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Abstract

The notion of symmetry plays a great role in quantum
physics. Supersymmetry is an unusual and profound gen-
eralization of symmetry. It was discovered by the physi-
cists in the early 1970’s. Although there is still no exper-
imental confirmation that nature is supersymmetric, the
ideas of supersymmetry have played a tremendously im-
portant theoretical role in high energy physics. In partic-
ular, it seems to be widely accepted that a unified theory
of all forces has to be supersymmetric.

In this series of three lectures I shall try to explain how to
define the concept of a unitary representation of a super
Lie group, and apply it to the classification of relativistic
elementary particles in the presence of supersymmetry,
leading to the concept of super multiplets.
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Introduction

Unitary operators as quantum symmetries

• States : Points of P (H), H a Hilbert space.

• Symmetries : Bijections of the space of states
preserving transition probabilities.

•Description of symmetries : Wigner’s theorem:

Symmetries are induced by unitary or anti unitary
operators. The product of two anti unitary symme-
tries is a unitary symmetry.
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Projective unitary representations of space
time symmetry group as an expression of co-
variance

(The principle of covariance)The description of the
system should not depend on the observer.

This puts in display an action of the spacetime group by
symmetries. In QFT the symmetry group is the Poincaré
group, in 2-dimensional field theory it is the Galilean
group.

Theorem. If the symmetry group G is a connected Lie
group, covariance with respect to G is expressed by a uni-
tary representation (UR) of G or at least a central exten-
sion of G by the circle group.

Remark. If G is the simply connected Poincaré group
there is no need to go to central extensions of G (Wigner).
If G is the simply connected Galilean group, central
extensions of G are unavoidable and introduce the so-
calledmass superselection sectors corresponding to the
one parameter family of central extensions (Bargman).
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Representations of Poincaré group

The requirement of Poincaré covariance is quite strin-
gent. The simplest such systems arise when the UR of
the Poincaré group is irreducible. The irreducible UR’s
(UIR) define free particles. The UIRs of the Poincaré
group were first classified by Wigner by a method that
goes back to Frobenius and later put in proper perspec-
tive by Mackey (Wigner’s little group method = Mackey
machine).

There are more UIRs than particles. One has to exclude
the UIRs where the mass is imaginary (tachyons).

In systems where particle number is not conserved and
particles are created and annihilated, the UR of the
Poincaré group is not irreducible. QFT which tries to
construct such systems is beset with problems which have
been resolved only partially, and that too, only by ad hoc
procedures (renormalization.)
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Spacetime at small distances and times

In classical physics, and even in quantum mechan-
ics, there is no necessity to question the use of flat
Minkowskian geometry for spacetime, since gravitational
forces are negligible in that scale. It is only when ex-
periments began to probe extremely small distances that
theories trying to understand and predict the experiments
began to encounter serious conceptual difficulties. Physi-
cists then began to look more closely into the structure
of spacetime at ultrashort scales of distances and times.
The Planck scale refers to distances of the order of

10−33cm

and times of the order of

10−43sec.
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Riemann’s vision of space at small distances

In his Göttingen inaugural lecture in 1854 Riemann spec-
ulated on the structure of space at small distances. Here
is what he said:

Now it seems that the empirical notions on which the met-
ric determinations of Space are based, the concept of a
solid body and a light ray, lose their validity in the in-
finitely small; it is therefore quite definitely conceivable
that the metric relations of Space in the infinitely small
do not conform to the hypotheses of geometry; and in fact,
one ought to assume this as soon as it permits a simpler
way of explaining phenomena.

Göttingen inaugural address, 1854.

Remark. Here the phrase do not conform to the hy-
potheses of geometry (presumably) means the structure
of space as a Riemannian manifold, or even, just a man-
ifold.
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Current views on structure of spacetime

• At the Planck scale, no measurements are possible and
so conventional models can no longer be relied upon to
furnish a true description of phenomena. String the-
ory attempts to work in a framework where the smallest
objects are not point-like but extended, i.e., strings or
(more recently) membranes. Spacetime geometry at the
Planck scale is thus almost surely non-commutative be-
cause there are no points. No one has so far constructed a
convincing geometrical theory which is noncommutative
but has the Riemann-Einstein geometry as a limit.

• Even at energies very much lower than the Planck scale,
a better understanding of phenomena is obtained if we
assume that the geometry of spacetime is described lo-
cally by a set of coordinates consisting of the usual ones
supplemented by a set of anticommuting (Grassmann)
coordinates.
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Why Grassmann coordinates

The physicists got the idea that one should replace the
classical manifold M by a manifold that admits (addi-
tional) Grassmann coordinates. The Grassman coordi-
nates model the Pauli exclusion principle for the Fermions
in an embryonic form. The theory of classical fields on
such a manifold would then provide a basis for quantiza-
tion that will yield the exterior algebras characteristic of
quantum descriptions of Fermionic states. Such a mani-
fold is nowadays called a super manifold.
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The concept of supersymmetry

• Super symmetries are diffeomorphisms of super
manifolds.

• The super Lie algebra of infinitesimal automor-
phisms of super manifolds.

