Chapter 2

Language and Proofs

Understanding mathematical reasoning requires familiarity with the
precise meaning of words like “every”, “some”, “not”, “and”, “or”, etc.; these
arise often in analyzing mathematical problems. Relevant aspects of lan-
guage include word order, quantifiers, logical statements, and logical sym-
bols. With these, we can discuss elementary techniques of proof.

TWO THEOREMS ABOUT EQUATIONS

We begin with two problems that illustrate both the need for careful
use of language and the variety of techniques in proofs.

2.1. Definition. A linear equation in two variables x and y is an equa-
tion ax + by = r, where the coefficients a, b and the constant r are
real numbers. A line in R? is the set of pairs (x, y) satisfying a linear
equation whose coefficients ¢ and b are not both 0.

(2,2)

—x4+2y=2

2x—y=2

Geometric intuition suggests three possibilities for a pair of linear
equations in two variables. If each equation describes a line, then the
lines may intersect in one point, may be parallel, or may be identical.
The equations then have one, none, or infinitely many common solutions,
respectively. We can analyze this without relying on geometric intuition,
because we have defined “line” using only arithmetic of real numbers.
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2.2. Theorem. Let ax + by = r and cx +dy = s be linear.equatlons in
two variables x and y. If ad — bc # 0, then thereis a unique cornmon
solution. If ad — bc = 0, then there is no common solution or there
are infinitely many, depending on the values of r and s.

Proof: If all four coefficients are zero, then there ig no solution 1:mless
r = s = 0, in which case all pairs (x,y) are solutions. Ot]?ervvlse, at
least one coefficient is nonzero. By interchanging the equations and/or
interchanging the roles of x and y, we may assume thatd # 0. We can now
solve the second equation for y, obtaining y = (s — c.x) / d: B'y substltutu}g
this expression for y into the first equation and simplifying, we obtain
(a — %)x + & = r. Multiplying by d yields (ad — bc)x + bs = rd. .
When ad — bc # 0, we may divide by ad — bc t(? obtain X = Gdper
Substituting this into the equation for y yields the unique solution
' rd —bs as— rC)
(. y) = (ad “be’ ad —be)
When ad — bc = 0, the equation for x becomes bs = rd. If" bs #rd, tl}en
there is no solution. If bs = rd, then for each x we obtan} the solution
(x,y) = (x, (s — cx)/d); here there are infinitely many solutions. |

When ad — bc # 0, the equations define lines with one common point.
When ad — bc = 0 and both equations describg lines, the:re may bg no
solution (parallel lines) or infinitely many SOl}lthIlS (th‘e lines co11}01de).
An equation does not describe a line if both its coefﬁqents are 0; here
there is no solution unless the equation is Ox + 0y = Q, 1n.Wh1ch case the
common solutions are the solutions to the other equation in the pair.

In the proof, avoiding division by 0 leads.us to cons1f1er cases. No
single solution formula holds for all pairs of linear e:quatmns; the form
of the solution changes when ad — bc = 0. The solution statement itself

i ful attention to language.

Tequgsi (1:1?:;: argument uses thf?undamental method of proof by contra-
diction; we suppose that the desired conclusion ig false ?nd then derive a
contradiction from this hypothesis. The method 1s.part1cularly useful foxf"
proving statements of nonexistence. Here we c9mb1ne the method of pro:ll
by contradiction with an understanding of rational numbers and sever
elementary observations about odd and even numbers.

2.3. Theorem. If a, b, ¢ are odd integers, then ax? + bx + ¢ = 0 has no
solution in the set of rational numbers. .

Proof: Suppose that there is a rational solution x. We‘zvrite this as p/ q
for integers p, g. We may assume that p/q expresses x "1n lowest te;rms ,
meaning that p and ¢ have no common integer factor large‘r thffm 1. gm
ax? + bx + ¢ = 0 we obtain ap? + bpq + cq® = 0 after mult1p1y1ng2 by ¢2.
We obtain a contradiction by showing that ap? + bpg + cq f:annot
equal 0. We do this by proving the stronger statement that it is odd.
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Because we expressed x as a rational number in lowest terms, p and ¢
cannot both be even. If both are odd, then the three terms in the sum
are all odd, since the product of odd numbers is odd. Since the sum of
three odd numbers is odd, we have the desired contradiction in this case.
If p is odd and g is even (or vice versa), then we have the sum of two
even numbers and an odd number, which again is odd. In each case, the
assumption of a rational solution leads to a contradiction. |

QUANTIFIERS AND LOGICAL STATEMENTS

Understanding a subject and writing clearly about it go together. We
next discuss the use of well-chosen words and symbols to express math-
ematical ideas precisely. The language of mathematical statements will
become familiar as we use it in later chapters to solve problems.

Using proof by contradiction requires understanding what it means
for a statement to be false. Consider the sentence “Every classroom has a
chair that is not broken”. Without using words of negation, can we write
a sentence with the opposite meaning? This will be easy once we learn
how logical operations are expressed in English.

2.4. Example. Negation of simple sentences. What is the negation of
“All students are male™ Some would say, incorrectly, “All students are
not male”. The correct negation is “At least one student is not male”.
Similarly, the negation of “all integers are odd” is not “all integers are not
o0dd”; the correct negation is “at least one integer is even”. |

Common English permits ambiguities; the listener can obtain the
intended meaning from context. Mathematics must avoid ambiguities.

2.5. Example. Word order and context. Consider the sentence “There is
areal number y such that x = y® for every real number x”. This seems to
say that some number y is the cube root of all numbers, which is false. To
say that every number has a cube root, we write “For every real number
x, there is a real number y such that x = y3”.

In both English and mathematics, meaning depends on word order.
Compare “Mary made Jane eat the food”, “Eat, Mary; Jane made the
food”, and “Eat the food Mary Jane made”. Meaning can also depend on
context, as in “The bartender served two aces”. This may have different
meanings, depending on whether we are watching tennis or relaxing in
a bar on an airbase. Mathematics can present similar difficulties; words
such as “square” and “cycle” have several mathematical meanings. [

The fundamental issue in mathematics is whether mathematical
statements are true or false. Before discussing proofs, we must agree
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on what to accept as mathematical statements. We first require correct
grammar for both words and mathematical symbols. Grammar eliminates
both “food Mary Jane” and “1+ =".

The sentences “1 + 1 = 3” and “1 + 1 < 3” are mathematical state-
ments, even though the first is false. Similarly, “(1+1)*? is 96 more than
4000” is acceptable. We accept grammtically correct assertions where
performing the indicated computations determines truth or falsity. This
computational criterion extends to more complicated operations and to
objects defined using sets and numbers.

We also consider general assertions about many numbers or objects,
such as “the square of each odd integer is one more than a multiple of 8”.
This statement is closely related to the list of statements “12=1+0-8,
“2 — 14+1.8,“% =1+3-8" ---. We can describe many related
mathematical statements by introducing a variable. If P(x) is a math-
ematical statement when the variable x takes a specific value in a set S,
then we accept as mathematical statements the sentences below. They
have different meanings when S has more than one element.

“For all x in S, the assertion P(x) is true.”
“There exists an x in § such that the assertion P(x) is true.”

2.6. Example. The sentence “x? — 1 = 0” by itself is not a mathematical
statement, but it becomes one when we specify a value for x. Consider

“Forallx € {1, -1}, x2—1=0"
“Forall x € {1,0}, x2—1=0." ,
“There exists x € {1, 0} such that x> —1=10."

