : 1, whence

LK(s, 7.) << (ch m)i/2hD-1/. (1.10)

For a real character the convexity bound (1.9) as well as (1.10) can be im-
proved substantially using the celebrated estimate of D. Burgess

L(s, 7.i) << Isl ID[ 3/x6+*. (1.11)

This yields by (1.3) that for 7. real,

LK(s, 7.) << s(1 s)D3/16+. (1.12)

We wish to get a comparable improvement for LK(s, 7.) with a general class
character. To do this we intend to apply the method of our previous works
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[FI], [DFI1], [DFI2]. This requires us to study various mean values of these
L-functions.

It is quite easy to evaluate Lr(s, .) on average as varies in .
THEOREM 1. If Re s 1/2 we have

F(!
_

Lr(s, 19 (2s)+ (2- 2s)
h 7-5e F(s) \ 2x ,/

+ O(e-’,/). (1.13)

In particular, at the special point s 1/2 this is log(x//8rc + , + O(e-’’/b).
With more work, but still using mostly elementary means, we shall establish an

asymptotic formula for the second power-moment.

THEOREM 2. If Re s 1/2 we have

1
ILr(s, Z)l z lo(s) + O(L(1, go)), (1.14)

where the main term Iv(s) is given as the sum of residues of w-XDO-mL(v, ZD)H(v)
at v 1, 2s, 2- 2s. Here H(v) is a meromorphic function on the whole complex
plane determined in Section 6 which does not depend on D.

A complete analytic expression for H(v) may be obtained by inserting (6.5) and
(6.10) into (6.20). To compute the residues, we can use the Laurent series expan-
sions (6.13) and (6.14). From these we find that in the half-plane Re v > 1/2, the
poles are at v 1, 2s, 2 2s (all on the line Re v 1). The pole at v 1 has order
4 if s 1/2, and it has order 2 if s # 1/2. In the latter case, the additional poles at
v 2s, 2 2s are simple. Therefore, if s 1/2 we have

1o(1/2) j+k.<3 cjL{J)( 1, Zo)(lg D), (1.15)

and if s # 1/2 we have

lo(s) Cox(s)L(1, D) log D + Coo(s)L(1, ZD) + Cxo(s)L’(s, ZD)

+ c(s)L(2s, XD)Ds-x/z + c(1 s)L(2 2s, ZD)D 1/2-s. (1.16)

Here the highest coefficients are quite simple, namely,

Co3 (w(2))-x (1.17)

and

Col(S) (12w(2))-xff(2s)(2 2s). (1.18)
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For c(s) see (6.26). The other coefficients look more complicated. We certainly
expect that the leading component of lo(s) is the one which has the highest power
of log D, but we cannot prove it yet. One can see this using the Riemann hypo-
thesis for L(s, ;to), which yields

(log log D)-A << LtJ)(2s, ZD) << (log log D)A (1.19)

Hence, if s 1/2,

lo(1/2) c03L(1, ;tD)(log D)3 (1.20)

and, if s 1/2,

lo(s) Co (s)L(1, Zo) log D. (1.21)

In both cases the asymptotic formula (1.14) is meaningful for large D since the
error term is smaller (albeit slightly) than the main term.

At the central point s 1/2, we can estimate the main term/D(1/2) uncondi-
tionally; in fact, our lower bound has the right order of magnitude. First we shall
show that

lD(1/2) L(log D)2 (1.22)

where

L Z (Na)- exp(-2rcNa/x/-)" (1.23)

It follows by (1.11) that

L(1, g) log D << L << L(1, 21)) log D + L’(1, go). (1.24)

Since L’(1, go) << (log D)2, we obtain unconditionally that

L(1, ZD)(1og D)3 << lo(1/2) << (log D)4. (1.25)

Assuming there is no Siegel zero for the character ;to, we have

(1, ZD) << log D, (1.26)
L

and hence we can improve (1.25) to get

1o(1/2) L(1, ZD)(1og D)3 (1.27)
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Notice that Theorem 2 yields the convexity bound for every individual Lr(s,
(apart from the factor in s) by ignoring the remaining L-functions and using
positivity.
With a lot more work we shall establish a mean-value theorem in which the

error term saves a positive power of D.

THEOREM 3. If Re s 1/2 we have

1 r ILx(s, :t)J 2 lo(s) + l[9(s) + O(D -1/2a+) (1.28)

where lo(s) is as in Theorem 2 and 19 (s) w-lc+(s)L(1, D) is given by (11.17).

The first part lo(s) comes from the contribution of the relevant diagonal terms.
The second part l(s) looks simple but is not easy to obtain; it emerges from the
off-diagonal terms which we shall treat in more detail than in Theorem 2 using
the spectral theorem for the modular group. More precisely, l(s) comes from the
projection of a certain Poincar6 series onto the constant eigenfunction (of eigen-
value 2,0 0). The problem of estimating the error term in (1.28) is even harder. It
reduces eventually to an equidistribution property of Heegner points (2.4) with
respect to the Poincar6 measure on the hyperbolic plane which was established in
[Du].
The improvement (1.28) over (1.14) does not however lead to better bounds for

the individual L-functions. In order to effect such improvements, we follow ideas
from our earlier papers [FI], [DFI1], [DFI2] and give estimates for the second
power-moment weighted by a general character sum of type

._.,d(c, Z)= c),(,), (1.29)

where

),() 2-) g(q). (1.30)
q=q, (q, )-1

Notice that Vq(Z) is real, and the sum is void unless every prime factor of q has
degree 1 and is unramified, i.e., XD(P) 1 for every Plq. In this case

)’,(Z) H Re Z(p),
p II

where p p. In particular, for the trivial character we have (1) 1.

ToI 4. Let q > 1 and Re s 1/2. We have

1 e (z)ILr(s, z)l << (q-i/2 + q6D-1/28)Dt
h x

where the implied constant depends on e and s.

(1.31)

(1.32)
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With a little extra work one should be able to establish an asymptotic formula
in place of the estimate (1.32) as in the case of q 1 in (1.28), but we do not need
such a precise result. For the applications in this paper, the key issue is the
uniformity of (1.32) in both D and q. Such an asymptotic formula would reveal
that the term q-1/z represents the right order of magnitude for the twisted mean
value in (1.32) (assuming that q has only prime factors of degree 1, is coprime with
D, and relatively small). However, the power q6 in the second term could certainly
be reduced if we were more economical in some arguments.
Theorem 4 shows that if q has the size of a small positive power of D then, as t

runs over the group , the sign change (or vanishing) of yq(Z) causes a con-
siderable cancellation of the terms yq(g)lLr(s, Z)[ z. Now, as the bound for such a
twisted mean value is smaller than for the straight one, one may attempt to derive
a sharper bound for the individual Lr(s, ;t) by ignoring the contribution from the
remaining ones. Yet, at this point we cannot do so because the positivity is lost.
In order to restore the positivity, we average over q. From Theorem 4 one derives
easily the following theorem.

THEOREM 5. Let c be any complex numbers for q < Q. If Re s 1/2 we have

1 Je 1(c, 7.)Lr(s, 012 << Iic112(1 + QTD-I/2a)D,
h z

(1.33)

where Ilcll is the 12-norm of c {c}.
The sum (c, Z) is often chosen with the object of smoothing out or "mollifying"

the behavior of the accompanying L-functions. In our case we deduce a sharp
bound for the individual Lr(s, ) by choosing z(c, Z) to "amplify" the contribu-
tion of the particular character ;t in which we are interested.
A natural choice of the coefficients is c ,(Z) giving

x q(Z)2" (1.34)

Then we drop by positivity every term on the left-hand side of (1.33) other than
the one corresponding to ;t and divide by h-x’x2, getting

L(s, Z) << hCx--(1 + QTD-/2s)D. (1.35)

Hence it is evident that ifx can be taken to be a power of Q when Q is a small
power of D, then we can save a power of D in comparison to the convexity bound
(1.9). To make x that large requires the existence of many primes of degree 1
having small norm. It is well known that finding such primes is a serious prob-
lem, and, indeed, interesting on its own. The corresponding obstacle in our earlier
works was sometimes trivial, other times not so, but always manageable.
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Later, in Section 15, we shall establish a number of results about primes of
degree 1 in K (v/-D) under various natural conditions. Under these condi-
tions we get a lower bound

d2gf >> Ql[3-e. (1.36)

We need this for Q D6a+a, say, with very small . If < 1/1156 is available we
conclude from (1.35) that

Lr(s, Z) << D1/4-+e. (1.37)

One of the conditions which is sufficient to yield (1.36) for every is that the
class number is large enough, or more precisely, that

h h(-D) >> ..v (log log D)3.
log D

(1.38)

This bound is probably always true since, by the Riemann hypothesis for the
Dirichlet L-function L(s, ;tD), much more follows, namely,

x(log log D)-1 << h(-D) << x// log log D. (1.39)

Combining (1.37), (1.38), and (1.11) we derive a slight but unconditional improve-
ment over the trivial bound for Lr(s, 7.), namely, that

Lr(s, Z) << D1/4(log D)-X(log log D)3 (1.40)

Another condition which suffices for us to establish (1.36) is a nontrivial bound
for the field character sums. We require that

y’ D(m) << MD-’ (1.41)
m<M

holds true if M > D", where q r/() > 0. Note that the Burgess estimate [Bu-!
proves this condition for any > 1/4, and the Lindel6f Hypothesis implies it for
any > 0. If D has all prime factors < D"2, then (1.41) follows from Theorem 5 of
Graham and Ringrose [GrRi].

Finally we shall examine the set of exceptional discriminants -D for which
small primes, say p < D", of degree 1 occur rarely; see (15.16). For those D we
cannot claim (1.36). However, we shall show that the number of exceptional D’s
in any interval of type X < D < X2 is bounded by a constant depending on
alone; see (15.17). Therefore, given , the number of exceptional discriminants
-D with 0 < D < Y is bounded by O(log log Y).
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THEOREM 6. Let Z be a character of the class group of the field K (x//- D).
Thenfor Re s 1/2 we have

LK(S, Z) << D1/4-+, (1.42)

with 1/1156 subject to any one of the followin9 conditions:
(i) the class number satisfies (1.38);

(ii) the field character sums satisfy (1.41) for all M > D’;
(iii) D is not a-exceptional.

