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Automorphic L-Functions in Level Aspect

_W. Duke

ABSTRACT. This is an exposition of some recent developments in the the-
ory of automorphic L-functions in “level aspect”. It includes a discussion of
Jjoint work with J. Friedlander and H. Iwaniec on breaking convexity and with
E. Kowalski on distinguishing elliptic curves by small primes.

1. Introduction

A well known task of analytic number theory is to understand the behavior
of various objects associated to Dirichlet characters as the conductor varies, for
example character sums and L-functions. In recent years it has become clear that
analogous questions from GL(nr) for n > 1 are also of great interest, although
they are in general much more difficult to attack. A particularly interesting set
of problems of this type concerns the variation of quantities associated to elliptic
curves over (Q as the level changes. In this largely expository article I will discuss
a few of these questions in relation to their more classical counterparts.

2. Breaking convexity

Let x be a primitive Dirichlet character with conductor g and -

L(s,x) =) _x(n)n"*

be the associated Dirichlet L-function. As is familiar,
s+ a
) He0

is entire when ¢ > 1 and satisfies the functional equation A(s,x} = ¢A(1 — s, %)
where e/ = 1 and a = 0 or 1 according to whether ¥ is even or odd. From this and
the convexity principle of Phragmén-Lindeldf it follows that

Lis,x) < ¢4
i

for Re(s) = 5, the implied constant depending on s and ¢. This is the basic example

of a convezity bound in the conductor (or level) aspect. If one assumes the General-
ized Riemann Hypothesis (GRI)} for L(s, x) then one may replace the i by 0, which

Als,x) = ¢*/*z~*/° (
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is the Lindeldf hypothesis in the level aspect. Breoking converity in this example
was accomplished by Burgess [B] in 1962 when he reduced the exponent from 3 to
3/16. His proof employed the Riemann Hypothesis for curves established by Weil
and remains today the best known estimate. In 1992 Friedlander and Iwaniec [FI]
obtained in an elementary way the exponent 5/22 by using a method which could
be called the amplification technique. Very roughly speaking, the idea is to improve
the general mean-value estimate '

3713 ex(n)| <(a+N) D lenf,

x mod g ns<N n<iN

which holds for any complex numbers ¢, when certain special ¢, are chosen. This
technique has proven to be more adaptable to different situations than that of
Burgess and its variations have been successful in breaking convexity in the setting
of GL(2).

An important point is that breaking convexity often has qualitative conse-
quences and it may be irrelevant by how much the exponent in the convexity
bound is improved. Let me illustrate this with a classical example from the the-
ory of minima of positive integral binary quadratic forms. Suppose that Qlz,y) =
az?+bzy+cy? is such a form with (negative) fundamental discriminant d = b% —4ac
and associated CM point

—b++/d
RE T,

Tf Q(z,y) is reduced, that is {b| < a < ¢, then the minimum positive value taken by
Qfz,y) is
V1]
2 IIH(ZQ) ’
Since ) being reduced is equivalent to zg being in the (closure of the) standard

fundamental domain F for PSL(2,Z}, the well known bound min@Q < +/|d{/3
follows. A consequence of convexity breaking for the Dirichlet L-function in level
aspect is the following result giving the existence of a form with a (relatively) large
minimwm when [d| is large. )

minQ) =g =

THEOREM 1. Fiz any k < % Then, for sufficiently large |di, there is some

form @Q with fundamental discriminant d such that

min Q > x+/]dl.

A proof of this is easily sketched. Take a nice function ¢ supported in (2, 1
and form the automorphic kernel ®(z) = . ¢{Im(yz)~ "), the sum being over
v € Do\ with T = PSL(2,%Z) and T, the stabilizer of infinity. Clearly, if
§ =3, er ®(20) > 0 then we have the desired existence. Inverting the Mellin
tranform

b(s) = fn ¢(y)y5%y

we get, after interchanging summation and integration,

=1 3(5) S Bz, s) ds

2w Re{a)=2
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where E(z, s) is the classical Eisenstein series. Now the inner sum may be expressed
in terms of the Dedekind zeta function of Q{+/d), which in turn factors as the
product of the Riemann zeta function and a Dirichlet L-function. Upon shifting
the contour we get . )

S ¢ hd) < 1/ ] BTG

Re(s)=1/2 Ay ¥ griﬂ SRR

for x(n) = (d/n) and some ¢ > 0. By Siegel’s theorem for the class mumber
h(d) 3 |d|'/>~*, so the eventual (though non-effective) positivity of § follows from
any bound of the form L{s,x) < |d[*/*=% for § > 0 with some (weak) dependence
of the bound on s, thus giving the result.