All three are mathematical statements. The first is true; there are two
values of x to check, and each satisfies the conclusion. The second state-
ment is false, and the third is true. [ |

If it is not possible to assign “True” or “False” to an assertion, then it
is not a mathematical statement. Consider the sentence “This statement
is false”; call it P. If the words “this statement” in P refer to another-
sentence O, then P has a truth value. If “this sentence” refers to P itself,
then P must be false if it is true, and true if it is false! In this case, P has
no truth value and is not a mathematical statement.

2.7. Definition. We use uppercase “P, 0, R ---” to denote mathematical
statements. The truth or falsity of a statement is its truth value.
Negating a statement reverses its truth value. We use — to indicate
negation, so “—P” means “not P”. If P is false, then —P is true.

In the statement “For all x in S, P(x) is true”, the variable x is
universally quantified. We write this as (Vx € S) P(x) and say that
V is a universal quantifier. In “There exists an x in § such that

Quantifiers and Logical Statements 609

P(x) is true”, the variable x is existentially quantified. We write
this as (3x € S)P(x) and say that 3 is an existential quantifier.
The set of allowed values for a variable is its universe. |

2.8. Remark. English words that express quantification. Typically, “ev-
gry” and “for all” represent universal quantifiers, while “some” and “;:here
is represent existential quantifiers. We can also express universal quan-
tlﬁcat{on by referring to an arbitrary element of the universe, as in “Let x
be an integer,” or “A student failing the exam will fail the course”. Below
we list common indicators of quantification.

Universal (V) (helpers) Existential (3) (helpers)
for [all], for every for some

if then there exists such that
whenever, for, given at least one for which
every, any satisfies some satisfies
a, arbitrary must, is has a such that

let be

The “helgersi may be absent. Consider “The square of a real number is
nonnegative.” This means x? > 0 for every x € R; it is not a statement
about one real number and cannot be verified by an example. n

In conversation, a quantifier may appear after the expression i -
!:iﬁes. “I drink whenever I eat” differs ﬁg)lin “Whenever Ixé)at, I g)rrilrllif’l‘;i?y
in What is emphasized. Similarly, we easily understand “The AGM In-
equality states that (a + b)/2 > /ab for every pair a, b of positive real
numb(?rs” and “The value of x? — 1 is 0 for some x between 0 and 2”. These
quantifiers appear at the end for smoother reading. Error is unlikely in
sentences with only one quantifier, but the order of quantification matters
when there is more than one.

2:9. Bemark. Order of quantifiers. We adopt a convention to avoid am-
b1gu;ty. Consider “If n is even, then 7 is the sum of two odd numbers”.
Letting E and O be the sets of even and odd integers, and letting P(n, x, y)
be “n = x + y”, the sentence becomes o

(Vn e E)Y(@x,y € O)P(n, x, y).

In this format, the value chosen for a quantified variable remains
unchanged for later expressions but can be chosen in terms of variables
quantified earlier. When we reach (Ix,y € 0)P(n, x, y), we treat “n” as
a constant, already chosen. We use the same convention when writing
mathematics in English: quantifiers appear in order at the beginning of
the sentence so that the value of each variable is chosen independently of
subsequently quantified variables. n




610 Chapter 2: Language and Proofs

2.10. Example. Parameters and implicit quantifiers. Consider the
exercise “Let a and b be real numbers. Prove that the equation
ax? + bx = a has a real solution” Using quantifiers, this becomes
(Va, b € R)(3x € R)(ax? + bx = a). In solving the problem, we treat a and
b as parameters. Although these are variables and we must find a solu-
tion for each choice of these variables, the scope of the quantification is
that we treat a and b as constants when we study x.

We find a suitable x in terms of ¢ and b. Whena = 0, x =0
works for all . When a # 0, the quadratic formula tells us that x =
(=b++/b? + 4a2) /2a works. This is real (since positive real numbers have
square roots), and it satisfies the equation.

The negative square root also yields a solution. We do not need it,
because the statement asked only for the existence of a solution. |

2.11. Example. Order of quantifiers. Compare the statements below.
(Vx € A)@y € B)P(x,y) @y € B)(Vx € A)P(x,y)

Regardless of the meanings of A, B, P, the second statement always im-
plies the first. The first statement is true if for each x we can pick a y
that “works”. For the second statement to be true, there must be a single
y that will always work, no matter which x is chosen.

Simple examples clarify the distinction. Let A be the set of children,
let B be the set of parents, and let P(x, y) be “y is the parent of x”. The
first statement is true, but the second statement is too strong and is not
true. Another example occurred in Example 2.5, with A = B =R, and
with P(x, y) being “x = y3”. Consider also the statement in Remark 2.9.

Sometimes both statements are true. For example, let A = B =R,
and let P(x,y) be “xy = 0”. [ |

2.12. Remark. Negation of quantified statements. After placing a state-
ment involving quantifiers in the conventional order, negating the state-
ment is easy. Ifit is false that P(x) is true for every value of x, then there
must be some value of x such that P(x) is false, and vice versa. Similarly,
if it is false that P(x) is true for some value of x, then P(x) is false for
every value of x. Thus in notation,

—[(¥x) P(x)] has the same meaning as (3x) (=P (x)).
—[(3x) P(x)] has the same meaning as (Vx)(—P(x)).

Note that when using logical symbols, we may add matched parentheses
or brackets to clarify grouping. |

Understanding negation of quantified statements by passing the
negation through the quantifier and changing the type of quantifier is
imperative for understanding the mathematics in this book.
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When negating quantified statements with specified universes, one
must not change the }miverse of potential values. Also, when negating
(Vx) P(x) or (3x) P(x), it may be that P(x) itselfis a quantified statement.

2.13. Example. Negation involving universes. The negation of “Every
Good Boy Does Fine” (a mnemonic for reading music) is “some good boy
doe.s not do fine”; it says nothing about bad boys. The negation of “Every
chair in this room is broken” is “Some chair in this room is not broken”; it
says nothing about chairs outside this room. ’
Similarly, the negation of the statement (Va € N)(@x € A)(nx < 1) is
(3n € N)(Vx € A)(nx > 1). The negated sentence means that the set A
has a lower bound that is the reciprocal of an integer. It does not mention
values of n outside N or values of x outside A. n

2.14. Example. Let us rephrase “It is false that every classroom has a
chair that is not broken”. The quantifiers make it improper to cancel
the “double negative”; the sentence “every classroom has a chair that is
broken” has a different meaning.
' Tbe original statement has a universal quantifier (“every”) and an ex-
istential quantifier (“has a”). By successively negating these quantifiers
we obtain first “There is a classroom that has no chair that is not broken’:
and then “There is a classroom in which every chair is broken”.

We can also express this manipulation symbolically. Let R denote the
set of classrooms. Given a room r, let C(r) denote the set of chairs in r.
For a chair ¢, let B(c) be the statement that ¢ is broken. The successive
statements (all having the same meaning) now become

—[(¥r € RB)(Ec € C(r))(=B(c))]

@r € RB)(=[Ac € C(r))(=B())])
(3r € R)(Yec € C(r)B(c). n

2.15. Exa;nple. In Definition 1.31, we defined bounded function. We
negate this to Obtfiin “f is unbounded if for every real number M, some
real number x satisfies | f(x)| > M.” In notation, the two conditions are

bounded : (IM € R)(Vx € R)(|f(x)| < M)
unbounded : (VM € R)(3x € R)(|f(x)| > M).