The implied constant in (1.42) depends on e and s.

Note that the estimate (1.42) is proved unconditionally for any D having all
prime factors < D2, with 1/1156, due to the result of Graham and Ringrose.
Also, the corollaries to Theorem 7 below are unconditional for such diseriminants.

Since we do not display the dependence of our bounds in s, it may limit some
applications. But it is easy to see, by tracking the arguments, that the implied
constants in (1.32), (1.33), and (1.42) are << [F(s)] -2 < erlsl. This is a rather poor
estimate in the s-aspect, yet sometimes it can be useful, for example, to derive a
nontrivial bound in the D-aspect for a quite short but sufficiently well-smoothed
character sum. In fact, one does not need to employ the class group L-functions
to get such a result since it is already implicit in Proposition 1 (see Section 4). We
infer from Proposition 1 the following theorem.

THEOREM 7. Let u > 1. We have

1 , y,(z)IS(u, Z)[ 2 << (q-/2 + q6D-a/28)u-Da/2+e
h xe

(1.43)

where E* means that the trivial character is omitted. Moreover, assumin9 that any
one of the three conditions from Theorem 6 holds with 1/1156, we have

S(u, Z) << u-a/2Dm-’+’. (1.44)

The implied constant in the above estimates depends on e only.

If the trivial character were present then (1.43) would be false since

S(u) S(u, 1)= hw-u- + O(u-1/2DT/16+). (1.45)

This follows from (1.4) and (1.13) by contour integration. Comparing (1.44) and
(1.45), one sees instantly that a nontrivial class group character changes values on
primitive ideals of norm << Dla’a’/89+e. The following corollaries are proved in
Section 17 below.

COROLLARY 1. Suppose that any one of the conditions (i), (ii), (iii) holds true.
Then any coset of a subgroup of 9g contains nontrivial primitive ideals of norm
<< k2D1/2-1/578+, where k is the index.
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Corollary 1 is related to the work of Baker and Schinzel [BS], who considered
the subgroup of the principal genus (squares of classes). In this case only real
characters are needed. Their result is unconditional, and the bounds for norms
are sharper since they used only Burgess’s estimate for character sums (an im-
provement was given in [H-B]). On the other hand, the genus cosets are quite
large, while Corollary 1 yields a nontrivial bound for smaller cosets.

COROLLARY 2. Suppose that any one of conditions (i), (ii), (iii) holds true.
Then any cyclic subgroup of may be #enerated by an ideal of norm
<< k2D1/2-1/578+, where k is the index.

After Gauss I-Ga, Art. 306-1, a discriminant -D is said to be regular if the
principal genus of is cyclic. Since in this case k << D, we deduce from Corollary
2, under one of our assumptions, that the principal genus of a regular discriminant
-D may be 7enerated by an ideal of norm << D144/289+. This is somewhat analo-
gous to the (unconditional) bound pl/4+ of Burgess l-Bu] for the smallest primi-
tive root modulo p. Of course, the structure of the class group is much more
mysterious than that of the multiplicative group of integers modulo p. Thus, even
the existence of infinitely many regular discriminants is not known. However,
the numerical evidence supports the existence of a large positive proportion of
regular discriminants [Bue]. In fact, it has been conjectured in Ge] that the
proportion of regular to all negative discriminants is (((6) 1-In>4 ((n))-1 .8469.

Remarks. In this work our arguments stay within the quadratic field K
(x//- D) as much as we can afford in order to prove a number of results about
the class group in addition to the main Theorem 6. One could enter the theory of
automorphic forms at the beginning since, for a complex class group character,
Lr(s, 7.) is just the L-function of the cusp form f(z) S(-ix/z, ;t) of weight 1 for
the group Fo(D and character :to (f is a newform with 2(Z) as the Hecke eigen-
values, and corresponds to a dihedral representation; cf. [Se-I). This, however,
would not permit us to obtain another main result, Theorem 3. On the other
hand, we can see a larger objective, that of breaking the convexity estimates for
general automorphic L-functions of any integral weight and any Dirichlet charac-
ter. This more general setting opens the possibility of exploiting the full spectrum
of automorphic forms and may bring not only new results but also refine these
for the class group L-functions. We intend to investigate this possibility on an-
other occasion.

Acknowledgment. We thank Peter Sarnak for numerous discussions during
the course of this work. W.D and H.I. are grateful to the Mathematics Depart-
ment of the University of Toronto for providing hospitality and financial support.

2. Ideals in K. We recall some basic facts about ideal theory in the quadratic
field K (V/- D). Every rational prime p either factors as a product p pff of
two primes (not necessarily distinct) each of which has norm p and degree 1 or
remains prime in K having norm p2 and degree 2. In the first case p except



10 DUKE, FRIEDLANDER, AND IWANIEC

for plD (the ramified primes). The decomposition of p in K as above is character-
ized by values of the field character; ZI(P)= 1, 0, -1, respectively. We say an
ideal is of degree 1 (respectively 2) if every prime factor has degree 1 (respectively
2). Every ideal -: 0 factors uniquely as the product of one of each of these.
We shall often factor an integral ideal 0 uniquely as (l)a where is a positive

integer and a is a primitive ideal, i.e., a has no rational integer factors other than
__+ 1. Note that the primitive ideals are characterized by the condition

(a, )I,/. (2.1)

The ring of integers (9 K is a free Z-module of rank 2 generated by

Every ideal 0 a c (9 is also a free Z-module. If a is primitive, then it is gener-
ated by

a= a, (2.2)

where a Na, and b solves the congruence

b2 -F D 0 (mod 4a) (2.3)

and is determined modulo 2a. Conversely, to every b (mod 2a) satisfying (2.3)
corresponds the ideal a generated by (2.2), and this is primitive. Therefore, there
exists a one-to-one correspondence between the primitive ideals and the points

b + ix/ (2.4)z,
2a

in the upper half-plane H {z x + iy" x IR, y IR+ } determined modulo 1.
These will be called the Heegner points. The inverse a-x as a fractional ideal is a
free Z-module generated by

a-1 [1, ,]. (2.5)

The primitive ideals correspond in one-to-one fashion to the quadratic forms
[a, b, c] aX2 + bXY + cY2, with a, c > 0, (a, b, c)= 1, 4ac- b2 D, and the
Heegner point is just the one of the two roots which lies in H.
The modular group F SL2(Z) acts on H by the linear fractional transforma-

tions

az if
yz+6
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The set of Heegner points is mapped to itself. Precisely, we have

2a 2a

where

a at2 + b + c)2

b b + 2af16 + 2bfly / 2c

D 4ac b2

(2.6)

Given a fundamental domain of F, say , we put

Ao {z, " a primitive}. (2.7)

The set AD is finite; its cardinality is just the class number IAoI h(-D). This
gives a one-to-one correspondence between the primitive ideals and the points of
the orbits

\ r/r,} for z

where Fz is the stability group of z.
The above analysis can be generalized so as to replace the ring (9 by an ideal

q = (9 such that

(q, )= 1. (2.8)

Consider the integral ideals a c q (i.e., divisible by q) which are primitive. The
inclusion a c q is expressed in terms of the Heegner point z, by the following
congruence conditions

a _= 0 (mod q), b + iv/- =- 0 (mod 2q) (2.9)

where q Nq. From (2.6) it is clear that the group F Fo(q) acts on points z, for
a = q because it preserves the conditions (2.9). Given a fundamental domain of F,
say @, we put

Ao(q) {z e " a q, tl primitive}. (2.10)

This establishes a one-to-one correspondence between the primitive ideals a = q
and the points of the orbits

e for z e Ao(q).
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When dealing with various sums over the Heegner points za, it is convenient
for technical reasons to remove the second congruence condition of (2.9). This
condition will disappear after summing over all factorizations of q q such that
(q, ) 1. If q admits such a factorization, then every prime factor has degree 1
and is unramified; the number of such factorizations is then given by 2’tq). In
other words, we shall take all the primitive ideals a c (9 of norm No a 0
(mod q) rather than a c q only. Accordingly we introduce the set

Ao(q) {z, : a 0 (mod q), a primitive}. (2.11)

3. The average value of Lx(s, Z).
have the following identity

In this section we prove Theorem 1. We

1 g Z(a)L(s, 7.)= w-a (2s)E(z,, s) (3.1)

where a is any primitive ideal, z is the Heegner point, and E(z, s) is the Eisenstein
series for the modular group. To see this, recall that

(2s)E(z, s)= y Im+ nz1-2. (3.2)
(re, n) #(0,0)

On the other hand, the left side of (3.1) is given by

(Nb)-= w-(Na) Z I1-2= w-Xa-S ZZ Im / nzo1-2.
b~ 0 #ae a (re, n) #(0,0)

Combining these we get (3.1).
The Eisenstein series at the Heegner point zo (b + ix)/2a can be estimated

by using the Fourier expansion (see [Iw])

O(s)E(z, s)= O(s)y + 0(1 s)y- + 4y/2 Kt(2nky cos(27rkx),
k=l k

where O(s)= n-F(s)(2s). The contribution from k > 1 is bounded trivially by
O(e-2r) for z in the standard fundamental domain. In particular, for given a we
choose z z, the Heegner point in this fundamental domain, getting from (3.1)
that

w
Z(a)LK(S, Z)= O(s) + O(1 s)r(s) + O(e-’x/b/a).

This formula is very precise if a Na is small compared to x//. Taking a (1)
we obtain Theorem 1.
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We are now ready to proceed to the second power-moment. By Fourier inver-
sion we get from (3.1) that

LK(S, Z) W-1 (2S) (ot)E(za, s).
Ao

(3.3)

By Plancherel’s theorem we obtain

1 r ILK(S, Z)] 2 2w-2D-ml((2s)l2

h x zaEAD
IE(za, s)l 2 (3.4)

Therefore, Theorems 2 and 3 are statements about the distribution of the values
of this Eisenstein series at the Heegner points. Since the Heegner points themselves
are equidistributed by a theorem of Duke [Du], one might hope to approximate
the right-hand side by the corresponding integral over the fundamental domain.
This leads to two problems, however. In the first place, the fact that the Eisenstein
series is not square-integrable causes technical difficulties. In the second place,
this method does not seem amenable to the twisted sums occurring in Theorem 4
and needed for the main applications. Therefore we shall use an alternative
approach.

