Math 33B Midterm 2

Friday, November 16, 2007

Name:		

Student ID:

Signature:

Problem	Max	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

1. (10 pts) Given that $y_1 = t^{-1} \cos t$ and $y_2 = t^{-1} \sin t$ are solutions of the differential equation

$$ty'' + 2y' + ty = 0,$$

find the general solution of the differential equation

$$ty'' + 2y' + ty = \sec t$$

2. (a) (8 pts) Find the general solution of the differential equation:

$$y'' + 4y' + 5y = 20\cos(5t)$$

(b) (2 pts) From your answer in part (a), write down the steady-state response in the form $A\cos(\omega t - \phi)$:

3. (a) (5 pts) Find the solution of the system of equations

$$\mathbf{y}' = \begin{pmatrix} 8 & 10 \\ -5 & -7 \end{pmatrix} \mathbf{y}, \qquad \mathbf{y}(0) = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

(b) (5 pts) Find the solution of the system of equations

$$\mathbf{y}' = \begin{pmatrix} 0 & 1\\ -4 & -4 \end{pmatrix} \mathbf{y}, \qquad \mathbf{y}(0) = \begin{pmatrix} 2\\ -3 \end{pmatrix}$$

4. (10 pts) Match the following five differential equations with the graphs on the next page, and describe the type of harmonic motion as one of the following: "Undamped", "Underdamped", "Critically damped", "Overdamped", "Interference", or "Resonance".

Differential Equation	Graph	Description
$y'' + 16y = 12\cos(5t)$		
y'' + 16y = 0		
y'' + 8y' + 16y = 0		
$y'' + 16y = 12\cos(4t)$		
y'' + 2y' + 16y = 0		