Thus unboundedness implies (Vn € N)(3x, € R)(|f (x,)| > n). n

COMPOUND STATEMENTS

The negation of a logical statement is another logical statement. We
can also use the connectives “and”, “or”, “if and only if”, and “implies” to



612 Chapter 2: Language and Proofs
build compound statements. For each choice of truth values for the com-
ponent statements, the compound statement has a specified truth value;
this constitutes the defininition of the connective.

2.16. Definition. Logical connectives. In the following table, we define
the operations named in the first column by the truth values specified
in the last column.

Name | Symbol Meaning Condition for truth
Negation -P not P P false

Conjunction PAQ PandQ both true

Disjunction PvQ PorQ at least one true
Biconditional P& Q Pif&onlyif Q same truth value
Conditional P = Q Pimplies Q QO true whenever P true

2.17. Remark. Disjunctions. The meaning of “or” in mathematics differs
from its common usage in English. In response to “Are you going home or
not?”, the answer “Yes” causes annoyance despite being logically correct;
in common English the word “or” means “one or the other but not both”. In
mathematics, this usage is exclusive-or; we reserve or for disjunction.
Disjunction is more common in mathematics than exclusive-or be-
cause and and or act as quantifiers. A conjunction is true if all of its
component statements are true; thus and is a universal quantifier. A dis-
junction is true if a¢ least one of its component statements is true; thus or
is an existential quantifier. | |

In the conditional statement P = Q, we call P the hypothesis and
0 the conclusion. The statement Q = P is the converse of P = Q.

2.18. Remark. Conditionals. Conditional statements are the only typein
Definition 2.16 whose meaning changes when P and Q are interchanged.
There is no general relationship between the truth values of P = Q and
Q = P. Consider three statements about a real number x: P is “x > 07,
Qis“x? > 0", and Ris “x +1 > 1”. Here P = Q is true but Q = P is
false. On the other hand, both P = R and R = P are true.

Note that here x is a variable. We have dropped x from the notation
for the statements because the context is clear. Technically, when we
write P = Q here, we mean (Vx € R)(P(x) = Q(x)).

A conditional statement is false when and only when the hypothesis
is true and the conclusion is false. When the hypothesis is false, the con-
ditional statement will be true regardless of what the conclusion says and
whether it is true. For example, if S is “This book was published in the
year 737, then S = P is true, no matter what P is.

It may be helpful to read the conditional as “if-then” instead of “im-
plies”. Below we list several ways to say P = Q in English. |

Compound Statements 613

If P (is true), then O (is true). P is true only if Q is true.
(0] is true ?vhel}ever P is true. P is a sufficient condition for Q.
Q is true if P is true. Q is a necessary condition for P. -

Whgn a logical statement is built from elementary statements using
connectives, we treat the elementary statements as variables in the uni-
verse {True, False}. Given their values, Definition 2.16 yields the truth
value of the full expression. A listing of these computations for each choice
of truth values of the elementary statements is a truth table.

2.19. Exa;nple. We give one example of a truth table to emphasize again
the meaning owj" conditional statements. We want to know whether the
expression R given by (P = Q) < ((—P) v Q) is always true, no matter
what P and Q represent. Such an expression is called a tautology. Each
of P and Q may be true or false; we consider all cases. | |

9 | P=0 | =P | =P)vQ |
T

ANy

R
T
T
T
T

HHHe
i-i'-i"-'d.'-B
=l BN
HH

Two logical expressions X, ¥ are logically equivalent if they have
the same truth value for each assignment of truth values to the variables.
Equivalences allow us to rephrase statements in more convenient ways.

2.20. Remark. Elementary logical equivalences. We may substitute P for
—(—P) whenever we wish, and vice versa. Similarly, P v Q is equivalent
to OV P,and P A Q is equivalent to O A P. Whenever P and Q are state-
ments, we may substitute the expression in the right column below for the
corresponding expression in the left column (or vice versa); they always -
havg the same truth value. We could verify these equivalences by manip-
ulating symbols in truth tables, but it is more productive to understand
them using the English meanings of the connectives.

a)  —(PAQ) (=P) v (=0)

b)  —=(PvQ) (=P) A (=Q)
0 (P30 PAQ)

d PsQO P=>OA(@Q=P)
e PvQ (=P)= 0
H P=Q (—=0) = (=P)

Eguivalences (a) and (b) present our understanding of “and” and “or”
as universal and existential quantifiers, respectively, over their compo-
nent statements (see Remark 2.17). These two equivalences are called de
Morgan’s laws in honor of the logician Augustus de Morgan (1806-1871).
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Equivalences (c) and (d) restate the definitions of the conditional and
biconditional. A conditional statement is false precisely when the hypoth-
esis is true and the conclusion is false. The biconditional is true precisely
when the conditional and its converse are both true.

Each side of (e) is false precisely when P fails and Q fails. Each side
of (f) fails precisely when P is true and Q is false. |

2.21. Remark. Logical connectives and membership in sets. Let P(x) and
0 (x) be statements about an element x from a universe U. Often we write
a conditional statement (Vx € U)(P(x) = Q(x)) as P(x) = Q(x) or simply
P = Q with an implicit universal quantifier.

The hypothesis P(x) can be interpreted as a universal quantifier in
another way. With A = {x € U : P(x)istrue}, the statement P(x) = Q(x)
can be written as (Vx € A) Q(x). ;

Another interpretation of P(x) = Q(x) uses set inclusion. With B =
{x e U: Q(x)istrue}, the conditional statement has the same meaning as
the statement A € B. The converse statement Q(x) = P(x) is equivalent
to B C A; thus the biconditional P < Q is equivalent to A = B.

We can alternatively interpret operations with sets using logical con-
nectives and membership statements. When P is the statement of mem-
bership in A and Q is the statement of membership in B, the statement
A — B has the same meaning as P < Q. Below we list the correspondence
for other set operations. ]

x €A & not (x € A) & —(x € A)
xcAUB & (xeAor(xeB) <& (xeAV(xeB)
xcANB & (xeAand(xeB) & @EeAAXEB)

ACB <~ (Vx € A)(x € B) & (xeA)=xeB)

The understanding of union and intersection in terms of quantifiers
allows us to extend the definitions of union and intersection to apply to
more than two sets. The intersection of a collection of sets consists of all
elements that belong to all of the sets. The union of a collection of sets
consists of all elements that belong to at least one of the sets.

2.99. Remark. The correspondence between P <& Q and A = B in Re-
mark 2.21 highlights an important phenomenon. Expressions that repre-
sent “being the same” can be interpreted as two instances of comparison.
When x and y are numbers, the statement x =y includes two pieces of
information, x < y and y < x. When A and B are sets, the equality
A = B includes two pieces of information, A C B and B < A. For logical
statements P and Q, similarly, P < Q means both P = Q and Q = P.
In some contexts, we prove equality by proving both comparisons. In
other contexts, we can prove equality directly, by using manipulations
that preserve the value, set, or meaning while transforming the first de-
scription into the second. |

Elementary Proof Techniques 615

2.23. Example. de Morgan’s laws for sets. In the language of sets, de
Morgan’s laws (Remark 2.20a,b) become (1) (A N B)° = A° U B¢ :and
(2) (AU B)* = A° N B°. We verify (1) by translation into a logical eq’uiva—
lence about membership, leaving (2) to Exercise 50. Given an element x,

let P be the property x € A, and let Q be the pro
s ert .
2.20-2.21 imply that : property € 5. Remarks

x€(ANB)Y & —(PAQ) & (P)V(=0) & (x¢A)V(x¢B)

Alternatively, a Venn diagram makes the reasoning clear. | |

Although relationships between sets correspond to logical statements
about membership, the two expressions tell the same story in different
languages. One must not mix them. For example, A N B is a set, not a
statemex}t; it has no truth value. The notation “(A N B)¢ < A° U l;"” has
no meaning, but (A N B)¢ = A° U B¢ is true whenever A and B are sets.