4. Preliminary transformations. Denote by the left-hand side of (1.32):

1
y()lLx(s, )l2. (4.1)

The problem of evaluating reduces to that of

Indeed, we have

1

’ xE)e y(Z)l(s, Z) + 6xhw-ls-l(1 s)-ll 2. (4.2)

l (2n)-llr(s)12D/2 + h(ws(1 -s))-2 + 2O(s)(ws(1- s))- (4.3)

where, in the last term,

(I)(s) (I)(s, 1)= (2z)-r(s)D’/Z(s). (4.4)

This is quite small; namely, by (1.11) we have

O(S) << S(1 s)lr’(s)lD3/6+ (4.5)
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Next, using the integral representation (1.7), we transform ’ into

/l (u-1 + u-)(uz- + u]S)l(u, uz) du du2, (4.6)

where

1
?q(x)S(u, x)S(u2, X)(u, u) - (4.7)

and S(u, .Z) are defined by (1.8). We shall prove the following (see the conclusion
of Section 12).

PROPOSITION 1. For any u, U2 1 we have

+ 0 (q-i/2 + q6D-/28 (4.8)(u, uz) wZu uz u uz

where the implied constant depends on e only.

The contribution to /(u, u2) from the trivial character is h-S(tl)S(tl2) where
S(u) satisfies (1.45). Therefore, the trivial character contributes

h
h-IS(u)S(u2) w2u u2

+ O((u U2)-l/2DT/16+e). (4.9)

The main terms in (4.8) and (4.9) match. Subtracting, we infer that

,//,(Ul, U2 << (q-l/2 "k- q6D-1/28)(u u2)-l/2D 1/2+. (4.10)

Hence, taking ux u2 "--U we obtain (1.43). The derivation of the individual
bound (1.44) goes by constructing an amplifier in the same fashion as (1.37) is
derived from Theorem 5. To this end, one needs the lower bound (1.36) which
will be established in Section 16. Applying this bound, we complete the proof of
Theorem 7.

Inserting (4.10) into (4.6) we get

/// h(ws(1 s))-z + O((q-x/z + q6D-X/ZS)D/Z+). (4.11)

Then, comparing this with (4.3), we complete the proof of Theorem 4.
Most of the problems from Section 1 are now transferred to the evaluation of

//(u, u2). Using the orthogonality of characters, we obtain
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where at, a2 are the norms of at, a2, respectively, and denotes the ideal
equivalence. To proceed further we appeal to the theory of ideals of the field
K (V/-D) described in Section 2. We write uniquely at q (l)a, where is a
rational integer and a is a primitive integral ideal. Note that as ranges over
positive integers the principal ideal (1) is encountered w/2 times. Moreover, the
equivalence relation becomes a a2, and the congruence condition (/)a 0
(mod q) becomes a 0 (mod qz), where qz q/(1, q). Hence, the norm satisfies

a Na 0 (mod q), (4.13)

where q q/(l, q) because (q, ) 1. Furthermore, since a is primitive, the condi-
tion a 0 (mod q) as q varies fixes the choice between p and for all prime
factors p p of qt. For each remaining prime factor of q, we have two choices.
Therefore, given a satisfying (4.13), we have

# {q: q q, (q, ) 1, q, a} 2’t-’tO

Hence,

2 ( 2zr a2))’(Ul’ U2) 7 E 2-tq) exp (utq- 12a + U2
/=1 ----’(l’

where ’ restricts the summation to primitive integral ideals. The equivalence of
ideals says that a2 (00a with 0 e a-. Since a principal ideal determines its gen-
erator up to a unit, we obtain

d//(ut, u2)
,=t

2-’*’tq" =-’ exp
x/

(u,q-tl 2 + u2]a] 2)
O(ql)

Every a corresponds to a Heegner point z H determined modulo 1, and a-t is
a free Z-module generated by [1, ]. Therefore m / nza, where m, n run
freely over integers not both zero, giving

/=1

-2zca 2))EE E’ exp (u q-t12
(m,n)#(O,O) a--O(ql) N + uEIm + nzal

The contribution from terms with n 0 is called the diagonal part of ’(ul, u2);
it is given by

"/#0(Ul’ U2)-" 2-(//) E
/=1 m=l =O(ql)

2rta
12 )exp x/-,.,(utq-t + u2m2) (4.14)

In other words, the diagonal part is the contribution from pairs of ideals whose
primitive kernels (the maximal rational-free factors) are equal.
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The contribution from the remaining terms (the off-diagonal pairs) is parti-
tioned into

where

’+(ua, u) - Z 2-’) M,(u, u),
/=1 n=l

(4.15)

//,,(ul, u2)= ’ exp(nrC (ulq-Xl2+u2lm+nz,12)). (4.16)
E O(q1) I z,,

Integrating over u, u2 as in (4.6) we define the corresponding parts of /;

+=f:f:(u-X+u)(u-+u)+(u,u2)auau2 (4.18)

,n=f:f:(u-+uT’)(u-X+ui)ln(Uu2)dudu2. (4.19)

Therefore we have o + + and-- Z 2-(qt) Mn. (4.20)
/=1 n=l

In view of (4.3) we define the diagonal part of by

o 2n[F(s)l-ZD-mo. (4.21)

The complementary part + o is given by

+ 2n[F(s)I-2D-m(+ h(ws(1 s))-2 2(s)(ws(1 s))- }. (4.22)

5. Estimation of the diagonal part. We apply here mostly elementary means
to give simple, yet sharp estimates for the diagonal parts (u, u2) and o.
To get an upper bound we proceed as follows:

0(Ul’ U2)(( 1= .=1 exp)(ul2 + uqmz)

2 2 2 exp (u rl 2
es=q 1=1 m=l

+ usmZ)

<< (q)
quu

exp (u + u) L. (5.1)
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For the last step in (5.1) we have applied the general inequality

x-1/2e << ’ e-xk2 << x-1/2e-x/2
k=l

followed by a(ul r + U2S a(ul + U2) /> 2a + u + u2 2. Recall that L is given
by (1.23). Integrating over ux, u2, we get

/#o << z(q)q-/2D/2(log D)2L. (5.2)

Next we give a lower bound but only in the case of q 1 and s 1/2. In this
case

/0(Ul’ U2) E exp (ul 12
\ ,/-6 +

Hence, as before, we infer that

(5.3)

/(u, u2) >> a- exp (u + u2)
\uu/ \ x/-6

Integrating over u, u, we obtain

,o>> D/2 , a- (log+z2aJ (5.4)

Then, using the asymptotic formula

(Na)- ( )L(1, ZD)log D,
DOt < N < Dfl

(5.5)

valid for any fl > a > 3/8 (this can be proved by a standard contour integration
using (1.2), (1.4), (1.11)), we deduce that

log+ >> (log D)2 (Na)-1
Na /2-y

>> (log D)2

s. <o/2- (Na)-

>> (log D)2
NQ<O/2+ (Na)- >> (log D)2L,

where is a small positive constant. Hence, we conclude by (5.4) that

/,o >> D/2(log D)2L. (5.6)
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Finally we estimate L. By (5.5) we get the lower bound in (1.24). Moreover, we
have

L
1/2)

(2n)-VF(v)DV/2(r(v + 1) dv

L(1, ZD)log + L’(1, ;(D) + O(D-1/16+e), (5.7)

by moving to the line Re v -1/2 and using (1.11). Notice that the above error
term is negligible because L > 1 from the first term a 1 in L. By (5.7) we get the
upper bound in (1.24).

6. Asymptotic evaluation of the diagonal part. In this section we examine /,o
for q 1 and any s on the critical line Re s 1/2 with greater detail than given in
Section 5. First, we pull out the greatest common factor of and m in (5.3) and
attach it to the ideal a, getting

-2ha2
exp (ul 2 m2

where the outer summation ranges over all integral ideals. Next, using the
integral

1 ft F(v)x- dr, (6.1)e-X
2ri )

with tr > 1, we get by (5.3) that

2
/(u1, u2) | O(v)G(ul, u2; v) dr, (6.2)

w 2ri d

where

G(ul, uz; v)= (Ullz + uzm2)-’. (6.3)
/=1 m=l
(/,m)=l

This can be expressed by means of the Eisenstein series for the modular group
whose properties are well known. Nevertheless, we choose a direct (really faster)
approach.
We begin by decoupling the variables ul, u2 and l, rn in (6.3) by means of the

following formula:

1
r(v)(x + y)-"-

2i
r(z)r(v z)x-Zy dz,

)
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with 1/2 < r/< a 1/2. We get

rt 1 ft (R)(z)O(v z)u-Zu, dz,G(u, uz; V)= r(v((2v) 2rci . (6.4)

where

(R)(z) -’r’(z)(2z). (6.5)

The function (R)(z) is meromorphic on the whole complex plane, and it satisfies
the following functional equation (inherited from that for the Riemann zeta-
function):

(R)(z) 0(1/2 z). (6.6)

Moreover (R)(z) has only simple poles at z 1/2 and z 0 with the Laurent series
at z 1/2 being

1
(R)(z) (z- 1/2)-x + o + x(z- 1/2)+ 2(z- 1/2)2 + "", (6.7)

where 0o (1/2)(7 log 4re) and 1, 02, are more involved constants.
Now we can integrate (6.4) over ul, u2 explicitly getting

G(v)=ff(u-+u-S)(u--t-uS)G(u,u2;v)duxdu2
zVr(v)-((2v)-R(v),

where

1
O(z)O(v- z) ZR(v) i n) 1)(1+ +

s z-l+s v-z-s

1 )dz.v-z-l+s
(6.8)

Inserting this into (6.2), after integration over u, u2 we arrive at

’
2 1ftw2rci ,,) (-)v((v)L(v’7")R(v)dv’((2v) (6.9)

