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1 Introduction

Siegel modular forms are of fundamental interest in algebraic geometry and
number theory. It is perhaps remarkable that except for degrees less than 4 very
little is known about their dimension for small weights. Using the geometry
of numbers, Siegel gave an upper bound for the dimension. His technique was
refined by Eichler [E] and more recently by Poor and Yuen [PY2]. Concerning
the non-existence of cusp forms of small weights, these techniques break down
rather quickly.

In this paper, we apply the theory ofL-functions to determine the dimension
of Siegel modular forms of some small weights for the full Siegel modular group.
The use ofL-functions to improve upon the geometry of numbers techniques was
introduced by Stark [St] and Odlyzko [O] in the 1970s, the latter in order to give
lower bounds for the discriminants of number fields. The technique was used
by Mestre [Me] in 1986 for giving lower bounds for conductors of algebraic
varieties. Recently it has been applied in different ways by Fermigier [Fe] and
Miller [Mi] in the context of the spectral theory ofGL(n).

It is well known that non-constant modular forms do not exist for weights
less than or equal to 1. Christian [C] showed that they do not exist if the weight
is 2. In this paper, we show that there are no cusp forms of weight less than
or equal to 6 for any degree. Combining this with results of Böcherer, Freitag,
Raghavan and Weissauer we are able to determine the dimension of modular
forms for weights less than 7. We give less complete results for weights 7 and 8.
In particular we give a different proof of the result given in [PY1] that the only
cusp form of weight 8, degree 4 is the Schottky form. When the weight is 6, we
use deep results of Weissauer on Hecke summation of Eisenstein series. In the
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process, we also complete the basis theorem for modular forms of weight 4 to all
degrees by showing that every such modular form is a multiple of a theta series
attached toE8, the unique even unimodular lattice in 8 dimensions. Previously
this wasn’t known for degrees 6 and 7 (cf. [B2], [F3]).

It is worth mentioning that our results are unconditional. If one assumes
various standard conjectures about theL-functions involved more information
can be obtained. It is also possible to apply these techniques to vector valued
modular forms transforming by higher degree representations.

2 The standard L-function and the explicit formula

We shall assume that the reader is familiar with the basic properties of Siegel
modular forms and refer the reader to [F1] and [Kl].

A Siegel modular form of degreen and weightk of full level 1 is a holo-
morphic functionf defined onHn = {Z = X + iY | Zt = Z , Y > 0} such that,

for all M =

(
A B
C D

)
∈ Γn = Sp(n, Z)

f (MZ) = f ((AZ + B)(CZ + D)−1) = det(CZ + D)kf (Z)

and f is holomorphic at∞ if n = 1.
We let M k

n denote the vector space of Siegel modular forms of weightk and
degreen and letSk

n denote the space of Siegel cusp forms of weightk, the kernel
of the Siegel’sC-linear mapΦ: M k

n 7→ M k
n−1.

Any modular formf ∈ M k
n admits a Fourier expansion of the form

f (Z) =
∑
T≥0

a(T) exp(πtrTZ)

whereT runs over positive semi-definite, half-integraln ×n matrices. It is a fact
that f ∈ Sk

n precisely whena(T) = 0 for T with detT = 0. On the other hand, a
modular form is calledsingular if

a(T) /= 0 =⇒ detT = 0.

It has been shown by Resnikoff [R1, R2] and Freitag [F2, F3] thatf ∈ M k
n is

singular if and only if 2k < n. In particular there are no cusp forms if 2k < n.
Classical examples of Siegel modular forms of level 1 are given by theta

series attached to even unimodular lattices. Form ≡ 0 mod 8, letSm be the set
of all m× m symmetric positive definite even unimodular matrices. For positive
integersm, n, let Hν(m, n) be the space of polynomialsP: Cm,n 7→ C so that for
all A ∈ GL(n, C) andX = (xij ) ∈ Cm,n, P(XA) = (detA)νP(X) andP is harmonic

in the sense that
m∑

i =1

n∑
j =1

∂2

∂x2
ij

P(X) = 0. For P ∈ Hν(m, n) andS ∈ Sm the theta

function is defined for Z∈ Hn by
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θS,P(Z) =
∑

A∈Zm,n

P(S1/2A)e(
1
2

trS[A]Z)

wheree(x) = e2πix andS[A] = At SA.
It is known that (see [F1])θS,P(Z) ∈ M m/2+ν

n . Let Bk
n (m) be theC-span of

theta seriesθS,P with P ∈ Hk−m/2(m, n) andS ∈ Sm. Bk
n (m) is a Hecke invariant

subspace ofM k
n .