ELEMENTARY PROOF TECHNIQUES

The bl.J.SiIleSS of mathematics is deriving consequences from hypothe-
sgs—t}}a}t is, proving conditional statements. Although we prove some
b1c0nd1t10.na1s by chains of equivalences, as in Example 2.23, usually we
prove a biconditional by proving a conditional and its converse, as sug-
gested by Remark 2.20d. Also, we can prove the universally ql’lantiﬁed
statement “(Vx € A) Q(x)” by proving the conditional statement “If x € A
then Q(x)”; the two have the same meaning. (For example, consider the;
two sentences when A is the set of even numbers and Q(x) ié “x2 is even”.)

2.24. Remark. Elementary methods of proving P = (. The direct
method of proving P = Q is to assume that P is true and then to ap-
ply mathematical reasoning to deduce that Q is true. When P is “x € A”
and Q is “Q(x)”, the direct method considers an arbitrary x € A and
dec},uces O(x). This must not be confused with the invalid “proof by exam-
ple”. The proof must apply to every member of A as a possible instance of
x, because “(x € A) = Q(x)” is a universally quantified statement.
. Remark 2.20f suggests another method. The contrapositive of P =
0 is .—-Q = —P. The equivalence between a conditional and its contra-
positive allows us to prove P = Q by proving —Q = —P. This is the
contrapositive method. '
Remark 2.20c suggests another method. Negating both sides (P =
0) & =[P A (—0Q)]. Hence we can prove P = Q by proving that P and
-0 capnot both be true. We do this by obtaining a contradiction after
assuming both P and —~Q. This is the method of contradiction or indirect
proof. We summarize these methods below: k
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Direct Proof: Assume P, follow logical deductions, conclude Q.

Contrapositive: Assume —0, follow deductions, conclude —P.

Method of Contradiction: Assume P and —(Q, follow deductions,
obtain a contradiction. |

We begin with easy examples of the direct method, including state-
ments used in proving Theorem 2.3.

2.25. Example. If integers x and y are both odd, then x + y is even. Sup-
pose that x and y are odd. By the definition of “odd”, there exist integers
k, I such that x = 2k + 1 and y = 2/ + 1. By the properties of addition and
the distributive law, x +y = 2k + 21 + 2 = 2(k 4+ [ + 1). This is twice an
integer, so x + y is even.

The converse is false. When x, y are integers, it is possible that x +y
is even but x, y are not both odd. Compare this with the next example. B

2.26. Example. An integer is even if and only if it is the sum of two odd
integers. First we clarify what must be proved. Formally, the statement
is (Vx € Z)[(Gk € Z)(x = 2k) < (Ty,z € O)(x =y + 2)], where O is the set
of odd numbers. If x = 2k is even, then x = (2k — 1) + 1, which expresses
x as the sum of two odd integers. Conversely, let y and z be odd. By
the definition of “odd”, there exist integers k, [ such that y = 2k + 1 and
z=214+1.Theny+z=2k+1+2/+1=2(k+1+1), whichiseven. R

2.27. Example. If x and y are odd, then xy is odd. If x and y are odd,
then there are integers k, [ such that x = 2k + 1 and y = 2/ + 1. Now
xy = 4kl + 2k + 21 + 1 = 2(2kl + k + 1) + 1. Since this is one more than
twice an integer, xy also is odd. |

A special case of Example 2.27 is “x odd = x2 odd”. Here the con-
clusion is “There is an integer m such that x? = 2m + 1”. We can prove
an existential conclusion by providing an example: in this case a value
m (constructed in terms of x) such that the statement is true. The direct
method often succeeds when the conclusion is existentially quantified.

2.28. Example. An integer is even if and only if its square is even. If n is
even, then we can write n = 2k, where k is an integer. Now n? = 4k? =
2(2k?), proving that “n even” implies “n? even” by the direct method. For
the converse, we want to prove “n? even implies n even”, but this we have
already done! Since integers are even or odd, the desired implication is
the contrapositive of “» odd implies n? odd”. |

2.29. Remark. Converse versus contrapositive. Proving the biconditional
statement P < Q requires proving one statement from each column be-
low. Each statement is the converse of the other in its row. Each statement
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is the cor.ltrapositive of the other in its column. Every conditional is equiv-
alent to its contrapositive, so proving the two statements in one column
would be proving the same fact twice. ’

P=0 O0=P

For example, consider “the product of two nonzero real numbers is
positive if and only if they have the same sign”. The axioms for real num-
bers imply that if x and y have the same sign, then xy is positive. We
might then argue, “Now suppose that xy is negative. This implies that x
and y have opposite signs.” This accomplishes nothing; we have proved
the contrapositive of the first conditional, not its converse. Instead, we
must prove “If xy is positive, then x and y have the same sign” or “If x and
y have opposite signs, then xy is negative”.

We can interpret the first line of the display above as the direct
method and the second line as the contrapositive method. To include
the method of contradiction, we could add the line below:

“(PA=Q)  —(QA—P). n

The next example uses the contrapositive and illustrates that care
must be taken to avoid unjustified assumptions.

2.30. Example. Consider the statement “If f(x) = mx +b and x # vy, then
fx) # f (¥).” The direct method considers x < y and x > y separately
and obtains f(x) < f(y) or f(x) > f(y). This unsatisfying analysis by
cases results from “not equals” being a messier condition than “equals”.
We can use the contrapositive to retain the language of equalities and
reduce analysis by cases. When f(x) = f(y), we obtain mx + b = my +b
and then mx = my. If m # 0, then we obtain x = y.
. If m = 0, then we cannot divide by m, and actually the statement
is false. The difficulty is that m is a variable in the statement we want
to prove, and we cannot determine its truth without quantifying m. The
statement is true if and only if m 5 0. |

fA universally quantified statement like “(Vx € U)[P (x) = (x)]” can
be disproved by finding an element x in U such that P(x) is true and Q(x)
is false. Such an element x is a counterexample. In Example 2.30,
m = 0 is a counterexample to a claim that the implication holds for all .
We continue with another example of proof by contrapositive.

2.31. Example. If a is less than or equal to every real number greater than
b, then a < b. The direct method goes nowhere, but when we say “suppose
not”, the light begins to dawn. If a > b, then a > %2 > b. Thus q is not
less than or equal to every number greater than b.” We have proved the
contrapositive of the desired statement. ]
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When the hypothesis of P = Q is universally quantiﬁedZ %ts negat
tion is existentially quantified. This can make the contrap9s1't1ve easy;
given —Q, we need only construct a counterexample to P. This is the sze-
nario in Example 2.31; having assumed a > b, we 'need only constr:m a
counterexample to “a is less than every real x that is greaFer than b”.

The method of contradiction proves P = Q by proving that P and
—Q cannot both hold, thereby proving that P = Q cannot be false.

2.32. Example. Among the numbers yi, ..., Yn,. some.nl;r}zber is as large
as the average. Let Y = y1 + - - + y,. The average z 1s Y'/n. o

An indirect proof of the claim begins, “suppose that tl.le concl'u‘swn is
false”. Thus y; < z for all y; in the list. If we sum thesg meguahtles, we
obtain Y < nz, but this contradicts the definition of z, which yields Y = nz.
Hence the assumption that each element is too small must be false.