Hence, we shall evaluate /o by moving the integration to the vertical line
Re v 1/2 + e. To this end we need an analytic continuation of R(v) to the half-
plane Re v > 1/2.
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Clearly (6.8) shows that R(v) is holomorphic in Re v > 1 as r/ can be chosen
arbitrarily close to 1/2. Since (R)(z) decays exponentially on vertical lines, we can
move the contour in (6.8) from Re z / to any line Re z with 0 < < 1/2.
The poles may occur at z 1/2, s, 1 s. If s 1/2 all poles are simple. In fact,
z 1/2 is a removable singularity. At z s the residue is

v 1 + v- 2s
(R)(s)(R)(v- s), (6.10)

and at z 1 s the residue is given by the above expression with s changed into
1 s. If s 1/2 the only pole at z 1/2 has order 2, and the residue is 2R1/2(v),
where

R1/2(t) =V 1 V 1 + 2% (R)(V- 1/2)- V__I (V- 1/2). (6.11)

Gathering the above results, we obtain

R(v) Rs(v + Rl_s(v) + R(v), (6.12)

where R(v) is given by the integral (6.8) on the line Re z with 0 < < 1/2.
Since can be chosen arbitrarily small, it proves that R(v) is holomorphic in

Re v > 1/2 and that R(v) decays exponentially on vertical lines. The other func-
tions R(v) defined by (6.10) if s :/: 1/2 and (6.11) if s 1/2 are holomorphic in
Re v > 1/2 except for a finite number of poles on the line Re v 1, and they also
decay exponentially. If s - 1/2 then R(v) has simple poles at v 1 and v 2s
(but not at v s + 1/2) with the Laurent series

(0(1 s)
e,(v) (v )-O(s)O(1 s) + O(s)\. i - + (R)’(1 s)) + (6.13)

and

Rs(v (1) 2s)-l)(s)2 + O(s)
\2s 1 + (R)’(s)) +..., (6.14)

respectively. If s 1/2 then R1/2(v) has only a pole at v 1 of order 3. By (6.11)
and (6.7), we find that the Laurent series is

R1/2(v) (v- 1)-s + 2o(V- 1)-2 + 2o2(V- 1)-1 + 2o1 -2 + "". (6.15)

Finally, by (6.12) we obtain the desired continuation of R(v) to Re v > 1/2 with
poles at v 1, 2s, 2 2s as described above.
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Having established analytic properties of R(v) we can now evaluate ,o by
moving the integration in (6.9) to the line Re v 1/2 + e. From the poles on the
line Re v 1, we get

res L(v, ZD) [Rs(v) + RI_s(v) + R(1)] (6.16)
W p ((2V)

and the resulting integral on Re v 1/2 + e is estimated by using Burgess in-
equality for L(v, 7.i). We obtain

go p + 0(D7/16+). (6.17)

This yields the corresponding asymptotic for the diagonal part of (see (4.21)),

&,o lo(s) + O(D-1/16+e’). (6.18)

Here the main term is given by

lo(s)- 2rrlF(s)I-2D-t/2P; (6.19)

thus lo(s) is the sum of residues of w-lDV-1/2L(v, 7.t)H(v) at v 1, 2s, 2- 2s,
where

H(v) (2t)-lr(s)l-Z(v)(2v)-[R(v) + RI_(v) +/(1)-l. (6.20)

Recall that by (6.8)

-lft ((2z)((2-2z)( 2z-1
g(1)=

) snrcz (z s) (z l + s)
dz,

where 0 < y < 1/2. We complete this section by computing quite explicitly the
residues in P.

If s 1/2 there is only one pole at v 1 of order 4, and the residue gives

res \j L(v, ZD)R/2(v) + L(1, :D)R(1). (6.21)
w = ’(2v) rZw

Hence, by (6.15),

p-X/E_
2 j+k<a

C:ikLO)(1, ;tD)(1og D)k (6.22)

for some constants Cjk. Here the highest coefficients is equal to Cos 67r-2w-.
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If s 4:1/2 there are three different poles at v 1, 2s, 2- 2s. Acoordingly P
splits into

P=P1 + P2 + P2-2, (6.23)

say. The pole at v 1 has order 2. By (6.13), the residue gives

P1 res L(v, ZD)
W = (2V)

{2(v 1)-O(s)O(1 s) + O’(s)O(1 s) + 0’(1 s)O(s)}

+ L(1 zD)R(1)2W

(2g)-lF(s)F(1 s)x/ Cjk(S)LtJ)(1, ZD)(1og D)k
j+k <

(6.24)

for some coefficients Cjk(S depending on s. The highest coefficient is equal to
Co(S) (2n2w)-((2s)((2 2s). The pole at v 2s is simple. By (6.14) the residue
gives

P2s 2()2s((2S)L(2S, ZD)O(S)2((4s) (2rc)-F(s)F(1-s)DSc(s)L(2s’7")’ (6.25)

where

c(s) (2nZw)-x (2)-:F(s)r(1 s)-(2s)3(4s)- (6.26)

Finally, putting together (6.24) and (6.25) for both s and 1 -s, we obtain from
(6.23) the desired expression for P in the case of s 4: 1/2.

7. Estimation of the off-diagonal part. In this section we give an elementary
estimate for the off-diagonal part ’+. We shall do so only for q 1 since this is
what is needed to complete the proof of Theorem 2. In this case (4.15) and (4.16)
become

Z Y’,
/=1 n=l

(7.1)

and

,nz ( n 7r
u 2 "+ u2 m k nz 2 )MI.(u, u2)-- Z’, exp

I z (7.2)
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First, summing over m we get

\-a] exp -null2 2a
n2gN2

27a
7r,lnx//ul u2) << h exp(- 7r,lnv/ul u2). (7.3)

Next, summing over l, n we get

+(u, u2) << h exp(-nx//u u2).

Finally, integrating over u, U2 as in (4.18), we conclude that

(7.4)

’+ << h. (7.5)

Inserting (7.5) into (4.22) and using (4.5), we obtain the corresponding estimate
for the off-diagonal part of:

a+ << D-/2h << L(1, D)" (7.6)

Then, combining with (6.18), we arrive at

q’ lo(s) + O(L(1, Zo)). (7.7)

This completes the proof of Theorem 2.

For the proof of Theorem 3 we must refine the estimate (7.5). Our goal is an
asymptotic formula for the off-diagonal part ’+ in which the error term saves a
fixed positive power of D. To get a result that strong we shall employ the spectral
theory of automorphic functions.

8. Spectral expansion of the off-diagonal part. Recall that ’+ is given in (4.18)
in terms of////(u, u2), defined in (4.15), which is in turn a sum over //t,(u, u2),
defined by (4.16). In this section we establish a spectral expansion for .//[t,,(ul, u2).
By the correspondence described in Section 2, we arrange the summation over

ideals in (4.16) into the orbits of Heegner points (2.4) in the set (2.11) with q
replaced by q q/(1, q) with respect to the group F Io(qt). We obtain

t.(ux, u2)= II-’=l-XP.(z), (8.1)
Ao(ql)
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where

mz r(R)\r I yzkill]

Clearly Pt.(z) is an automorphic function bounded on H (in fact, it has exponen-
tial decay at all cusps), so it is square-integrable on the fundamental domain of F.
Therefore, the spectral theorem [Iw] gives

Pt.(z) < P., ui > u(z) + < Pt., E > E z,- + it dt,

where {uj(z)}, j > 0, is an orthonormal system of cusp forms together with the
constant function Uo(Z)= V-1/2 for the eigenvalue 2o 0, and E(z, v) is the
Eisenstein series associated with cusp x for the group F I"o(qt ).
Summing over the Heegner points, we get

iftn U U2 E < Ptn uj > Wj W x -4- <Pin, E > W +it d (8.3)

where

and

w-- IF=l-Xuj(z) (8.4)
AD(ql)

W(v) Izl-E(z, v), (8.5)
AD(ql)

The sums W and W(v) are called Weyl sums for the Heegner points of level qt.
The main term in the asymptotic formula for ’t.(ul, u2) will come from the

projection onto the constant eigenfunction. This indicates that the Maass forms
are natural harmonics for the study of sums over ideals of a quadratic field. For
further evidence of this, see the evaluation of the Weyl sums.

9. Evaluation of the inner products.
automorphic functions by

Define the linear operator U., acting on

By (8.2) we may write

F (mod n)
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with rcuxq-ll2 and fl rcu2 n2. Now, suppose Q(z) has at most polynomial
growth. Then, by the unfolding method we get

(P"’ Q) fn exp(-(a + fllzl2)y-X)U,,_.(z)dl.tz. (9.2)

Next, suppose Q(z) is an eigenform with eigenvalue 2 1/4- 2, SO that it has a
Fourier expansion of the type

Q(z)=Ym(Ay" + By-" + kOE p(k)Kv(2rrlkly)e(kx)).
Then n-U,,Q(z) has a Fourier expansion as above but supported on k 0
(mod n). We insert the Fourier series for U,,Q(z) into (9.2), interchange the sum-
mation with the integration, and compute the resulting integrals for each k 0
(mod n) separately.
We shall use the following formulas (see [GR, 3.462.2, 3.471.9, 6.653.2]);

f _oo exp(--ax2 + 2bx) dx xexp(b2/a), (9.3)

ff exp(-ay-x by)y-1 dy 2(a/b)/2K(2x/), (9.4)

exp ( ab a2 + b2 )2y 2ab
y K"(Y)Y-X dy 2K,,(a)Kv(b). (9.5)

First, we integrate in (9.2) horizontally, using (9.3), to get

exp(- fly-x2)e(kx) dx

Then we integrate vertically to get

fo exp(-- fly)(Ay + By-")y-1 dy 2 A + B

by (9.4), and

fexp(--(fl+zr’2flk2)y)K’(2rclk’y)y-ldy=2Kv(2x/)K,(2zr’[k[)
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for k : 0, by (9.5). Collecting these results, we conclude that

(Pt., Q) 2\x/,/ Kv(2x/)U,Q (9.6)

where we recall that cz rculq-Xl z and fl rcu2 nz.
For the constant function Q(z)= Uo(Z)= v-1/2 of zero eigenvalue we have

v 1/2 and

e-y,

whence

(ptn, Uo)=l_l(qulu2V)l/2 exp (- 2nln x/Ul U2) (9.7)

The other spectral eigenforms (cusp forms and the Eisenstein series) with eigen-
value 2 1/4 v2 > 1/4 satisfy