It follows from D] that Theorem 1 actually holds for any & < 1/v/3 and then
it is best-possible (although it retains the defect of being non-effective). For this
. one needs to be able to produce CM points in the fundamental domain F which
have imaginary part less than 1, and this cannot be accomplished using only the
Eisenstein series but requires the use of {non-holomorphic) cusp forms as well. This
result of [D] may be viewed as an example of breaking convexity for GL(2) since
the resulting Weyl type sums are in fact closely related to special values of twisted
L-functions.

The question of breaking convexity for automorphic L-functions in the level
aspect was taken up in earnest in the papers [DFI). For even integral k > 2
let S (g) be the set of holomorphic newforms for To{g) of weight k with trivial
character. For f € SiH{q) write

2y =3 A (-7 e(nz).
n>l
The associated L-function is L(f,s) = Dons1 Af(n)nT° Tt is entire and satisfies a

funcmona,l equation which yields the convexity bound L(f, s) < jg|*/*** for Re(s) ==
5, the critical line in this normalization. Among the results of the second paper of
[DFI} is the following. :

THEOREM 2. For Re(s) = 1 we have the bound
L(f, S) & IQ‘1/4_1/192+E-
The implied constant depends only on € and s.

This estimate may be used to give a new proof of results in [DS] on the repre-
sentability of large integers by positive ternary quadratic forms. For such applica-
tions the exact exponent obtained is unimportant as long as it is strictly less than
that of the convexity bound.

3. Distinguishing characters or elliptic curves by small primes

Another classical problem which brings into the forefront the level aspect of
automorphic L-functions is that of the least quadratic non-residue modulo a prime
g. This deals with the structure of the seemingly well-known group (Z/qZ)* of
invertible elements modulo ¢. Let N{g) be the smallest positive integer N such
that N is not a square modulo g¢; the problem is to estimate this number as q

varies. Write for any n > 1
)
Xe{n) = { —
= ()
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s0 that x, is a primitive Dirichlet character modulo ¢ (if ¢ = 3). Then N(g) is also
the smallest positive N such that

<N

Z Xq(m)

1€n<N

0 we can estimate N(g) by obtaining non-trivial bounds for this character sum.
From the Polya-Vinogradov inequality

Z Xq(m)

1<R<N

< 2¢'*logq

it follows that N(q) < ¢'/%™* for any € > 0, and using an elementary trick this was
improved by Vinogradov to give

N{q) <« (‘;!.1/(2\/5)+E

for any ¢ > 0. The same trick, when applied to the improvement of the Polya-
Vinogradov inequality by Burgess, which gives a non-trivial bound for N > gl/ite
yields the current best known result for an individual character:

Nig) < gt/ (Ve te
for any € > 0. On the other hand the GRH implies (see [Mon])
(1) N(g) <« (logg)®.

This shows how far we are from the true order of magnitude!

This problem was one of the motivations which brought Linnik to create the
large-sieve [Lin] as a possible substitute for the Riemann Hypothesis on average.
His idea was to estimate the number of exceptions to a bound such as (1), and
was the first step on the road which led ultimately to results as important as
the Bombieri-Vinogradov theorem on primes in arithmetic progressions, which can
actually replace the Generalized Riemann Hypothesis in many interesting applica-
tions. .

Let us write N{a, Q) for the number of primitive Dirichlet characters x modulo
g, for all positive integers ¢ < @, which satisfy

2) Cx(p) =1 forall p< (log Q).

Then, by a variation of Linnik’s original method, we derive:
THEOREM 3. For any € > 0 it holds that

(3) N(a, Q) < QY.

Since the total number of possible y modulo ¢ < @ is about @2, this shows that
the number of exceptional characters is relatively small if @ > 1. Furthermore, if
o > 2 then almost all prime moduli ¢ < @ have quadratic non-residues p < (log @)~

Here is a sketch of the proof of this result. It is based on the large-sieve
inequality for Dirichlet characters, namely

(4) Y 3T caxd)

g<Gx mod g'n<N

SN+ el

n<N
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To exploit this, consider the set A of all products of m distinct prime factors all
less than (log @)%, where :

2log Q@
m= ||
ex log log @
Then N = Max N < Q%?, and on the other hand an easy computation gives

|NI = QZ(Q—I)/Q*E
for any £ > 0. Take then

{l, neN
en =

0, otherwise

in (4); the inner sum is then [A] for all those characters, and by positivity this
gives