A direct proof constructs the desired number. Let y* be the largest
number in the set. We prove that this candidate is as 1?rge as tlie average.
Since y; < y* for all i, we sum the inequalties to obtain ¥ < ny and theI:
divide by n to obtain z < y*.

le 2.32, we did not derive the negation of the hypothes.is;‘ we
obtanglxzn(;ﬁ'ferent contradiction. This is the met.;hod of contrad10t19n.
Like the contrapositive method, it begins by assuming —~Q when proving
P = Q. We need not decide in advance Whe.thgr to deduce —P or to use
both P and —0 to obtain some other contradiction.

2.33. Example. There is no largest real number. If the.re is a largest rgal
number z, then for all x € R, we have z > x. When x is the rfaal num elr
z + 1, this yields z > z + 1. Subtracting z from both sides yields 0 > 1.
This is a contradiction, and thus there is no largest real number. n

The method of contradiction works well when the cpnclusion is a
statement of non-existence or impossibih'ty, because negating the con;lu—
sion provides an example to use, like p/q in the proof of fl‘h.eore‘l‘:fl aﬂ 01;
z in Example 2.33. In one sense the methqd of Fontradlctlon ('n]; ec
proof”) has more power than the contrap0s1t1v.e, since we §ta1:t with more
information (P and —Q), but in another sense it is less satisfying, because
we start with a situation that (we hope) cannot be true.

2.34. Remark. The consequences of false stat‘en'wnts. Recall that a con.dl-
tional statement is false only if the hypothesis is true and the c.:o'nclus;‘oln
is false. When the hypothesis cannot be true,.we say the con.dltlonal ol-
lows vacuously. Similarly, every statemen!: universally quantified ove‘I"E an
empty set is true; when there are no dogs in the class, the statement V;;
ery dog in the class has three heads” is true. In contrast, every statemen:
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existentially quantified over an empty set is false; when there are no dogs
in the class, the statement “Some dog in the class has four legs” is false!
Returning to the conditional, we have argued that P = Q is true
whenever P is false. This explains why a proof containing a single er-
ror in reasoning cannot be considered “nearly correct”; we can derive any
conclusion from a single false statement (see Exercise 44a). Bertrand Rus-
sell (1872-1970) once stated this in a public lecture and was challenged
to start with the assumption that 1 = 2 and prove that he was God. He
replied, “Consider the set {Russell, God}. If 1 = 2, then the two elements
of the set are one element, and therefore Russell = God.” n

Students sometimes wonder about the meanings of the words “the-

”

orem”, “lemma”, “corollary”, etc. The usage of these words is part of
mathematical convention, like the notation f: A — B for functions and
the designations N, Z, Q, R for the number systems. (By the way, Q stands
for “quotient” and Z stands for “Zahlen”, the German word for numbers.)

In Greek, lemma means “premise” and theorema means “thesis to be
proved”. Thus a theorem is a major result whose proof may require con-
siderable effort. A lemma is a lesser statement, usually proved in order
to help prove other statements. A proposition is something “proposed”
to be proved; typically this is a less important statement or requires less
effort than a theorem. The word corollary comes from Latin, as a modifi-
cation of a word meaning “gift”; a corollary follows easily from a theorem
or proposition, without much additional work.

Theorems, Propositions, Corollaries, and Lemmas may all be used to
prove other results. In this book, these embody the central mathematical
development, while Examples, Solutions, Applications, and Remarks are
particular uses of or commentary on the mathematics. These two streams
are interwoven but can be distinguished by the titles of the items. The
first stream comprises the mathematical results that students might want
to remember for later application, while the second illuminates the first
and provides additional examples of problem-solving.

HOW TO APPROACH PROBLEMS

In this chapter we have discussed the language of mathematics and
elementary techniques of proof. We review some of these issues and dis-
cuss several additional ones that arise when solving problems.

Methods of proof.

The first step is making sure that one understands exactly what the
problem is asking. Definitions may provide a road map for what needs
to be verified. Sometimes, the desired statement follows from a theorem
already proved, and then one needs to verify that its hypotheses hold.
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Most problems request proofs of conditional statements. These state
that given circumstances produce certain results. Such sentences are of-
ten written using “if” and “then”, but implication can be expressed with
universal quantifiers and in many other ways (see Remark 2.8, Remark
2.18, and Exercise 10). Examples cannot provide proofs of such state-
ments. Implications need to be proved in Exercises 34—42.

The elementary techniques for proving implications are direct proof,
proof by contradiction, and proof of the contrapositive. The latter two
methods are called “indirect” proofs. When seeking a direct proof, one
can work from both ends. List statements that follow from the hypoth-
esis. List statements that suffice to imply the conclusion. When some
statement appears in both lists, the problem is solved.

When unsuccesful with the direct method, consider what would hap-
pen if the conclusion were false. If this leads to impossibility of some
consequence of the hypothesis (or of other known facts), then again the
problem is solved, using the method of contradiction. If the negation of
the hypothesis is obtained, then the contrapositive has been proved.

Students often wonder when to use indirect proof. The form of the
conclusion can provide a clue; when its negation provides something use-
ful to work with, indirect proof may be appropriate. This can happen with
obvious-sounding statements like Example 2.31. Often indirect proof is
appropriate for statements of nonexistence, as in Theorem 2.3, Example
2.33, and Exercise 40. The negation of the conclusion provides an exam-
ple, an object with specified properties. (In contrast, one can often prove
that something does exist by constructing an example and proving that it
has the desired properties; this is the direct method.)

Be aware of hypotheses and quantifiers.

An implication is true when the truth of its hypotheses guarantees
the truth of its conclusion. The sentence “if we add two even integers,
then the result is even” is true and easily proved, but the sentence “if we
add two integers, then the result is even” is false. The second sentence is
obviously missing a hypothesis (that the integers are even) that is needed
to make the conclusion true.

In more subtle statements, the same principles apply. Carefully dis-
tinguish the hypotheses and the desired conclusions. Remember that hy-
potheses can be expressed as universal quantifiers: “for all x € A” means
the same as “if x € A”. In writing a solution, check where the hypotheses
are used. If a hypothesis is not used, then either it is unnecessary (and
the proof yields a stronger statement) or an error has been made.

Solving a problem may require determining whether a statement with
many quantified variables is true or false. One must be able to identify
the universal and existential quantifiers, put them in proper order (see
items 2.9-2.11), and negate a quantified statement (see items 2.12-2.15).
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More about cases.

A universally quantified statement must be proved for all instances
of the variables. This includes statements phrased in the singular, like
“The square of an even number is even.” Writing (—4)2 =16 =2 8,does
not prove this, because here “an” means each individual. The sentence
means “If x is an even number, then x2 is an even number.” Similarly, “Let
xbea Qositive real number” and “For x > 0” are universal quantiﬁca‘;ionS'
the claim to be proved must be proved for every positive real number x ’

Analysis by cases can arise when an argument is valid for some i;1-
stances but pot for all. Consider showing that x(x + 1) /2 is an integer
whenever x is an integer. When x is even, we write x = 2k and compute
2k(2k+1)/2 = k(2k+1), where k is an integer. For odd x, we need a differ-
ent computation. We can avoid cases by observing that one of {x,x+1}is
even and is divisible by 2. Combining cases via a unified argum;ant leads
to a concise solution that captures the essence of the proof.