Q(Z) << ,(yl/2 + y-l/2), (9.8)

where the implied constant is absolute (see Lemma 14.1). Hence

(Pt., Q) << 2n(-1/2 +

From the trivial bound

Kv(y) << 2-Ay-le-r/2

valid for A any positive constant, we conclude that

(Pin, Q)<< }t-aq exp (- rcln f2) (9.9)

10. The Weyl sums for Eisenstein series. For notational simplicity, we shall
carry out the computations for the level q since the case of ql q/(l, q) is the
same.
The Weyl sum W(v) of an Eisenstein series E(z, v) for the group F Fo(q)

over the Heegnepoints z 6 Ao(q) will be expressed in terms of the L-functions of
the field K Q(x//-O),

LK(S o N)= $(Na)(Na)-v, (10.1)

where is a Dirichlet character to modulus dlq.
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First we consider, for Re v > 1, the Eisenstein series given by

E.(z, v)= (Im a’Vz). (I0.2)
r\r

Here F is the stability group of the cusp x, and tr is a scaling matrix which has
the following properties:

a x, a-XFa Fo. (10.3)

The scaling matrix tr is determined by the cusp x up to a translation on the right
side, and the Eisenstein series does not depend on the choice of try, nor on the
choice of x within its equivalence class. Every cusp for the group Fo(q) is equiva-
lent with exactly one rational number of the type

x with (t, s) 1, (10.4)
S

where q rs and is determined modulo d (r, s). Thus, the total number of
inequivalent cusps is given by

m(q) tp(d), where d (r, s). (10.5)
rs-’q

For x of this type, we may take the scaling matrix

as , (10.6)

where V qsd -1, whence

0 1/x/ (10.7)<’;’ -d7
These facts can be found in Section 2 of [DI].
Now, by the correspondence described in Section 2 of this paper, we infer by

unfolding that

w(v) IF:l-lm.(z, v)= " (Im o’-iz,,)". (10.8)
Ao(q) a O(q)

In the last sum a ranges over the primitive ideals of norm Na a divisible by q,
and the double prime means that the points tr-lza are identified if they differ by
an integral translation.
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Recall that

b / ix/ b2 / D 4ac. (10.9)za 2a

The linear fractional transformation (10.7) maps the Heegner point za to another
one of the form

alz
B + i%/-, B2 + D 4AC (10.10)
2Cq/d

(in the denominator we have extracted the factor q/d to simplify the forthcoming
notation), where

A as-1

B 2ats- b (10.11)

C at2s- bt + cs.

Conversely, a point (10.10) corresponds to (10.9) with

a=As

b 2At- B (10.12)

c (At2 Bt + C)s-.
The condition that a, b, c are integers with a 0 (mod q) is equivalent to the
condition that A, B, C are integers such that A 0 (mod r) and

At2 Bt + C =-0 (mod s). (10.13)

Substituting A (B2 + D)/4C, these conditions become

B2 d- D =- 0 (mod 4Cr)

(B 2C)2 -+- D -= 0 (mod 4Cs),
(10.14)

where is a fixed integer such that t 1 (mod s). Since the points (10.10) are
identified in the sum (10.8) by integral translations, it means that B ranges modulo
2Cq/d. Therefore, inserting (10.10) into (10.8) we obtain

\ 2q J l(C)C-",c (10.15)
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where r/(C) denotes the number of solutions to the system of congruences (10.14)
in B (mod 2Cq/d).
Next we evaluate r/(C). To achieve symmetry we change B into B + C, getting

a new system

(B + Ci)2 + D -= 0

(B C)2 - D 0

(mod 4Cr)

(mod 4Cs),
(10.16)

which has the same number of solutions as (10.14). Subtracting, we infer that
B 0 (mod d). Changing B into Bd, we get

(Bd + C)2 -- D =_ 0

(Bd C)2 - D -= 0

(mod 4Cr)

(mod 4Cs),
(10.17)

where now B ranges modulo 2Cqd-2 (note that d2lq). If there is any solution in B,
then C must satisfy the following condition

C2 -+- Dt2 =- 0 (mod d), (10.18)

which we henceforth assume to hold true. In particular, this condition implies
that (C, d) 1.
We continue to modify the system (10.17) with the intention of splitting it into

independent congruences. To this end we make two variables X (mod 2C) and
Y (mod qd -2) out of B by writing B X + 2CY. In these variables the system
(10.17) is equivalent to the following three congruences:

(Xd +_ C)2 -- D 0 (mod 4Cd) (10.19)

CdY2 + (Xd + CI) Y + A+ 0 (mod r/d) (10.20)

CdYz + (Xd CI) Y + A- =0 (mods/d),

where A+ [(Xd +_ C)2 -- D] (4Cd)-1. Given any X satisfying (10.19), we first
count the solutions in Y of (10.20)-(10.21). Notice that the moduli r/d and s/d
are coprime so that we can count separately. In fact, by the Chinese remainder
theorem, this reduces to counting the solutions to prime moduli p. If plCd, there
is one solution, and if p X Cd, there are two solutions because the congruence

X2 - D -= 0 (mod p)

has two solutions (recall that Plq, so p has degree 1 in the field K (x//-D)).
From this local consideration we infer that the number of Y (mod qd-2) sat-
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isfying (10.20)-(10.21) is equal to 2", where n is the number of prime factors of
qd-2 which do not divide Cd, so

n co(q) co(d) co((q, C)). (10.22)

This number does not depend on X. Since (C, d) 1 the number of X (mod 2C)
which satisfy (10.19) is equal to the number of solutions to

X2 + D 0 (mod 4C) (10.23)

by a change of variables, and the latter is equal to v(C), the number of primitive
ideals of norm C. More precisely, every solution to (10.23) corresponds to the
ideal

Therefore

1(C) (10.24)

if C satisfies (10.18), or else v(C) vanishes.
Inserting (10.24) into (10.25), we obtain

\ 2q / ’ 2-’’)C-’, (10.25)
C2+Dt O(d)

where the summation ranges over the primitive ideals whose norm satisfies the
congruence (10.18). Observe that if q is squarefree, then d (r, s) 1, so that all
the Weyl sums are equal.
To remove the congruence (10.18) we employ the Dirichlet characters q

(mod d). Put

Then

Po(q) 2-{’
2+D’-’ O(d)

(6). (10.26)

1
po()O(t)O(C)= 2-’a) (10.27)

q,(d) ,mod,0

if C satisfies (10.18), or else the sum vanishes. Hence, by (10.25) we obtain

W(v)
k, 2q / k(rndd)!(t)PD(!C)G(I)’ )’ (10.28)
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where

G(v, q,)=

w_ Lr(v, q o N) E 2’*)(c)c-o (c)c-

w Lr(v, d/o N)- ]-1 (1 + 2(p)p-O(1 p-O)-)-(1 (p)p-O)-
L(2v,

w LK(v, /o N)- [-I (1 + (p)p-)-l.
L(2v,

(10.29)

Inserting (10.29) into (10.28) we arrive at the following formula:

W(v) =-\ 2q ,] -d E
(mod d)

L:(v, 0 o N)
O(t)po(k)

L(2v, O)
(1 + (p)p-O)-.

(10.30)

This formula was derived for Re v > 1, but it is valid everywhere by analytic
continuation.
For v on the line Re v 1/2 we obtain by Burgess’s estimate that

W(v) << v(1 v)D7/16+, (10.31)

where the implied constant depends on e only.
For the cusp x ) the formula (10.30) simplifies into

w (_qD)V r(v) 2,(q) p-V)-1Woo(v) - (1 + (10.32)

Hence, by (1.4),

res Woo(v)= 2(q)hV-1 (10.33)

where

0.34)
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is the volume of the fundamental domain of Fo(q). In fact, the residue of the Weyl
sums at v 1 is the same for any cusp because it is true for the Eisenstein series;
namely, for any cusp x we have

res E,,(z, v) V-l; (10.35)
v=l

see Lemma 3.7 of [DI-I. Hence, we compute the Weyl sum Wo for the constant
eigenfunction Uo(Z) V-1/2, getting

Wo 2)hV-1]2. (10.36)

11. The projection on the constant eigenfunction. The additional contribution
l(s) to the main term in (1.28) will come from the off-diagonal part + given by
(4.22). This part will get its main term from that of //+ after subtracting the
quantity h(ws(1- s))-2 which has emerged from the trivial character. Then, in
turn, the main term of ’+ will be derived from the projection on the constant
eigenfunction Uo(Z) V-/2 in the spectral expansion (8.3). In this section we shall
evaluate this projection asymptotically.
We denote

(P,n, UO) WO. (11.1)

By (9.7) and (10.36), together with (10.34), with q upgraded to qt q/(1, q), we get

3h (l,lq ( )-l ( /ul)’(ul, u2) --(UlU2q)-/22(l) ]--[ 1 + exp -27rln 2
P]ql

(11.2)

Inserting this into (4.15), we get

,/,:(Ul, U2 =12h(uu2q)_i/2Sq(2rr,/_)W2 (11.3)

where

(l,lq)pll( )-1S(x) Z Z 1 + exp(-Inx).
/=1 n=l

To evaluate S(x), we use (6.1), getting

1 f x_.F(v)(v)2(v dvs,(x)
.)

(11.4)
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with a > 1, where

/=1 P[ql

= 1+ (l,q)-l-v (1

1-I (1 + p-1)-11-[ (1 p-1
plq

((1 + v) 1-I ((1 + p-O 4-...+ p-t-l)o)(1 + p-1)-1(1 p-l-o) + p-o}
p IIq

((1 + v)T(v), (11.5)

say, where T(v) is the above finite product. Clearly T(v) is an entire function such
that

T(1) 1 (11.6)

Z(01 "r(q) in Re v > 0. (11.7)

By (11.4) and (11.5) we obtain

1 f x_r(v)(v)(l+v)T(v)dv"S(x) (11.8)

Moving the integration to the line Re v e with 0 < e < 1, we get by (11.6) that

S(x) ’(2)x-1 + S(x), (11.9)

where S(x) is given by the integral (11.8) on the line Re v e. Accordingly, by
(11.3) we split

//(ul, u2) hw-2(ulu2)-1 + ’(ul, u2), (11.10)

say, where

.////’’(Ul, U2)=12h__
W2 (11.11)
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Here, by the trivial bound S(x) << x-’c(q) we have

/’(U1, U2) << hq-1/2+e(Ul u2)-1/2-e, (11.12)

where the implied constant depends on e only.
Next, integrating (11.10) over Ul, u2 as in (4.18), we obtain

//[-- h(ws(1 s))-2 + O(hq-t/2+). (11.13)

More precisely,

//[-- h(ws(1 S))-2 -- (11.14)

say, where

./# 12hr-lw-2q-X/2Iq(s) (11.15)

and

Iq(s)= f/ / (u]- + u-’)(uz- + u) ((Ulu2)1/2 S 2r dux du2

By (11.8), with a e, we integrate over ux, u2, explicitly getting

4 f (x/’ F(v)((v)((1 + v)Tq(v)v2
Iq(s)

,) \ 2g ] (v + 1 2s)2(v 1 + 2s)2
dr.