As in the classical casen = 1 Hecke operators can be defined andSk
n and

M k
n have a basis consisting of simultaneous eigenforms (see [F1], [A]). For a

Siegel cusp formf of weight k and degreen which is a Hecke eigenform, the
standard L-function associated tof (see [L], [A], [B1]) is

L(s, f , St) =
∏

p

{(1 − p−s)
n∏

j =1

(1 − αj (p)p−s)(1 − αj (p)−1p−s)}−1 (1)

wherep runs over all primes andαj (p), (1 ≤ j ≤ n) are the Satake parameters
of f .

Let

Λ(s, f , St) = (2π)−nsπ−s/2Γ (
s + ε

2
)

n∏
j =1

Γ (s + k − j )L(s, f , St) (2)

whereε =

{
0, if n is even;
1, if n is odd.

Andrianov-Kalinin [AK], Böcherer [B1], and Piatetski-Shapiro, Rallis [PSR]
have shown thatΛ(s, f , St) has a meromorphic continuation to the wholes-plane
and satisfies the functional equationΛ(s, f , St) = Λ(1 − s, f , St).

The following theorems about the analytic properties ofΛ(s, f ) can be found
in [M].

Theorem 2.1. Let f ∈ Sk
n be an eigenform with positive integers k and n. If

k ≥ n, thenΛ(s, f , St) is holomorphic except for simple poles at s= 0 and s= 1;
it has a pole at s= 0 (or equivalently, at s= 1) if and only if f ∈ Bk

n (2n) ∩ Sk
n .

Theorem 2.2. Let f ∈ Sk
n be an eigenform with k< n. Letν = 0 or 1 according

as k is even or odd. ThenΛ(s, f , St) has at most simple poles at s= n−k+ν, n−k+
ν+1, 1−n+k−ν, k−ν−n, at most double poles at2+k−ν−n ≤ s ≤ n−k+ν−1,
s ∈ Z, and is holomorphic elsewhere.

The location of the poles ofΛ(s, f , St) in Theorems 2.1 and 2.2 are due to
Mizumoto [M] and the second assertion in Theorem 2.1 is due to Weissauer [W1]
and B̈ocherer [B2].

We will need the following bounds for the Satake parameters which are due
to Duke, Howe and Li [DHL].
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Theorem 2.3. Let f ∈ Sk
n be a Hecke eigenform with Satake parametersαj (p).

Then for n= 2m, |αj (p)l + αj (p)−l | ≤ pnl/2 + p−nl/2 and for other n,|αj (p)l +
αj (p)−l | ≤ p2nl/3 + p−2nl/3.

We will also need the following result on the region of absolute convergence.

Theorem 2.4. Let f ∈ Sk
n be a Hecke eigenform. Then the Euler product in

Λ(s, f , St) (eqn.(2)) is absolutely convergent for Re(s) > n/2 + 1.

For n = 2m this follows from Theorem 2.3. For generaln, it follows from a
recent paper of Shimura [S].

Finally, we need the explicit formula for the standard L-function. ForF a
real valued even function onR with F (0) = 1 and satisfying certain growth
conditions, one has the following formula forΛ(s, f , St) (cf. [Me], p.212).

∑
ρ

Φ(ρ) −
∑

µ

Φ(µ) + 2I (1/2, ε/2) + 2
n∑

j =1

I (1, k − j )

= (−2n) log(2π) − log(π) − 2
∑

p,l >1

F (l logp)(logp)p−l /2

−2
n∑

j =1

∑
p,l >1

(αj (p)l + αj (p)−l )F (l logp)(logp)p−l /2 (3)

whereI (a, b) = a
∫ ∞

0
F (ax)

e−(a/2+b)x

(1 − e−x)
− e−x

x
dx andΦ(s) =

∫ ∞

−∞
F (x)e(s−1/2)xdx.

Hereρ (resp.µ) runs over the zeros (resp. poles) ofΛ(s, f , St) with real parts
between−c and c + 1 wherec is such that the Euler product in equation (2)
converges absolutely forRe(s) > c + 1.

3 The results

The vector spacesM k
n andSk

n are finite dimensional. Forn ≤ 3 the structure of
the graded ringsMn =

⊕
k M k

n andSn =
⊕

k Sk
n are completely understood (see

[I], [T]). For n = 3, the explicit structure is already quite complicated and for
n ≥ 4 much less is known. Poor and Yuen [PY1] proved the following theorem.

Theorem 3.1. dimS6
4 = 0; dimS8

4 = 1; dimM 8
4 = 2; dimS12

4 = 2; anddimM 12
4 =

6.

They also gave explicit generators for these spaces of cusp forms and in particular
have shown thatS8

4 is generated by the Schottky modular form.
For n > 4 very little is known about the dimension of the space of Siegel

modular forms of small weight. The main results of this paper are the following
theorems.
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Theorem 1. For any n, and for k≤ 6, dimSk
n = 0.

dimS7
4 = dimS7

6 = 0.
dimS8

8 = 0.