When several cases are treated in the same way, it may be possible
to reduce to a single case by using symmetry. We did this in proving The-
orem 2.2. Having disposed of the case where all four coefficients are zero
gWhlch uses a different argument), we may assume that some coefficient
1s nonzero. We would use the same arguments no matter which it is. By
writing the equations in the opposite order and/or switching the names
of the variables, we can arrange that the coefficient d is nonzero. We say
that symme‘wy allows us to reduce to the case where d is nonzero.

. Similarly, when proving a statement about distinct real numbers x, y
it may be helpful to assume by symmetry that x > y. The same argum(;nt’:
with the roles of x and y switched would apply when y > x, and we use
the symmetry in the problem to avoid writing out the argum,ent twice.

. On the other hand, sometimes a problem becomes simpler when we
1ntr0duc§ an additional hypothesis. This leads to two cases: when the
as§umpt10n is true and when it is false. Consider Exercise 33. The first
child knows that her hat is black or red. She considers these two cases to
sgek a contradiction that will eliminate one. Perhaps further assumptions
Wll]: be needed, leading to subcases. Exercise 32 is similar; we consider
various assumptions. Assuming that Person A tells the truth yields an
1mmed1.ate contradiction; knowing that A lies leads to further conclusions
’.I‘h1s method is known informally as “process of elimination”. If a{
particular assumption seems to lead nowhere, try another! Remember
that eventually all possibilities must be considered. For example, when
the roles of variables x and y are not interchangeable in a proble’m we
cannot use symmetry to reduce to x < ¥, but considering the cases x ,< y
x =y, and x > y separately might lead to different arguments that Workj

Finally, beware of overlooking cases that result from introducing un-
Wanted' hypotl?eses. ‘In particular, be aware of the conditions under which
symbolic manipulations are valid. Since we cannot divide by zero, the
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equation y = mx can be solved for x only when m # 0. For all real y and
all nonzero real m, there is a unique x with y = mx. The case m = 0 has
not been considered and must be treated in some other way.

Taking square roots also requires care. For example, Exercise 1.19
has no solution for some choices of the perimeter p and area a, because
the algebraic solution involves a square root. Square roots exists only for
nonnegative numbers; this constrains the values p and a.

Equations and algebraic manipulations. '
Consider the equation x2—10x+5 = —20. Manipulating the equation
yields (x — 5)2 = 0, which implies x = 5. This can be interpreted. as the
conditional statement “If the equation holds, then x = 5”. Checking the
answer shows the converse assertion “If x = 5, then the equation holds”.
Together, the two steps yield the statement “The set of solutions to the
equation x%2 — 10x + 5 = —20 is {5}”. .
Consider also the equation x2 = 5x. Dividing both sides by x yields
x = 5. Checking 5 in the equation yields “if x = 5, then the equation
holds”. The statement “If the equation holds, then x = 5” is false. The
correct assertion is “If the equation holds, then x = 0 or x = 5”. The
problem is that the division was valid only under the hypothesis that
x # 0. The solution in the remaining case was lost. .
Algebraic manipulations can also introduce extraneous solutlon’s.
Consider the equation x = 4. If we next write x> = 4x, then we obtain
x2 — 4x = 0, with solutions x = 4 and x = 0. Multiplying by x introduced
the extraneous solution x = 0; it changed the solution set. Substitut-
ing the results of invalid manipulations into the original equation may or
may not expose the error. ) ‘
Multiplying both sides of an equation in x by an expression f (x? 1}1’0}'0—
duces all the zeroes of f as solutions; some may be extraneogs. Dividing
by f(x) is invalid when f(x) can be zero; in this case solutions may be
lost. When manipulating an equation to seek equivalent statements, one
must check that the set of solutions never changes or analyze separately
the cases where it may change.

2.35. Example. The following argument alleges to prove that 2 = 1; it
must be wrong! What is the flaw? o \
Let x, y be real numbers, and suppose that x = y. This yields Xt =
xy, which implies x2 — y2 = xy — y2 by subtracting y? from both sides.
Factoring yields (x + y)(x — y) = y(x — y), and thus x + y = y. In the
special case x =y = 1, we obtain 2 = 1. |

Sets and membership. o . )
Various exercises in this chapter involve identities involving unions,
intersections, and differences of sets. These can be understood using Venn
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diagrams. Equality of expressions involving sets can be proved by show-
ing that an element belongs to the set given by one expression if and only
if it belongs to the set given by the other.

Reasoning about sets and subsets is parallel to reasoning about condi-
tional statements. The set-theoretic statement § C T can be interpreted
as “If x € §, then x € 7”. Thus the logical statement P < Q is parallel to
the set-theoretic equality S = T (see Remarks 2.21-2.29).

Identities involving operations on sets (Exercises 50-53) and equiva-
lences involving logical connectives and statements (Exercises 43-46) are
universally quantified, with variables representing sets or statements.
Thus the proof must be valid for all instances.

In several of the exercises, two sets of real numbers are specified by
numerical constraints, and the problem is to show that the two sets are
the same. One can prove that each set is contained in the other, or one can
manipulate the constraints in ways that do not change the set of solutions.
In either approach, words should be used to explain the arguments.

Communicating mathematics. )

Solutions to problems should be written using sentences that explain
the argument. Notation introduced to represent concepts in the discus-
sion should be clearly defined, and a symbol should not be used with
different meanings in a single discussion.

A convincing proof cannot depend on asking the reader to guess what
the writer intended. A well-written argument may begin with an overview
or with an indication of the method of proof. Such an indication is particu-
larly helpful when using the contrapositive or the method of contradiction.

When the writer gives no explanation of the method of proof and
merely lists some formulas, the reader can only assume that a direct
proof is being given, with each line derived from the previous line. This
gets students into trouble when they reduce a desired statement to a
known statement. In attempting to prove the AGM Inequality for all
nonnegative real numbers x, y, some students will write

VXY < (x+)/2
xy < (x +)%/4
dxy < x? + 2xy + y?
0<x?— 2xy + y?
0<(x-y)? whichis true.
Here the student has derived a true statement from the desired state-
ment; this does not prove the desired statement. Within the set of pairs of
nonnegative real numbers, these manipulations of the inequality havenot

changed the set of solutions, so the steps are reversible to obtain the de-
sired inequality. Without words to indicate that this is what is intended,
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the proofis wrong. Note that the “proof” never usg_d thg hypothesis that
x,y > 0, and when x = y = —1 the claimed inequality fails. o
One must always distinguish a statement from its converse. Deriving
a true statement Q from the desired statement P does not prove P! Let
P be the assertion “x + 1 = x + 2”. When we multiply both sides of P by
0, we obtain the true statement “0 = 0”; call this Q. Although Q is true
for all x and we have proved P = Q, the statement P is true for no x.

EXERCISES

2.1. Find the flaw in Example 2.35.

2.2. Show that the following statement is false: “If @ and b are integers, then
there are integers m, n such that a = m +n and b = m —n.” What can be added to
the hypothesis of the statement to make it true?

2.3. Consider the following sentence: “If a is a real number, then ax = 0 unpl}es
x = 0”. Write this sentence using quantifiers, letting P(a, ,x) bg th.e as'sertlon
“ax = 0” and Q(x) be the assertion “x = 0”. Show that the implication is false,
and find a small change in the quantifiers to make it true.

