Math 115A Homework 5 Due Friday, October 29, 2010

- Do the following problems from the book: Section 2.1: 11, 17, 27*, 28, 30, 32, 35
 Section 2.2: 2(a,c,c,g), 5(d,f,g), 11, 12, 16[†] (Postponed to homework 6.)
- Do the following additional problems:
 - 1. Prove the following theorem, which *should* be stated in class on Wednesday, 10/27: **Theorem** (Theorem 2.10, more general version). Let V, W, and Z be vector spaces (over the same field F).
 - (a) For $T_1, T_2 \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, Z)$, $S(T_1 + T_2) = ST_1 + ST_2$. Likewise, for $T \in \mathcal{L}(V, W)$ and $S_1, S_2 \in \mathcal{L}(W, Z)$, $(S_1 + S_2)T = S_1T + S_2T$.
 - (b) For $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, Z)$ and $a \in F$, a(ST) = (aS)T = S(aT).
 - 2. Let V be a vector space, and let W_1 and W_2 be subspaces such that $V = W_1 \oplus W_2$. Let $T: V \to V$ be the projection on W_1 along W_2 .
 - (a) Prove that T is a linear transformation.
 - (b) Prove that $W_1 = \{x \in V \mid T(x) = x\}.$
 - (c) Prove that $R(T) = W_1$ and $N(T) = W_2$. (Thus $V = R(T) \oplus N(T)$.)
 - (d) Prove that $T^2 = T$. (That is, prove that T(T(x)) = T(x) for all $x \in V$.) (*Hint: For* $x \in V$, let y = T(x). Then $y \in R(T) = W_1$ by part (c). Now apply part (b).)
 - 3. Let V be a vector space, and let $T: V \to V$ be a linear operator on V such that $T^2 = T$. (Note: Do not assume in this problem that V is finite-dimensional.)
 - (a) Prove that V = R(T) + N(T). (Hint: For $x \in V$, write x = T(x) + (x T(x)), and show that $x T(x) \in N(T)$.)
 - (b) Prove that $R(T) \cap N(T) = \{0\}$. Conclude that $V = R(T) \oplus N(T)$.
 - (c) Prove that T is the projection on R(T) along N(T).

Note that, as a result of the last two problems, you have proved the following theorem:

Theorem. Let V be a vector space, and let T be a linear operator on V. Then T is a projection if and only $T^2 = T$.

^{*}Hint for #27: Refer to problem 34 from Section 1.6. (This was part of homework 3.)

[†]Hint for #16: Start with a basis $\{u_1, \ldots, u_n\}$ for N(T) (where n = nullity(T)), and extend this to a basis $\{u_1, \ldots, u_n, v_1, \ldots, v_r\}$ for V (where r = rank(T)). Show that $\{T(v_1), \ldots, T(v_r)\}$ is linearly independent, and extend this to a basis for W. Be careful to order the two bases appropriately in order to make the matrix diagonal.