Theorem 2. dimM 3
n = dimM 5

n = 0.
dimM 4

n = 1 and M4
n =< θE8 >C is the C-linear span of the theta series

attached to the unique 8 dimensional even unimodular lattice E8.

dimM 6
n =

{
1, if n < 9;
0, otherwise.

Remark:We also give a new proof that dimS8
4 = 1. If we assume the better

bound of Proposition 2.3 holds for alln then we may in addition deduce that
dimS8

n = 0 for 5≤ n ≤ 8.
Proof of Theorem 1.To prove Theorem 1 we use the analytic properties of the
L-function Λ(s, f , St) and the explicit formula to conclude that for small weights
such an L-function cannot exist. Roughly speaking, the idea is to apply the
explicit formula with a specially chosen test function to deduce an inequality
and numerically contradict this inequality to deduce the non-existence of cusp
forms.

For the test functionF (x) in the explicit formula (equation (3)), we will take
the function of Odlyzko.

For λ > 0, let F (x) = Fn,λ(x) = gλ(x)/ cosh(x(n+1)
2λ ) where

gλ(x) =

{
(1 − |x|/λ) cos(π|x|/λ) + (1/π)(sin(π|x|/λ), if |x| ≤ λ ;
0, otherwise.

Using the region of absolute convergence given in Theorem 2.4 along with this
choice ofF we have thatΦ(ρ) ≥ 0 for −n/2 ≤ Re(ρ) ≤ n/2 + 1, (cf. Poitou [P])
and hence by equation (3),

∑
µ

Φ(µ) − 2I (1/2, ε/2) − 2
n∑

j =1

I (1, k − j ) ≥ (2n) log(2π) + log(π)

+2
∑

p,l >1

F (l logp)(logp)p−l /2+2
n∑

j =1

∑
p,l >1

(αj (p)l +αj (p)−l )F (l logp)(logp)p−l /2.

(4)
In particular, if we chooseλ = log 2, we get

∑
µ

Φ(µ) − 2I (1/2, ε/2) − 2
n∑

j =1

I (1, k − j ) ≥ (2n) log(2π) + log(π) (5)

We can prove this inequality wrong numerically for small weights.
First note that forn > 2k all modular forms are singular hence there are no

cusp forms of weightk and degreen in that case and we do not need to check
the inequality forn > 2k.
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More specifically, to show that there are no cusp forms of weight 3 we
only need to look at the degreesn ≤ 6. Since it is already known that (cf.
Freitag [F1],p 50) fork < 5 andn ≤ 5, dimSk

n = 0, we only check the case
n = 6. If n = 6, the left hand side of the inequality (5) is at most 20.3025 where
as the right hand side is 23.1993. Hence there are no cusp forms of weight 3 for
any degreen.

In this and all other numerical calculations we use Theorem 2.1 and Theorem
2.2 to calculate the contribution of the poles. (The explanation of the numerical
methods used are given in the Appendix.)

For k = 4, it is known that there are no cusp forms of weight 4 forn ≤ 5
(cf. [F1]) and we obtain the following numerical values for the remaining cases
6 ≤ n ≤ 8.

n LHS(5) RHS(5)
6 19.1154 23.1993
7 22.8228 26.8750
8 25.9474 30.5508

Note that in the above table, for eachn, the left hand side is less than the
right hand side contradicting the inequality (5). Hence there are no cusp forms
of weight 4.

For k = 5, we only need to check the even degreesn = 4, 6, 8, 10 and in this
case numerical results are as follows.

n LHS(5) RHS(5)
4 13.5709 15.8477
6 21.3004 23.1993
8 28.9227 30.5508
10 35.8420 37.9023

For k = 6, there are no cusp forms forn = 1, 2, 3 and for 4≤ n ≤ 12 we
use the following numerical results to conclude that there are no cusp forms of
weight 6.

n LHS(5) RHS(5)
4 14.8223 15.8477
5 17.2036 19.5235
6 19.9490 23.1993
7 25.2466 26.8750
8 28.4122 30.5508
9 32.6461 34.2265
10 36.0132 37.9023
11 39.9510 41.5780
12 43.2640 45.2538

Next we show that there are no cusp forms of weight 7 forn = 4 andn = 6.
To this end, we first obtain the following numerical result.
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n LHS(5) RHS(5)
4 15.9410 15.8477
6 21.6814 23.1993

Note that forn = 4 we cannot obtain a contradiction. To obtain the desired
contradiction, we letλ = log 3 and use the inequality (4). Here we make use of
the bounds for the Satake parameters given in the Theorem 2.3 and obtain

n LHS(4) RHS(4)
4 14.6731 14.8398

Hence there are no cusp forms of weight 7 forn = 4.
Finally, for n = 8 andk = 8, LHS(4) = 26.4961 and RHS(4) = 28.4174 and

hence dimS8
8 = 0.

