1. Solve the following congruences. If there are no solutions, say so, and give some justification. (You do not need to give a complete proof.) If there are multiple solutions, be sure to find all of them.

(a)
$$15x + 10 = 4$$
 in \mathbb{Z}_{20} $|5x = -6 = 14$ in \mathbb{Z}_{20} $|5x = 14$ (mod 20) $|5x = 14|$ (mod 20) $|5x - 14| = 20k$ for some $k \in \mathbb{Z}$ $|5x - 20k = 14|$ $|5x - 20k = 14|$

(b)
$$15x + 10 = 4$$
 in \mathbb{Z}_{19}
 $|5x = -6 = |3 \pmod{19}|$
 $x = |3 \cdot |5^{-1} \pmod{19}|$
 $x = |1 \pmod{19}|$

2. (a) Prove that
$$10^n \equiv 1 \pmod{9}$$
 for all $n \geq 0$. (Hint: Induction)

Base cases: $|0^n = 1 \equiv 1 \pmod{9}$
 $|0^n = 10 \equiv 1 \pmod{9}$

Induction step: Assume true for $n-1$. So $|0^{n-1} \equiv 1 \pmod{9}$
 $|0^n \equiv 10 \cdot 10^{n-1} \equiv 1 \cdot 1 \equiv 1 \pmod{9}$

True for n .

By induction, $|0^n \equiv 1 \pmod{9}$ for all $n \geq 0$.

(b) Let
$$x$$
 be a positive integer, and let y be the sum of the digits of x (in base 10). Prove that $x \equiv y \pmod{9}$. (Hint: Think about how to write x in terms of its digits. Use part (a).)

If the digits of x are $a_1 a_{n-1} \cdots a_2 a_n a_0$ then $x = a_0 + a_1 \cdot 10^n + a_2 \cdot 10^n + a_n \cdot 10^n + a_n \cdot 10^n = a_n \cdot 10^n$, and $y = a_0 + a_1 + a_2 + \dots + a_{n-1} + a_n$

By part (a), since $10^k \equiv 1 \pmod{9}$ for all $k \equiv 0$, $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n + a_n + a_n + a_n$
 $x \equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1 = a_n + a_n +$

(c) Use part (b) to prove that a positive integer is divisible by 9 if and only if the sums of its digits is divisible by 9.

$$9/x \iff x \equiv 0 \pmod{9} \iff y \equiv 0 \pmod{9} \iff 9/y$$
By part (b)
So a positive integer (x) is divisible by 9 iff the sum of its digits (y) is divisible by 9.

3. Let R be a ring, and let $a \in R$. Let

$$S = \{ax \mid x \in R\},$$

$$T = \{xa \mid x \in R\}.$$

- (a) Show that for all $r \in R$ and $s \in S$, $sr \in S$. Let $r \in R$, $s \in S$. So s = ax for some $x \in R$. $sr = (ax) r = a(xr) \in S$ since $xr \in R$.
- (b) Show that for all $r \in R$ and $t \in T$, $rt \in T$. Let $r \in R$, $t \in T$. So t = xa for some $x \in R$. $rt = r(xa) = (rx)a \in T$ since $rx \in R$.
- (c) Show that S and T are subrings of R.

 It suffices to show that they are closed under subtraction and Multiplication.

 Let $5_1, 5_2 \in S$. So $5_1 = ax_1$, $5_2 = ax_2$ for some $x_1, x_2 \in R$, $5_1 5_2 = ax_1 ax_2 = a(x_1 x_2) \in S$ because $x_1 x_2 \in R$. $5_1 \cdot 5_2 = (ax_1) \cdot (ax_2) = a(x_1(ax_2)) \in S$ because $x_1, ax_2 \in R$.

 So S is closed under subtraction and Multiplication, and hence is a subring of R.

 Let $t_1, t_2 \in T$. So $t_1 = x_1 a_1, t_2 = x_2 a_1$ for some $x_1, x_2 \in R$. $t_1 t_2 = x_1 a_1 x_2 a_2 = (x_1 x_2) a_1 \in T$ because $x_1 x_2 \in R$. $t_1 \cdot t_2 = (x_1 a_1) \cdot (x_2 a_1) = (x_1 a_1 x_2) a_1 \in T$ because $x_1 x_2 \in R$.

 $t_i \cdot t_2 = (x, a) \cdot (x_2 a) = ((x, a)x_2)a \in T$ because $x_i a x_2 \in R$. So T is closed under subtraction and multiplication, and hence is a subring of R.

4. (a) Let R be a commutative ring with identity, and let
$$a, b \in R$$
 such that ab is a unit. Show that a and b are units.

Since ab is a unit, $\exists c \in R$ such that $(ab)c = c(ab) = |_R$.

Thus $a(bc) = |_R$, and since R is commutative, this gives $(bc)a = b$ bc is the inverse of a , so a is a unit.

Likewise, $(ca)b = |_R$, and by commutativity $b(ca) = |_R$.

So ca is the inverse of b , so b is a unit.

(b) Now let R be a (not necessarily commutative) ring with identity, and assume R has no zero divisors. Let $a, b \in R$ such that ab is a unit. Show that a and b are units.

Since ab is a unit,
$$\exists c \in R$$
 s.t. $(ab)k = c(ab) = l_R$.
Thus $a(bc) = l_R$. We must show $(bc)a = l_R$ also.

$$(a(bc)) \cdot a = l_R \cdot a = a$$

$$a((bc)a) = a$$

$$a((bc)a) - a = 0$$

$$a((bc)a) - a \cdot l_R = 0$$

$$a((bc)a) - a \cdot l_R = 0$$

$$a((bc)a - l_R) = 0$$
Since R has no zero-divisors, which a(bc)=l_R a((bc)a - l_R) = 0, which a(bc)=l_R a((bc)a - l_R) = 0, which a(bc)=l_R a((bc)a - l_R) = 0, so ((bc)a - l_R) = 0.
Thus he is the inverse of a, so a is a unit.

Thus be is the inverse of a, so a is a unit.

Similarly,
$$c(ab) = |_R \implies (ca)b = |_R$$
. We must show $b(ca) = |_R$. $b \cdot ((ca)b) = b \cdot |_R = b$ $b \cdot (ab) - |_R \cdot (b) = 0$ $(bca - |_R) \cdot (b) = 0$, so $b = 0$ or $bca - |_R = 0$. But $b \neq 0$ because $(ca)b = |_R$, so $bca - |_R = 0$, so $b(ca) = |_R$. Thus ca is the inverse of b , so b is a unit.