Do the following problems from the book:

- Section 2.5: 2(a,b,c), 3(a,c,e), 4, 5, 8, 11
- Section 4.4: 1, 4(a,b,c)

Recall that for a function $f : X \rightarrow Y$, we say that $g : Y \rightarrow X$ is an inverse of f if both $f \circ g = 1_Y$ and $g \circ f = 1_X$. We also know that a function has an inverse if and only if it is both one-to-one and onto, and if it has an inverse, this inverse is unique. We will now weaken this definition and explore the consequences. Let X and Y be any sets, and let $f : X \rightarrow Y$ and $g : Y \rightarrow X$ be any functions. We will say that g is a right inverse of f if $f \circ g = 1_Y$, and g is a left inverse of f if $g \circ f = 1_X$. Thus an inverse of f is merely a function g that is both a right inverse and a left inverse simultaneously.

1. Prove that f has a left inverse if and only if f is injective (one-to-one). (One direction of this is easy; the other is slightly tricky.)

2. Prove that if f has a right inverse, then f is surjective (onto).

3. (Problem 10(c) from Section 2.4) Let V and W be finite-dimensional vector spaces with $\dim(V) = \dim(W)$, and let $T : V \rightarrow W$ be linear.

 (a) Prove that if $S : W \rightarrow V$ is a right inverse of T, then T is invertible and S is the inverse of T.
 (b) Prove that if $S : W \rightarrow V$ is a left inverse of T, then T is invertible and S is the inverse of T.

4. (a) Give an example of a linear transformation $T : V \rightarrow W$ that has a right inverse, but does not have a left inverse.
 (b) For the function T you chose in part (a), give two different linear transformations S_1 and S_2 that are right inverses of T. This shows that, in general, right inverses are not unique.

5. (a) Give an example of a linear transformation $T : V \rightarrow W$ that has a left inverse, but does not have a right inverse.
 (b) For the function T you chose in part (a), give two different linear transformations S_1 and S_2 that are left inverses of T. This shows that, in general, left inverses are not unique.

*The converse of this statement is also true, but the proof involves (in a somewhat subtle way) a set-theoretic concept called the Axiom of Choice.
Just like above, we can also define left and right inverses for matrices. (In what follows, for any positive integer \(n \), \(I_n \) will denote the \(n \times n \) identity matrix.) Recall that for a matrix \(A \in M_{m\times n}(F) \), an inverse of \(A \) is a matrix \(B \in M_{n\times m}(F) \) such that both \(AB = I_m \) and \(BA = I_n \). Now if \(A \in M_{m\times n}(F) \) and \(B \in M_{n\times m}(F) \), we will say that \(B \) is a right inverse of \(A \) if \(AB = I_m \), and \(B \) is a left inverse of \(A \) if \(BA = I_n \). Thus an inverse of \(A \) is merely a matrix \(B \) that is both a right inverse and a left inverse simultaneously. (Note that, contrary to the definition of inverse matrices that you may be used to, this appears to allow us to deal with inverses of \(m \times n \) matrices when \(m \neq n \), i.e., non-square matrices. However, you will prove in the following problems that, even though this definition appears to allow that possibility, it can never happen. In other words, only a square matrix can have an inverse. You will also prove that, for a square matrix, a left or right inverse is automatically an inverse.)

6. (a) Let \(A \in M_{m\times n}(F) \) with \(m < n \). Show that \(A \) cannot have a left inverse. \(\text{Hint: Consider} \ L_A, \text{and apply problem 1 above.} \)

(b) Give an example of a matrix \(A \in M_{m\times n}({\mathbb R}) \) with \(m < n \) such that \(A \) has a right inverse.

(c) For the matrix \(A \) you chose in part (b), give two different matrices \(B_1, B_2 \in M_{n\times m}(F) \) that are right inverses of \(A \). This shows that, in general, right inverses are not unique.

7. (a) Let \(A \in M_{m\times n}(F) \) with \(m > n \). Show that \(A \) cannot have a right inverse. \(\text{Hint: Consider} \ L_A, \text{and apply problem 2 above.} \)

(b) Give an example of a matrix \(A \in M_{m\times n}({\mathbb R}) \) with \(m > n \) such that \(A \) has a left inverse.

(c) For the matrix \(A \) you chose in part (b), give two different matrices \(B_1, B_2 \in M_{n\times m}(F) \) that are left inverses of \(A \). This shows that, in general, left inverses are not unique.

8. (Problem 10(a/b) from Section 2.4) Let \(A \in M_{n\times n}(F) \).

(a) Prove that if \(A \) has a left inverse \(B \), then \(A \) is invertible and \(B = A^{-1} \). \(\text{Hint: Consider} \ L_A, \text{and apply problem 3 above.} \)

(b) Prove that if \(A \) has a right inverse \(B \), then \(A \) is invertible and \(B = A^{-1} \).

9. (Problem 9 from Section 2.4)

(a) Let \(A, B \in M_{n\times n}(F) \), and assume \(AB \) is invertible. Prove \(\text{using the previous problem} \) that both \(A \) and \(B \) are invertible.

(b) Give an example of non-square (and hence non-invertible) matrices \(A \) and \(B \) such that \(AB \) is invertible. \(\text{Hint: You can just reuse one of your examples from problem 6 or 7 above.} \)

10. Define a linear transformation \(T : P_2({\mathbb R}) \to P_2({\mathbb R}) \) by \(T(f) = f' + f(1)X^2 \). Compute \(\det(T) \).