2.4. Let A and B be sets of real numbers, let f be a function from R 1_;0 R, and let
P be the set of positive real numbers. Without using WOI‘(.iS of negation, for each
statement below write a sentence that expresses its negation.

a) For all x € A, thereis a b € B such that b > x.

b) There is an x € A such that, forallb € B, b > x.

¢)Forallx,yeR, f(x) = f)=>x=1y.

d) For all b € R, there is an x € R such that f(x) = b. o

e)Forallx,y e Randalle € P, thereisa § € P such that [x — y| < § implies

If) = fO)I <e. o
d f) For all ¢ € P, thereis a § € P such that, forall x,y € R, |x — y| < § implies

If&)— fl<e.
2.5. (=) Prove the following statements. ) )
a) For all real numbers y, b, m with m # 0, there is a unique real number x

such that y = mx + b.
b) For all real numbers y, m, there exist b, x € R such that y = mx + b.

.6. (—) Usage of language.
28 ;) ’)I‘}Ze ?fllov{jingienfence appeared on a restaurant menu: “Please 1}ote that
every alternative may not be available at this time”. De§cr1be the unintended
meaning. Rewrite the sentence to state the intended meaning clearly. )
b) Give an example of an English sentence that has different meanings de-
pending on inflection, pronunciation, or context.

2.7. (—) Describe how the notion of an alibi in a criminal trial fits into our dis-
cussion of conditional statements.

2.8. From outside mathematics, give an example of statements .A, B., C such that
A and B together imply C, but such that neither A nor B alone implies C.
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2.9. (—) The negation of the statement “No slow learners attend this school” is:T
a) All slow learners attend this school.
b) All slow learners do not attend this school.
¢) Some slow learners attend this school.
d) Some slow learners do not attend this school.
e) No slow learners attend this school.

2.10. Express each of the following statements as a conditional statement in “if-
then” form or as a universally quantified statement. Also write the negation
(without phrases like “it is false that”).

a) Every odd number is prime.

b) The sum of the angles of a triangle is 180 degrees.

¢) Passing the test requires solving all the problems.

d) Being first in line guarantees getting a good seat.

e) Lockers must be turned in by the last day of class.

f) Haste makes waste.

g) I get mad whenever you do that.

h) I won’t say that unless I mean it.

2.11. (!) Suppose I have a penny, a dime, and a dollar, and I say, “If you make a
true statement, I will give you one of the coins. If you make a false statement, I
will give you nothing.” What should you say to obtain the best coin?

2.12. A telephone bill y (in cents) is determined by y = mx + b, where x is the
number of calls during the month, and b is a constant monthly charge. Suppose
that the bill is $5.48 when 8 calls are made and is $5.72 when 12 calls are made.
Determine what the bill will be when 20 calls are made.

2.13. “In one year, my wife will be one-third as old as my house. In nine years, I
will be half as old as my house. I am ten years older than my wife. How old are
my house, my wife, and I?” Answer the question, stating the needed equations.

2.14. A circle is the set of ordered pairs (x, ¥) € R? such that x and y satisfy an
equation of the form x? + y? + ax + by = ¢, where ¢ > —(a2 + b%)/4. The circle is
specified by the parameters a, b, c.
a) Using this definition, give examples of two circles such that
i) the circles do not intersect.
ii) the circles intersect in exactly one common element.
iii) the circles intersect in two common elements.
b) Explain why the parameter c is restricted as given.

2.15. The quadratic formula, revisited. We derive the quadratic formula by solv-
ing a system of linear equations for the two unknown solutions. The equation
ax® +bx + ¢ = 0 with a # 0 has real solutions r, s if and only if ax? 4+ bx + ¢ =
a(x —r)(x — s) (see Exercise 1.20). The calculation below shows that the factor-
ization exists if and only if b2 — 4ac > 0 and expresses r, s in terms of g, b, c.

a) By equating coefficients of corresponding powers of x, obtain the equations

TFrom the 1955 High School Mathematics Exam (C. T Salkind, Annual High
School Mathematics Examinations 1 950-1960, Math. Assoc. Amer. 1961, p. 87.)
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—5)2% = (b% — 4ac)/a®.
= —b/a and rs = c/a. Use these to prove that (r —s) ( /
" sb) Froin (), obtain 7 + s = —b/a and r — s = +/b? — 4ac/a. Solve this system
for r, s in terms of a, b, c. _ )
¢) What happens if the second equation in (b) is 7 — s = —+/b? — 4ac/a?

2.16. (1) Let f be a function from R to R. ) )
a)( Prove that f can be expressed in a unique way as the sum of two functions
g and & such that g(—x) = g(x) for all x € R and h(—x) = —h(x) for al_l x € R.
(Hint: Find a system of linear equations for the unknowns g(x) and £ (x) in terms
kn values f(x) and f(—x).) _
o thtk%)) V&?hvi?l fisa pfolynomial, express g and & in terms of the coefficients of f.

2.17. Given f: R — R,let gx) = 5 + 7553 for all x such that f(x) # 1. Suppose
g(x) = g(—x) for all such x. Prove that f(x) f(—x) = 1 for all such x.

) Gi omial p, let A be the sum of the coefficients of the even

Izaz)lvifgt;rs(,‘)ai:iwla:t aBpl())iyﬁle sumpof the coefficients of the odd powers. Prove that
A? — B? = p(1)p(-D). '
2.19. Abraham Lincoln said, “You can fool all of the people some of the time, and
you can fool some of the people all of the time, but you can’t fool all of thg people all
of the time.” Write this sentence in logical notation, negate the symbolic sentence,
and state the negation in English. Which statement seems to be true?

i i i i he first player to have a
.20. Using quantifiers, explain what it would mean for t y
f:‘winning st%’gtegy” in Tic-Tac-Toe. (Don’t consider whether the statement is true.)

i “ i there is some real number
2.21. Consider the sentence “For every integer n > 0 4 (
x > 0 such that x < 1/n”. Without using words of negat%on, write a complei:,e
sentence that means the same as “It is false that for every m.teger n > 0 there is
some real number x > 0 such that x < 1/n”. Which sentence is true?

2.22. Let f be a function from R to R. Without using words of negation, write
the meaning of “f is not an increasing function”.

2.23. Consider f: R — R. Let S be the set of functions defined by putting g € §
if there exist positive constants c,a € R such that | g(x)l”s c|f(x)| for all x > aLS.‘
Without words of negation, state the meaning of “g ¢ S - (Commgmt: The set
(written as O(f)) is used to compare the “order of growth” of functions.)

2.24. In simpler language, describe the meaning of the following two statements
and their negations. Which one implies the other, apd why?

a) There is a number M such that, for every x in the set S, x| < M.

b) For every x in the set S, there is a number M such that jx| < M.