For q 1, this simplifies a bit as follows:

4 f (2r0-OF(v)(v)(1 + v)v
I(s) - ) (v + 1 2s)2(v 1 + 2s)/

dv. (11.16)

Hence, by the duplication formula for the gamma function, we can also write

2 ; (R)(v/2)(R)(-v/2)v
I(s)=- e)(v+ 1-2s)2(v- 1 +2s)2

From (11.13)-(11.16) we find that the main term of+ in (4.22) when q 1 is

l(s) 12 r(s)r(1 s)I(s)L(1, ZD). (11.17)

This is the additional contribution to the main term in (1.28).
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12. Evaluation of the off-diagonal part. In this section we evaluate /+
asymptotically with an error term which saves a power of D. This saving is due to
nontrivial estimates for the Weyl sums, which is the main ingredient in this work.
For those sums which are associated to the Eisenstein series, we have just estab-
lished (10.31) and (10.36). We still need similar estimates for the sums W asso-
ciated to the cusp forms uj(z), j > 1. The following estimate will be established in
the next two sections:

W << 2qaD13/2a+. (12.1)

Here we use this result to complete the proofs of Theorem 3, Proposition 1 and
Theorem 4. Multiplying by the estimate (9.9), we get

(12.2)

where A is any positive constant. We choose A 2 and take the bound

V2 << V, (12.3)

which follows by Weyl’s law, where V is the volume given by (10.34). Next sum-
ming over l, n, we get

2_,nxexp(_zdn/U_)<<(q /2 exp 2 logq.
\UlU2,]

(12.4)

Then, integrating over u, u2 as in (4.18), we get

<< (log q)2. (12.5)

Collecting (12.2)-(12.5), we infer that the contribution from the cuspidal spectrum
in (8.3) to ///+ is bounded by

’+(cuspidal) << q6D 3/28 +e. (12.6)

We deal with the contribution from the continuous spectrum in the same man-
ner. We have (10.31) in place of (12.1) and

1 + v---- << m(q) (12.7)
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in place Of (12.3), where re(q) denotes the number of inequivalent cusps (the multi-
plicity of the continuous spectrum) given by (10.5). We obtain

/4’+(continuous) << qD7/16+e. (12.8)

Finally, we recall that the contribution ’ from the zero eigenvalue has been
evaluated in Section 11. Combining these sections we complete the proof of The-
orem 3 (here we need only the results for q 1). Also, using (5.2), we complete the
proof of Proposition 1 (for any q) and Theorem 4 as its consequence.

13. Weyl sums as Fourier coefficients. Next we will realize the needed Weyl
sums for uj in terms of the Fourier coefficients of an associated Maass cusp form

f of weight 1/2, which is related to uj by means of a theta correspondence. Ap-
plying a result from [Du], the proof of (12.1) is reduced to an estimate for the
L2-norm off.
For fixed q Z+ and m (m, m2, m3) let F(m) m22 4qmma, and define

for any n =/= 0 the hyperboloid

H,={mlR3;F(m)=n and ml>0ifn<0}.

H. is acted on by G, the connected component of the identity of

{ SL3(IR); F((tm) F(m)}.

For n < 0 we have the bijection H, H defined by

m2 +ixm Zm 2qml

with inverse map

Z - tm
Y

x,

This induces a homomorphism G G given by

6 Tt/q T2/qlqfl2 fl
(13.1)

so that gg --ZOrn and mz moz. Its kernel is { +_ 1}, and it is surjective since
G/_+ 1 and G are connected and have the same dimension. For F Fo(q), we have
from (12.1) that

F G SL(3, ). (13.2)
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Let H* be the set of all oriented geodesics on H, so

where C(xl, X2) is the unique directed geodesic from xl to x2. Now H* is acted
upon transitively by G SL(2, IR) by linear fractional maps, and for n > 0 we
have a bijection H, --. H* given by

(.m2_-_ m2_q- _xC\ 2qm 2qm m 0

if m: 0 and m2 > 0

if ml 0 and m2 < 0,

which also respects the above isomorphism G/+_ 1 G. For C H* let gc G be
such that gcC(0, oo) C. For

we have Gc {g G: #C C} #c( +-A)#1. Let Fc Gc c F. Then, Fc is either

e_ j s for some > 1. Define Ir\c u() to be u(Oc y) dy/y

in the first case and I u(gc y)dy/y in the second, observing that they are inde-
pendent of the choice of c.
We now recall Siegel’s theta function for F. It follows from (13.5) that ()~

u- (O)u where u diag(2q, 1, 2) and, hence, that for F+(m) 2qmi + m + 2m
and K $0(2) we have

/ (g e r: F+(#m) F+(m) }.

In this way we may identify H with the set of positive forms

{F+(t-m)" g G},

which is Siegel’s representation space for G. Define now for z x + iy H and
#G

(R)(z, g) ,,,z3 e(xF(m) + iyF+(tj-lm))

which, in view of (13.2) and the above, satisfies for a e F and k e K

O(z, trgk) O(z, g). (13.3)
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Let uj be a weight-0 Maass cusp form for Fo(q) made into a K-invariant function
on G. By (13.3) we may define

f(z) y3/4 fv (z, g)uj(g) dg (13.4)

for a bi-invariant Haar measure dg. It follows from Theorem 4 in [Du] that f is a
Maass cusp from of weight 1/2 and discriminant -4 for Fo(4q) with eigenvalue
(1/4) h- (tj/2)2 if (1/4) + t is the eigenvalue of u (see [Du] for definitions). Thus
f(z) has a Fourier expansion at oz of the form

f(z) p(n) W,vj(4nlnly)e(nx), (13.5)
nO

where x n/41nl, v itj/2 and W,v(y) is the standard Whittaker function. In the
case of anisotropic ternary forms, Maass [Ma] determined these Fourier coeffi-
cients; for cusp forms u his result also holds for our F. A very clear treatment was
given recently by Katok and Sarnak [KS] in the case q 1. Their proof, with
straightforward modifications to handle general q, yields the following result.

LEMMA 13.1. For n < 0 we have

p(n) colnl-/ IFzl-Xu(z),

where Co 0 is an absolute constant and z ranges over the points

Z
b + ixln

2a
b2 4ac n, a, c > O, a =- 0 (mod q)

in a fundamental domain of Fo(q). For n > 0 we have

pj(n) 11/’/l- 3/4 f uj(z),
c \c

where c # 0 is an absolute constant and C Ca/q,b,c ranges over F-inequivalent
solutions to b2 4ac n, a 0 (mod q).

This lemma reduces the estimation of the Weyl sums to that of the Fourier
coefficient pj. To bound the latter, we appeal to Theorem 5 in [Du-! which,
together with Lemma 13.1, proves the following proposition.

PROPOSITION 2. Let f(z) be defined in (13.4). Then for any D > 0 such that
-D is a fundamental discriminant we have

W<< (1 + ,tlS)ch(t)llfllDla/2a+,
where IIfll is the L2-norm off. and the implied constant depends on e only.
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This bound, in turn, reduces the problem to bounding the L2-norm of f. It is
remarked that, in case q 1, Lemma 13.1 has been substantially refined in [KS]
to give the exact relation with the Shimura lift. In this case we could use their
result to complete the estimation of W.

14. Estimates for cusp forms. Our objective is to prove the following proposi-
tion which, together with Proposition 2, gives (12.1).

PROPOSITION 3. For the cusp form f as in Proposition 2, we have

ch (- t)II fll << (2jq)3+e.

By definition, f is given in (13.4) as an inner product of u against the theta-
function t0(z, #). However, this formula appears to be very difficult to use directly
for our purpose. Instead, we shall employ Lemma 13.1 which gives the Fourier
coefficients off as the Weyl sums for u. This will lead us to two other problems.
The first problem is to estimate u(z) on the upper half-plane uniformly with

respect to the eigenvalue 2 and the level q. There are many results of this type in
the literature. By (8.3) of [Iw], we get the following estimate.

LEMMA 14.1. Let u(z) be a cusp form for Fo(q) of weitht 0 and ei#envalue
(1/4) + t normalized by Ilull 1. Then

u(z) << 2)/4(y + y-1)-1/2, (14.1)

where the implied constant is absolute.

We next apply this lemma together with Lemma 13.1 to estimate p(n). In case
n < 0, we estimate the number summands by ignoring the congruence a 0
(mod q) and consider these points modulo the group Fo(1). There are h(n) of them
in a fundamental domain of Fo(1), where h(n) is the class number of positive
definite quadratic forms of discriminant n. Hence, the total number of points in a
fundamental domain of Fo(q) is bounded by [Fo(1) Fo(q)]h(n). We have

(14.2)

and

h(n) << z(Inl)lnl /2 log(21nl). (14.3)

Using (14.1) and Lemma 13.1, we derive that

p(n) << 2#qh(n)In[ -3/4, (14.4)



40 DUKE, FRIEDLANDER, AND IWANIEC

where the implied constant is absolute. The same bound can be derived for n > 0
in a similar fashion.