Na, QYN < Q%N
whence, as claimed
N{a, Q) < Q¥ Ha—W/ate _ y2/ate

It is natural now to investigate the analogne of these problems for modular
forms, which are the GL(2)-analogues of the Dirichlet characters. The question is
then the following: suppose we fix k and are given two new-forms fe S:(ql) and
g € SH{g) of squarefree levels ¢; and gz, with f # g. Then how large, compared
to the levels, is the smallest prime p such that As(p) # A\,(p)? Again a suitable
Riemann Hypothesis (for the Rankin-Selberg convolution L(f ® g,s) this time)
implies by means of a standard argument that this is true for some p < (logg)?
where ¢ = Icm(g1, g2). In this case the convexity bound (or a look at the order of
vanishing of f — g at co) gives p < ¢*** and this is substantially the best known
unconditional result. Indeed, it seems very hard to break the convexity bound for
L(f®g,s). ‘

However, turning to the analogue of Linnik’s result, it is possible to obtain good
estimates for the number of exceptions. This is joint work with E. Kowalski [DK].
Letting M{c, 2} denote the maximal pumber of new-forms f of squarefree level
g < @ which all bave the same Hecke eigenvalues for primes p < (log )=, we
obtain the following result:

THEOREM 4. For any e > 0, it holds that
M(e, Q) < Q1%

As a corollary, using the modularity of semistable elliptic curves proved by
Wiles, we get also:

COROLLARY 1. The number of isogeny classes of semistable elliptic curves over
Q@ with conductor less than Q which may hove the same number of points modulo p

for all p < (log Q) s
& QS/Q+E

for any e > 0.




78 W. DUKE

To get the exponent 8 instead of 10 we need an upper bound for the number
EI(Q) of isogeny classes of semistable elliptic curves over {J with conductor less
than , which is an improvement on average of a recent result of Brumer and
Silverman [BS]:

ELQ) < @F

for any £ > 0. Note also that the corollary is non-trivial because there is also a
lower bound for this number [FNT)

EI(Q) 3 Q%/°.

The proof follows the same strategy as Linnik’s result. However, various twists
appear. First, we require a partial analogue of (4):

2
(5) SN Y exmy| @Yl

9LQ feSk(q)t ' nZQF n

foranye > 0,and 8 >4 (Zb indicates a sum over squarefree integers). But then,
arguing as before, we cannot finish, because we do not have a lower bound for As(p)
which is as convenient as |x(p)| = 1. Using results on average is not possible here
because we use very small primes, compared to the level, and we need uniformity
in f also. Such difficulties have already appeared in other problems, and we use
the same trick as in [DFT]. The useful formula

M) = Ar(p®) =1

{for all unramified p) implies that if A;{p) is too small, then A (p®) cannot be! This
leads us to use another inequality which is similar to the previous one except that
it detects orthogonality along the squares:

(® ISP pz%aﬂﬁ)

q2Q feSk{g)t nLQPf

2
< Q% el

T

for any ¢ > 0, and this time 8 > 10. This may be interpreted as a partial large-
sieve inequality for the symmetric squares of the new-forms, which are GL(3)-
automorphic forms defined by Gelbart and Jacquet [GJ]. We also need a result of
Ramakrishnan according to which two newforms with squarefree levels can’t have
the same symmetric square unless they are the same. Now with (6), the proof of
the theorem is easily completed.

The proofs of (5) and (6) are similar (actually, we prove a general mean-value
estimate for families of GL(n)-automorphic representations for any n > 1}. Using
duality, we reduce (6) (for instance) to proving

{Qﬁﬁﬂ €549

{2)
(7) Z '\fQ (n))\g’z) (n) < Qfte, ff=g

n<Qd

{where )\5,2) denotes the coefficients of the L-function of the symimetric square f @)
of f) which we attack by means of Mellin inversion. We then have to study the
analytic properties of the “bilinear convolution” L-function

Li(f® ®¢@,5) =3 AP (mAP (m)n
el
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which we do by relating it to the true Rankin-Selberg convolution L(f? @ g(¥ ),
defined by Jacquet, Piatetskii-Shapiro and Shalika [JPS]. This comparison lemma
gives us the analytic continuation of L, up to the eritical line, which is sufficient to
get (7). En route, we have to use the determination of the location of the poles of
the Rankin-Selberg convolution, due to Mceglin and Waldspurger [MW].
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