Math 115A Midterm 2

Monday, November 15, 2010

Name: _____

Student ID:

Signature:

Problem	Max	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

1. (10 pts) Let $T: V \to W$ and $S: W \to Z$ be linear transformations. Prove that $ST = T_0$ if and only if $R(T) \subseteq N(S)$. (Recall that T_0 denotes the "zero map": $T_0(x) = 0$ for all $x \in V$.) 2. (10 pts) Let V and W be n-dimensional vector spaces, and let $T: V \to W$ be a linear transformation. Let $\{v_1, \ldots, v_n\}$ be a basis for V. Prove that T is an isomorphism if and only if $\{T(v_1), \ldots, T(v_n)\}$ is a basis for W.

3. (a) (5 pts) Write down a formula for a linear map $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ such that

$$T(X^2) = (3, 1, -2),$$

 $T(X^2 + X) = (1, -2, 1),$ and
 $T(X^2 + X + 1) = (-3, 6, -3).$

(Your answer should be in the form $T(a + bX + cX^2) = ...$)

(b) (5 pts) Compute rank(T) and rullity(T). Is T an isomorphism?

- 4. Define $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ by $T(f) = f(1) \cdot X^2 + f'$. Let $\beta = \{X^2 X 3, X^2 + 2X + 1, 3X 2\}$ and let $\gamma = \{X^2, X, 1\}$.
 - (a) (4 pts) Compute the matrix $[T]_{\gamma}$.

(b) (4 pts) Let Q be the change of coordinate matrix that changes β coordinates to γ -coordinates. Compute Q.

(c) (2 pts) Using your answers from parts (a) and (b), write down an expression for the matrix $[T]_{\beta}$. (You do not need to multiply out the matrices.)