Next, having estimates for the Fourier coefficients of f(z) in the cusp , we
wish to derive a bound for the Lz-norm. Clearly, the Fourier expansion in one
cusp determines the form completely; nevertheless, it does not show immediately
a fast decay in all cuspidal zones. In particular, if one is seeking good uniformity
with respect to the group, there does not seem to be much in the literature. Some
results are given in [IS] and [DI], but these do not cover our case of the half-
integral weight cusp forms.
We shall consider the problem in some generality. Let f(z) be a cusp form

for F Fo(q) of weight 0 < k < 2 and eigenvalue 2 (1/4) v2. Therefore f(z)
transforms by

cz + d )kf(gz) e(g)
[cz + -all f(z)

(ab)for anyg=
cd

ties the equation

F, where e(g) is a multiplier with le(g)l 1. Moreover, f satis-

(Ak + 2)f 0,

where

Ak y2(C32 /2)+ - iky 0-"

To simplify a bit, we assume that the multiplier is singular in every cusp. This
implies that the Fourier expansion of f in any cusp runs over the nonzero inte-
gral frequencies. In particular, the Fourier expansion in the cusp is of the type

f(z)= p(n)W(4rlnly)e(nx), (14.5)
n:-O

where W(y)= W./21.I,v(Y) is the Whittaker function. Since the spectrum of Ak

satisfies 2 > (k/2)(1 (k/2)), we have 0 < Re v < I(k 1)/21 < 1/2.
The Whittaker function W, v(y) is the solution to the equation

W" + +f- W=0,

which has exponential decay as y c; namely we have

W,(y) ye-’/2{1 + O((x2 + Ivl 2 + 1)y--)}, (14.6)
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where the implied constant is absolute (see [MO]). Notice that W,v(y)= W,_v(y)
is real. By (14.6) we infer that

W(y)2y-2 dy < 2 W(y)2y-2 dy (14.7)

for any Y > 0, where A 2. We shall also need the bound

f W(y)2y‘-x dy << 2+’e-’’, (14.8)

which is valid for any a > 1/2, the implied constant depending on a. One can
prove (14.8) by using the Fourier integral representation (cf. [GR, p. 321])

W,(4ny) rc-X(ny)X/2-F (v + x+l)f_oo(1-ix)-"(l+x2)’-x)/Z-e(-xy)dx’2
By the Plancherel theorem this gives

f; W(y)2y- dy (4n)-3/24
F(a + 1)

F v + 2
(14.9)

where a 2 Re v. Hence, applying Stirling’s formula and (14.6), one derives (14.8)
for any tr > 1/2.
Having collected the above information about f, we are now ready to estimate

the L2-norm off in terms of the Fourier coefficients p(n).

LEMMA 14.2. Let f(z) be a cusp form for Fo(q) of weioht 0 < k < 2 and eigen-
value 2 (1/4)- v2 whose Fourier expansion in the cusp o is 9iven by (14.5).
Then the L2-norm of f is bounded by

Ilfll << z(q)(2q)‘+a/2e-O’/2)ll IP(n)] 2 Inl

where a is any number > 1/2 such that the series converges. The implied constant
depends on a only.

Proof. Let be the standard fundamental polygon for the modular group,

{ 1
z x + iy" Ixl , Izl 1 (14.10)

Then the union of a, where a runs over coset representatives of Fo(q) c Fo(1), is
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a fundamental domain for Fo(q). Accordingly, the L2-norm off splits into

Ilfll If(az)l d# z. (14.11)

For each tr we consider the Fourier expansion in the cusp a oz (some of the cusps
tr are equivalent),

f(az) e,, p,(n) W(4rclnl y/o,)e(nx/og,),
n#O

where levi 1 and 09, is the width of the cusp, 1 < 09, < q. Hence,

If(az)l 2 d# z If(az)l 2 dbt z
/2

c% Ipo(n) W(4r Inl Y/oo,)I2Y-2 dy
n-O

< 209,, Ip,,(n)W(4nlnly/og,,)12y-2 dy
x//2 # O

Aa f2 If(az)l z d# z, (14.12)
x//2 d-toa/2

where A, x///2 + og,A/4r. We can choose the coset representatives to satisfy

For a of this form, the cusp a /, has width 09, q/(])2, q)< q/),, so A, <
Aq/,. If z is in the range of (14.11), then

Im trz y((x + )2 + )2y2)-1 > 4y((q + 7)2 + 2y2)-1 > A-tq-2

and

Re az
1,- Ix + 61,l((x + 61,) + y)- < < 1.

"Therefore, changing the variable z into a-z in (14.12), we get

If(az)l 2 d/ z < 4
’a-2 f If(z)12 d# z. (14.14)
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Inserting (14.14) into (14.11), we obtain

Ilfll24#qf_flf(z)12dlz,lq-2
(14.15)

where #q is the index given by (14.2). Then, inserting the Fourier expansion (14.5)
into (14.15), we get

f 2 4# ,o Ip(n)12 W(4rcl n ly)2y-2 dy
-lq-2

where tr is any number >- 1 such that the series and the integral above con-
verge. Applying (14.9), we complete the proof of Lemma 14.2.

In the case of our cusp form f(z) of weight k 1/2, we infer from (14.3) and
(14.4) that Lemma 14.2 is applicable with tr (1/2) + e proving Proposition 3.

15. Split primes. In this section we look for the primes p which split in the
field K (x//- D), i.e., those with

Zo(p) ()= 1. (15.1)

We need a lot of these to be small. They will be the building blocks used in
constructing the amplifier (1.34). Our agruments take ideas from sieve methods
and are mostly elementary.

Let us put

(x(s) ((s)L(s, ZD)= Y’, ao(n)n-,

ao(n)
rain

Note that ao(n) is a nonnegative multiplicative function such that for p prime

2

ao(p) 1 + ZD(P)= 1

o

if p splits

if p is ramified

if p is inert.

(15.2)
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Our main objective is to establish lower bounds for sums of the type

Po(z,w)= ao(p)p-1, (15.3)
w<p<z

where w and z are quite small relative to the discriminant. From these results one
can infer, by a combinatorial argument, lower bounds for the sums

No(x) ao(n). (15.4)
n<x

The key issue is to control the uniformity in D, i.e., to obtain bounds which are
valid for x > D with as small as possible.

If > 1/4, then, by the Burgess estimate for (1.41), one infers that

2nh
No(x) w/Ow------ x + O(x-) L(1, Xo)x + O(x-O). (15.5)

Hence,

xD << No(x) << x log D (15.6)

for all x > D/4+, where the lower bound is ineffective since it is based on the
Siegel estimate

L(1, ;to)>> D-. (15.7)

In fact, the upper bound of (15.6) holds true for all x > 1 by the trivial estimate

ao(n) < v(n) (15.8)

Throughout, for notational simplicity, we shall drop the subscript D whenever
it is obvious from the context.
Our first result requires a sharp bound for the class number.

THEOREM 8. Suppose the class number of K (w/-D) satisfies (1.38), or
equivalently,

L(1, ZD) >> (log D)-(log log D)3 (15.9)

Then, for any fixed , a > O, we have

Po(D, log D) > log log log D + O(1), (15.10)
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the implied constant depending on a, a. Moreover, for any e > 0, we have

N(x) >> xD (15.11)

for all x > 1, the implied constant depending on e (effectively).

Proof. By (15.5) and (15.9), we get

a(n)n-1 >> L(1, Z) log D >> (log log D)3

n<D

On the other hand, this sum is bounded from above by the product

v<II/ ( 1 + ?) << exp (v<o P))"
Comparing these estimates, we get by taking logarithms that

)(a,p___, > 3 log log log D + O(1).
p<D p

Subtracting the contribution from small and large primes, and by using the trivial
bound 0 < a(p) < 2, we obtain (15.10).
For the proof of (15.11), we may assume that D is large and D < x < D, since

otherwise the assertion is either trivial or follows from (15.6). We take (15.10) with
a e/3 and a 3/e, getting

’ p-1 > 1,
w<p<z

where w (log D)3/e, z De’/3, and the summation in ’ ranges over primes p of
degree 1 in K (x//- D). Hence, there exists w < y < z such that

-’ 1 > y-e,/3
p<y

Raising this to the exponent k [log x/log y-i, we get

1
’1 >No(x)

1-5/3) xD-e/3
>

k! yk!

Here, we have

yk! < zkk zxlg log x/log < D2/3.

This completes the proof of Theorem 8.
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With some extra work, one could weaken the hypothesis (15.9) by reducing the
factor (log log D)3 a bit. In the next theorem, we do not require this hypothesis.
Instead, (15.7) will be used, and we need a nontrivial estimate for short character
sums.

THEOREM 9. Suppose that for any M > D we have

Zt(m) << MD-, (15.12)
m<M

where the exponents , rl are fixed positive numbers. Then we have

PD(D+, D) >> L(1, go)(log D)-3 (15.3)

for any e > 0 provided D is sufficiently large in terms of , rl, and e.

Proof. We begin by estimating the sifting function

S(x, w)= a(n), (15.14)
(n,P(w))=l

where P(w) denotes the product of all primes p < w. We shall apply a Brun-type
sieve of ’dimension’ < 2 (cf. [HR]). To this end, one needs asymptotics for

An(x)= E a(n),
0(d)

with diP(w) as large as possible. We proceed as follows:

Aa(x)= z(m)
Im <

lm O(d)

<M < m
o(a/(a,

l<x/M M <m<x/l
O(d/(d, l))

(el, m)E z(m)x
m<M dm + 0(1))+ 0 (<,/t (D’+ X(lOD-"))

+0 M+ + D-"x log x
d .< m -where M will be chosen later. Furthermore, we have
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z(m)(d, rn_) Z .(ab)#(b)b- Z .(m)m-x
<M rn ab[d < M/ab

E Z(c)qg(c){L(1, Z)+ O(cM-D" + D-’O}
cld C

a(d)L(1, Z) + O(dM-D" + z(d)D-"),

where og(d) is the multiplicative function given by og(p) 1 + ;t(p)(1 1/p). Com-
bining these evaluations, we obtain, upon choosing M (xD’) l/z,

og(d)
Aa(x) --d-xL(1, .) + O(xl/2D/2 + z(d)d-D-x log x).

Applying a sieve of level A with A > w’ (to hit the sieving limit for dimension 2),
we get

(15.15)

subject to the condition that the resulting total remainder term

R AxI/2D/2 + D-nx(log x)3

has a smaller order of magnitude than the main term. This condition is satisfied
for A x/2D-/2-. Therefore, the formula (15.15) is applicable for x z D"+’
and w D.
On the other hand, we derive the trivial upper bound

S(x, w)- I + E E
<p< < p

(n,P(p))=l

Comparing this with (15.15), we obtain (15.13).