Proof of Theorem 2.SinceΦ: M k
n 7→ M k

n−1 is a linear map withkerΦ = Sk
n ,

dimM k
n ≤ dimSk

n + dimM k
n−1. (6)

By Theorem 1, fork ≤ 6, dimSk
n = 0. This and the inequality (6) implies

that for k ≤ 6, dimM k
n ≤ dimM k

1 .
For k = 3, 5, dimM k

1 = 0 and therefore dimM 3
n = dimM 5

n = 0.
For k = 4, dimM 4

1 = 1 and dimM 4
n ≤ 1. Since the theta seriesθE8 of degree

n attached to the unique even unimodular latticeE8 of dimension 8 is a non-zero
Siegel modular form of weight 4, dimM 4

n = 1 andM 4
n =< θE8 >.

For k = 6, dimM 6
1 = 1 and dimM 6

n ≤ 1. Since singular modular forms exist
only for weightsk ≡ 0 mod 4 (cf. Freitag [F3]), dimM 6

n = 0 for n > 12.
To see if and when modular forms of weight 6 exist forn ≤ 12, consider the

Eisenstein series

Ek
n (Z , s) =

∑
C,D

det(CZ + D)−k det(ImZ)s

| det(CZ + D)|2s

If Ek
n (Z , s) is regular ats = 0 for all Z thenEk

n (Z , 0) = Ek
n (Z) is said to have

Hecke summation. Weissauer [W1],[W2] has shown that the method of Hecke
summation produces holomorphic modular forms except may be in two irregular
casesk = (n + 2)/2 andk = (n + 3)/2. The defined modular formEk

n (Z) does
not vanish ifk > (n + 3)/2 (cf. [W2], Proposition 2.2). Since forn < 9, E6

n is
a non-zero holomorphic modular form it follows that dimM 6

n = 1 for n < 9.
For n = 9, E6

9 is non-holomorphic and in this case it follows from Theorem 13,
(p.123) of [W1] that dimM 6

9 = 0. Since there are no cusp forms of weight 6 for
any degree the inequality (6) implies that dimM 6

n = 0 for n ≥ 9.
Finally, we give a new proof of the result that dimS8

4 = 1 . Whenn = 4 and
k = 8 the right hand side of equation (4) is 14.8398 whereas the left hand side
without the contribution of the poles is 14.4571 and with the contribution of the
poles it is 15.9123. These numerical results imply that theL-function of any cusp
form of weight 8 degree 4 must have a pole. By second part of Theorem 2.1,
this can only happen if the cusp form is inB8

4 (8), i.e. it is a theta series. On
the other hand by a result of Weissauer (cf. [W1], p. 20), the dimension of cusp
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forms in B8
4 (8) is at most one. Since the Schottky form is inB8

4 (8), S8
4 is one

dimensional and spanned by the Schottky’s modular form.

4 Appendix

We have used Mathematica in our numerical calculations. One can either use
the numerical integration packages of Mathematica or as in [Me] use the series
expansion ofeux/(ex − 1) in terms of the Bernoulli polynomials to rewrite the
integral I (a, b) as an infinite series. We will demonstrate this second method
with an example. Forn = 4 andk = 8, one of the terms on the left hand side of
equation (5) is

I (1, 4) =
∫ ∞

0
F (x)

e(1/2−4)x

(ex − 1)
− e−x

x
dx

whereF (x) = F4,λ(x) = gλ(x)/ cosh(5x/2λ).

For |x| ≤ 2π,
eux

ex − 1
=

∞∑
m=0

Bm(u)xm−1

m!
, whereBm(u) are the Bernoulli poly-

nomials.
Using this we writeI (1, 4) = J (λ) + K (λ) where

J (λ) =
∫ λ

0

F (x) − e−x

x
dx −

∫ ∞

λ

e−x

x
dx

and

K (λ) =
∞∑

m=1

Bm(−7/2)
m!

∫ λ

0
F (x)xm−1dx

J (λ) can be handled as in [Me], p.231. ForK (λ), we note thatBm(u + 1) −
Bm(u) = mum−1, andBm(1/2) = (21−m − 1)B(m) whereB(m) are the Bernoulli
numbers. HenceK (λ) =

∑∞
m=1 c(m) where

c(m) =

(
1

m!

) [
(21−m − 1)B(m)

−m(−1)m−1

((
1
2

)m−1

+

(
3
2

)m−1

+

(
5
2

)m−1

+

(
7
2

)m−1
)]

×
∫ λ

0
F (x)xm−1dx.

Note thatK (λ) can be written as a sum of two alternating series and can for
example be estimated using the first 10 terms as−0.707514 with an error less
than 4× 10−7.
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