Math 115A Midterm 1

Monday, October 18, 2010

Name: _____

Student ID:

Signature:

Problem	Max	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

- 1. Let $V = P_2(\mathbb{Q})$, the vector space of polynomials of degree at most 2 with rational coefficients, and let $\beta = \{1 X + X^2, 1 + X^2, X X^2\}$.
 - (a) (6 pts) Prove that β is a basis for V.

(b) (4 pts) Write $3 - 2X + 5X^2$ as a linear combination of elements of β .

2. (10 pts) Let $V = M_{2\times 2}(\mathbb{R})$, the vector space of all 2×2 matrices with real entries. Let

$$W_1 = \left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} \in V \mid a, b, d \in \mathbb{R} \right\},$$
$$W_2 = \left\{ \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix} \in V \mid c \in \mathbb{R} \right\}.$$

Then W_1 and W_2 are subspaces of V. (You don't need to prove this.) Prove that $V = W_1 \oplus W_2$. 3. (10 pts) Let V be a vector space, and let W_1 and W_2 be subspaces of V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. 4. (10 pts) Let V be a vector space over \mathbb{C} of dimension n. Recall (from a homework exercise) that V is also then automatically a vector space over \mathbb{R} . Prove that, as a vector space over \mathbb{R} , the dimension of V is 2n. (*Hint: Start with a basis for V as a vector space over* \mathbb{C} , and modify it somehow to get a basis for V as a vector space over \mathbb{R} .)