The hypotheses made in Theorems 8 and 9 are very natural; nevertheless, they
may not be verified in the near future. In the next theorem, we shall establish the
desired estimates unconditionally for almost all fundamental discriminants.

Let a > 0. We say that D is a-exceptional if

1
Po(D, D/4) < -. (15.16)

Of course, if D is large enough, (15.16) should not be true, i.e., the number of
exceptional discriminants should be finite. Indeed, assuming the class number
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h(-D) satisfies (1.38), it follows from Theorem 8 that the exceptional discriminants
are bounded by a constant depending on . This fact also follows from Theorem
9 and the Burgess estimate [Bu] for the character sums (15.12), provided > 1/4.
THEOREM 10. Let 0 < < 1/2. The number of -exceptional discriminants in

any interval X < D < X2 is bounded by a constant depending on only. More
precisely, letting (X) be the set of such discriminants, we have

[f(X)[ < (200/)s/ (15.17)

if X is sufficiently large in terms of .
Proof. If D e (X), then by (15.16) we get

1
ao(p)P- < -,

z<p<z

where z X/2. Hence, if X is sufficiently large we get

-6 Xo(p)p- > 1
<p <z

by log 2 (1/2) > (1/6). Raising this inequality to the exponent k and then sum-
ming over D (X), we get

( )kI[ < og -6 Z ZD(P)P-p

(--6)k ., (P’"Pk)- Z 7.r(P"’Pk).
Pl Pk D,

Hence, by Cauchy’s inequality and the bound

p-1 <1,
z<p<z

we get

112 62kk!S, (15.18)

where

Z n- Z zo(n)
N <n<N De g
(n,P(z))=l

with N zk= Xk/2. We relax the condition (n, P(z))= 1 by applying a linear
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upper-bound sieve A {2d} of level A z, getting

)2E 2d E n-1 ZD(n)
diP(z) N <n<N
d <A n O(d)l

E’d E E E n-lxD(n)zo’(n)
d D D’ n=O(d)

a (O0’,d)=l dD

(log N)
o(D) ED (d,a)=

where D runs over the set . Here we have

DE 2dd- << I-I (1 p-)<< qg(D)(lgz)-1,(d, D)=I p <z,plD

whence

S<<
log N
log z Il + AN-xX4I#I2 kl#l + X4-/2(k-)l#l2

Inserting this into (15.18), we conclude that 11 << 62k(k q-- 1)!, provided k > 1 +
8g-. Taking k 3 + I-8g-], we get (15.17).

COROLLARY. Let g > O. The number of a-exceptional discriminants with 0 <
D < X is bounded by c(g)log log X, where c(g) is a positive constant dependin# on

Note that if D is not a-exceptional, then (15.13) holds true.

16. Estimating the amplifier. Having established various estimates for the
prime ideals in K (V/-) of degree 1 and relatively small norms as in
Theorems 8, 9, and 10, we can now prove the lower bound (1.36) for

under the relevant conditions, and consequently complete the proofs of Theorems
6 and 7.

Suppose Zo(P) 1, so p p with p . Then Yv(;0 (1/2)(Z(p) + (p)). Un-
fortunately, not every such p gives a significant contribution to z because ’v()
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is small if Z(P) is close to __+ i. But

(Z(P) -" (p))2 (j(p2) ._ e(p2))__ 2,

so we always have either

or

IZ(p2) + ,(p2)l 1.

Define/ p or p2 according to which case above appears first. Denote by the
set of integers composed of distinct numbers of type/3. Thus if q ,

Hence,

"--q’x > Y’, 4-’()>> I,(Q)I 2-’, (16.1)
q (2)

where (Q) is the subset of numbers in bounded by Q.

LEMMA 16.1. Let D < z < D1/z. Suppose that

Po(z, De) > 2D-2 log D. (16.2)

Then

I’(z6)l >> z2D-e. (16.3)

Proof. By (16.2) it follows that

I(P < Y: Zo(P) 1}l > YD-2 (16.4)

for some D < y < z. Let k be the integer such that Z2 < yk < yg2, SO 3 < k <
1 + e-1. Then each number of type q =/31 ...Ok with 7.o(P)= 1, p < y, all p
distinct, is in (z6). By (16.4) we obtain

I(z6)l >> (yD-e2)k > 22D-e,

since k > 2 log z/log y, as claimed.

Finally, we verify the hypothesis (16.2) with z D"+1 by applying any one of
Theorems 8, 9, or 10. Hence (16.3) holds true. This, together with (16.1), yields
(1.36) for Q z6 D6+60e, except that e needs to be upgraded.
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17. Applications. In this final section we prove Corollaries 1 and 2 of Theo-
rem 7 in the introduction. Recall that 0 1/1156.

Proof of Corollary 1. Let (q c oct be a subgroup of index k and let cgfq be a
coset. Then we get by (1.44) and (1.45) that

1 ZSe(u)
e

exp( 2nuNa//--) h
6e)S(u, ) + O(u-/:o/-’+).

Hence, by M6bius inversion we have

S(u)= Z’ exp(-2nuNa/x/-)

W
(cl)s(ucl)

3h
2ku + O(u-/ZDt/2)-+e).

By a standard Tauberian argument, one derives the asymptotic formula

6h
# {a e ff: a primitive with Na < x} nkxX, (17.1)

provided that x > k2D(t/2)-2+, and Corollary 1 follows.

Proof of Corollary 2. Let (q c g be a cyclic subgroup of order 9 and index
k h/g. We shall first establish a formula for

ae(a)={ ifageneratesfq,otherwise.
Choose a fixed generator g for f. Then a generates ( if and only if a gt, where
(l, g) 1. By orthogonality of characters we have

{;1
,(a))(t

ifa gt
h x Jr otherwise,

so

1

l(mod O)
(/,g)=t
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By M6bius inversion,

(/,g)=l dig /(mod g/d)

and so we obtain the desired formula

d]g
Z(Sd)=

Writing

1 #(d)
z(a).

Z(i)d =1

S(u) Z a(o) exp(-- 2nuNa/x/-),

(17.2)

we get by (17.2), (1.44), and (1.45) that

S(u)
1 It(d)

S(u, Z)= go(g__) + O(z(g)u_/2D(/:)_+)"
WU

As above, this gives the asymptotic formula

# {a: o generates f# and No < x}
2ng0(g)
x, (17.3)

provided that x > k2D(1/2)-2+e and, hence, finishes the proof of Corollary 2.

APPENDIX

In this appendix we give two additional results about class-group character
sums. These were not needed in the main body of the work, but seem sufficiently
basic to prove useful in other circumstances. The first of these is a general mean-
value theorem.

THEOREM A1. For any complex numbers c {ca}, we have

2

Z caz(a) {1 + O(D-/N)) Z’
Na<N

2

(l) C(l)a

where ’ restricts the summation to primitive ideals.

The error term O(D-1/2N) can be suppressed if 2N < v/-.
For the proof of Theorem A1, we can assume that c (ca} is supported on

primitive ideals. By the orthogonality of characters, the left-hand side is equal to

E Z
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where denotes ideal equivalence. From the diagonal terms a b, we get

Ilcll Icol

The contribution from the remaining off-diagonal terms is bounded by

# {b a: b # a, Nb < N} Ic,l 2,

We have b (00a with e a-1, ot m + nSa, 1 < n < 2v/aN/D < 2N/x/--, Il2

Nb/Na < N/a. Hence, there are no off-diagonal terms if 2N < x/. Given n as
above, the number of m’s does not exceed 1 + 2x//a. Hence,

# b #()< # {m, n} < (1 + 2x//--)2x//aN/D < 6N/x//-.
This completes the proof of Theorem A1.

Our second result is a Poisson-type formula for these character sums.
Take a function o(s) which is holomorphic in the strip -e < Re s < 1 + e and

such that p(s)F(s) << Is1-2 for Isl large. Integrate q(s)(s, ,) along the vertical line
Re s tr 1 + e. Move to the line Re s -e passing through the pole at s 1.
When on the line Re s -e apply the functional equation (1.5) and change s into
1 s getting

o(1) res (s, Z) - (qg(s) 0(1 s)).(s, z) ds.
s=l a)

Writing Lr(s, X) as a Dirichlet series and interchanging the order of summation
with integration on the right-hand side, we get

1
(q(s)- q(1 s))F(s)\ /

ds.

Therefore,

go(l) res tI)(s, Z)= S-(Z)- So(Z), (A.1)

say, where Sj,(Z) and S0(X) are defined by

Sy(Z) E 7.(a)f(2nNa/x/)" (A.2)

Here f and 9 are the inverse Mellin transforms of qg(s)F(s) and qg(1- s)F(s),
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respectively, i.e.,

and

1 f( rp(s)F(s)x_ dsf(x) fi o)
(A.3)

1 f( qg(1 s)r(s)- ds. (A.4)

The above relations between f, g can be made direct without passing through
q9 if we assume smoothness and proper decay conditions. Indeed, by Mellin inver-
sion we have

qg(s)r(s) f f(x)x-1 dx.

Inserting this into (A.3) we get

g(Y) - o) F(1 s)
f(x)(xy)- dx ds.

In order to be able to interchange the integrations, first move to the line
getting

O(y)= f(x) dx + f(x)
_o F(l s)

(Xy)- dx.

Hence, by Barnes’s formula,

r(s)
2i -o F(1 s-------) z- ds Jo(2/)- 1

(cf. [G-R], (6.422.9)), we find that g is a Hankel-type transform of f. More
precisely,

9(Y) f f(x)Jo(2xY) dx. (A.5)

THEOREM A2. Suppose f(x) is smooth on IR+ such that ftJ)(x) << (x + x-l)-2.
Let g(y) be given by (A.5). Then the class-group character sums (A.2) satisfy

Sy(Z) So(Z) + 6xhw-g(O), (A.6)

where t5x 1 if is the trivial character and 5x 0 otherwise.
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Proof. The decay condition on f guarantees every argument made before is
valid. The function qg(s)F(s) is holomorphic in the strip -e < Re s < 1 + e with-
out poles. We also have

q(1) f f(x) dx g(0)

and

res O(s, ;() L(1, ;tD) hw-1
s=l

if Z 1, or else O(s, Z) has no poles. In any case, we get (A.6).
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