2.25. For a € R and f: R — R, show that (a) and (b) have different meanings.

a) (Ve > 0)(38 > O)[(Ix —a| < 8) = (If(x) — f@] < el

b) (38 > 0)(Ve > O)[(x —al < &) = (f &) — f@]| <)
2.26. For f: R — R, which of the statements below implies the other? Does there
exist a function for which both statements are true? )

a) For every ¢ > 0 and every real number a, there is a § > 0 such that

— f(a)| < € whenever |x —al| < 3.

|f(x)b) Ffo(r )elwery € > 0, there is a § > 0 such that |f(x) — f(@)| < € whenever
|x —a| < & and a is a real number.
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2.27. (+) Forc e Rand f: R — R, interpret each statement below.

a) For all x € R and all § > 0, there exists ¢ > 0 such that x| < & implies
[f@®) —cl<e.

b) For all x € R, there exists § > 0 such that, for all € > 0, we have |x] < §
implies |f(x) — | < e.
2.28. () Consider the equation x*y +ay + x = 0.

a) Show that the following statement is false. “For all a,x € R, thereis a
unique y such that x*y +ay +x = 0.

b) Find the set of real numbers a such that the following statement is true.
“For all x € R, there is a unique y such that x%y + ay+x=07

2.29. (1) Extremal problems.

a) Let f be a real-valued function on §. In order to prove that the minimum
value in the image of f is 8, two statements must be proved. Express each of
these statements using quantifiers. :

b) Let T be the set of ordered pairs of positive real numbers. Define f: T — R
by f(x,y) = max{x, y, 1 + +}. Determine the minimum value in the image of f.
(Hint: What must a pair achieving the minimum satisfy?)

2.30. (!) Consider tokens that have some letter written on one side and some
integer written on the other, in unknown combinations. The tokens are laid out,
some with letter side up, some with number side up. Explain which tokens must
be turned over to determine whether these statements are true:

a) Whenever the letter side is a vowel, the number side is odd.

b) The letter side is a vowel if and only if the number side is odd.

2.31. Which of these statements are believable? (Hint: Consider Remark 2.34.)
a) “All of my 5-legged dogs can fly” .
b) “I have no 5-legged dog that cannot fly”
¢) “Some of my 5-legged dogs cannot fly.”
d) “I have a 5-legged dog that cannot fly.”

2.32. A fraternity has a rule for new members: each must always tell the truth

or always lie. They know who does which. If T meet three of them on the street

and they make the statements below, which ones (if any) should I believe? k
A says: “All three of us are liars”

B says: “Exactly two of us are liars.”
C says: “The other two are liars”

2.33. Three children are in line. From a collection of two red hats and three black
hats, the teacher places a hat on each child’s head. The third child sees the hats
on two heads, the middle child sees the hat on one head, and the first child sees
no hats. The children, who reason carefully, are told to speak out as soon as they
can determine the color of the hat they are wearing. After 30 seconds, the front
child correctly names the color of her hat. Which color is it, and why?

2.34. (1) For each statement below about natural numbers, decide whether it is
true or false, and prove your claim using only properties of the natural numbers.
a)Ifn e Nandn? + (n + 1)2 = (n + 2)2, then n = 3.
b) For all € N, it is false that (n — 1)3 4+ n® = (n+1)3.

2.35. Prove that if x and y are distinct real numbers, then (x + 1)2 = (y + 1) if
and only if x + y = —2. How does the conclusion change if we allow x = y?
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2.36. Let x be a real number. Prove that if |[x — 1| < 1, then [x2 —4x + 3| < 3.

2.37. Given a real number x, let A be the statement “% <x < g”, let B be the
statement “x € Z”, let C be the statement x? = 1, and let D be the statement
“x = 2”. Which statements below are true for all x € R?

a)A=C. e)C= (AAB).-
b) B = C. f) D= [AABA(—C).
c) (AAB) = C. g)(AvC)= B.

d) (AAB)= (CV D).
2.38. Let x, y be integers. Determine the truth value of each statement below.

a) xy is odd if and only if x and y are odd.

b) xy is even if and only if x and y are even.
2.39. (1) A particle starts at the point (0, 0) € R? on day 0. On each day, it moves
one unit in a horizontal or vertical direction. For a,b € Z and k € N, prove that
it is possible for the particle to reach (g, b) on day k if and only if (1) |a| + |b| <k,
and (2) a + b has the same parity as k.
2.40. (1) Checkerboard problems. (Hint: Use the method of contradiction.)

a) Two opposite corner squares are deleted from an eight by eight checker-
board. Prove that the remaining squares cannot be covered exactly by dominoes

(rectangles consisting of two adjacent squares).
b) Two squares from each of two opposite corners are deleted as shown on
the right below. Prove that the remaining squares cannot be covered exactly by

copies of the “T-shape” and its rotations.

i -

2.41. A clerk returns » hats to n people who have checked them, but not necessar-
ily in the right order. For which % is it possible that exactly k people get a wrong
hat? Phrase your conclusion as a biconditional statement.
2.42. A closet contains » different pairs of shoes. Determine the minimum 7 such
that every choice of ¢ shoes from the closet includes at least one matching pair of
shoes. For n > 1, what is the minimum ¢ to guarantee that two matching pairs of
shoes are obtained?
2.43. Using the equivalences discussed in Remark 2.20, write a chain of symbolic
equivalences to prove that P < Q is logically equivalent to Q0 < P.
2.44. Let P and Q be statements. Prove that the following are true.

a) (Q A —Q) = P. b) P AQ = P. P =PVOQ.
2.45. Prove that the statements P = Q and Q = R imply P = R, and that the
statements P < Q and Q0 < R imply P < R. (Comment: This is the justification
for using a chain of equivalences to prove an equivalence.)
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Exercises

2;1(; 1:2019 tﬁz)it th(el logii:al ex};l)ression § is equivalent to the logical expression
- —k), and explain the relationship between thij i
method of proof by contradiction. P % #is eduivalence and the

. . ( ) > (
2 4: Let 1 X be th.e asser tloﬂ X 18 Odd alld let Q X be t:he asser t].OIl X5 — 1 1S
)
a) ( VX € Z)[I (x) = Q(x)]' g ‘
b)( X € Z)[Q(x) = 1 (x)]'

2.48. Let P(x) be the assertion “x is odd” and let i
¢ £ ¢ , O(x) be th “x1 i
an integer”. Determine whether the following statements a:eatislf;t on s fice
8) (Vx € Z)(P(x) = Q(x)). '
b) (Vx € Z)(P(x)) = (Vx € Z)(Q(x)).

249. Let S = {x ¢ R: x2 >x+6} Let T = {x
| : . = {xr € R: x > 8}. Determi
the fol)l(;vvmg statements are true, and interpret these results in Word;l'e whether
a)T CS. '
b)SCT.

2.50. )P&JVS ;};e' following identities involving complementation of sets
a ¢ = A°N B°. (This is de Morgan’s .
b AN AN B ] g second law.)
0 AN[(ANB%] = AN B.
d) (AUB)NA* =B — A.

2.51. Distributive laws for set o j i
perations. Using statements about i
prove the statements below, where A, B, C are any sets. Use Vennr?i?:lin ngslhlf )
illustrate the results and guide the proofs. srams fo
a)AU(BﬂC):(AUB)n(AUC).
b)Aﬂ(BUC):(AﬂB)U(A{’]C).

2.52. Let A, B, C be sets. Prove that ANMB-C)=ANB) - (ANC).

2.53. () Let A, B,C be sets. Prove that (AU B) —
. - ) — C must b
[A-BUOIUIB-(AN C)1, but that equality need not hold. © @ subset of

2.54. .(—i-) Consider three circles in the plane as shown b i

conta_ms a token that is white on one side and black on s}ll?c’;ﬂf;):: hlgzoel:li:%e:tregmn
can el'Fhe? (a) flip all four tokens inside one circle, or (b) flip th;e tokens sh?)p"we
Whlt(:} inside one circle to make all four tokens in that circle show black Fronzvilzﬁg
starting cqnﬁgqration with all tokens showing black, can we reach thé indicateg
conﬁ;‘,’uratlon. with all showing black except the token in the central region? (Hint:
Consider parity conditions and work backward from the desired conﬁgurz;tion ) ‘