• Super Poincaré and super conformal Lie algebras.
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Super geometry

The fundamentals of super geometry are built like ordi-
nary geometry. This is done at 3 levels:

• Infinitesimal

• Local

• Global
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Super linear algebra

• Category of super vector spaces

• The isomorphism cUV

cUV : U⊗V −→ V ⊗U, u⊗v 7−→ (−1)p(u)p(v)v⊗u

• Action of SN on V ⊗ V ⊗ . . .⊗ V

• Super Lie algebras

[·, ·](1 + cgg) = 0

[·, [·, ·]](1 + σ + σ2) = 0

where σ is the automorphism of g ⊗ g ⊗ g that cor-
responds to the permutation (123) −→ (312).
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The Berezinian

Let R be a super commutative algebra over a field k of
characteristic 0 and Rp|q be the free module of dimension
p|q over R. Let GL(p|q)(R) be the group of invertible
even morphisms of Rp|q. Then the Berezinian is a mor-
phism of GL(p|q)(R) into R×

0 (the group of units of the
even part R0 of R) given by

Ber(x) = det(A−BD−1C) det(D)−1

where

x =

(

A B
C D

)

.

We have
Ber(xy) = Ber(x)Ber(y).

This is the superversion of the determinant, discovered
by F. A. Berezin, one of the pioneers of super algebra
and super analysis. Since the entries of B and C are
nilpotent, x is invertible if and only if A and D, whose
entries are in the commutative ring R0, are invertible.
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Charts and local rings

The local coordinates are given by

x1, x2, . . . , xp, θ1, θ2, . . . , θq

where the xi are the usual commuting coordinates and
the θj are the grassmann coordinates:

θkθk + θkθj = 0.

The local ring is

C∞(x1, x2, . . . , xp)[θ1, θ2, . . . , θq].
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The concept of a super manifold

A super manifold M of dimension p|q is a smooth man-
ifold |M | of dimension p together with a sheaf OM of
super commuting algebras on |M | that looks locally like

C∞(Rp)[θ1, θ2, . . . , θq]

The intuitive picture of M is that of |M | surrounded by
a grassmannian cloud. The cloud cannot be seen: in
any measurement the odd variables will be 0 be-
cause they are nilpotent. Thus measurement sees
only the underlying classical manifold |M |. Nev-
ertheless the presence of the cloud eventually has conse-
quences that are striking.

Unlike classical geometry the local ring contains nilpo-
tents. So the analogy is with a Grothendieck scheme.

Physicists refer to the sections of the structure sheaf as
superfields.
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Supersymmetries

A Supersymmetry is just a morphism between super-
manifolds.

Example: The diffeomorphism

R1|2 ≃ R1|2 : t1 7−→ t1 + θ1θ2, θα 7−→ θα

is a typical supersymmetry. Note how the morphism in-
terchanges odd and even variables. This is a basic exam-
ple of how the grassmann cloud interacts with the classi-
cal manifold underlying the supermanifold.
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Integration on super manifolds

Let

θI = θi1θi2 . . . θik I = (iµ), {i1 < i2 < . . . < ik}.

On
Λ = R[θ1, . . . , θq]

the integral is a linear map

a 7−→

∫

adqθ

defined by

∫

θIdqθ =

{

0 if |I| < q
1 if I =: Q = {1, 2, . . . , q}.

Integration is also differentiation:

∫

=

(

∂

∂θq

)(

∂

∂θq−1

)

. . .

(

∂

∂θ1

)

.

In the local ring with coordinates xi, θj ,

∫

sdpxdqθ =

∫

sQd
px (s =

∑

I

sIθ
I).
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The change of variables formula

For a morphism given locally as

ψ : (x, θ) 7−→ (y, ϕ)

we define the Jacobian matrix

J =

( ∂y
∂x −∂y

∂θ
∂ϕ
∂x

∂ϕ
∂θ

)

.

Then
∫

s =

∫

ψ∗(s)Ber(Jψ)

for compactly supported sections of the local ring. For
arbitrary manifolds we use partitions of unity as in the
classical case.

• This beautiful formula goes back to Berezin. The
justification for the peculiar definition of integration
in the anticommuting variables is the change of vari-
ables formula.
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Super Lie groups and their super Lie algebras

Super Lie groups are group objects in the category of
super manifolds. As in the theory of ordinary Lie groups
one can define the super Lie algebra Lie(G) of a super
Lie group G. The even part of a super Lie algebra is an
ordinary Lie algebra and the super Lie algebra may be
viewed as a supersymmetric enlargement of it.

History. Gol’fand-Likhtman and Volkov-Akulov discov-
ered the minimal SUSY extension of the Poincaré algebra
in the early 1970’s. Wess-Zumino discovered a little later,
in 1974, the first example of a simple super Lie algebra,
namely the minimal SUSY extension of the conformal
Lie algebra. In 1975 V. Kac formally defined super Lie
algebras and carried out the super version of the Cartan-
Killing classification of simple Lie algebras over C.
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Super Minkowski spacetime

Let t0 be a flat Minkowski spacetime of signature (1, n).
By a flat Minkowski superspacetime is meant a super
Lie group whose even part is t0 identified with its group
of translations. The correponding super Lie algebra t has
the grading

t = t0 ⊕ t1.

Physical interpretations lead to the requirement that the
adjoint action of t0 on t1,

a, b 7−→ [a, b] (a ∈ V0, b ∈ V1)

is a very special module, namely a spin module. In this
case, at least when t1 is irreducible, there is an essentially
unique symmetric bilinear form

t1 ⊗ t1 −→ t0

If we choose this to be the supercommutator of odd ele-
ments we may regard t = t0 ⊕ t1 as a super Lie algebra.
The super Lie group T of t is flat super Minkowski
spacetime.
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Super Poincaré group

The semi direct product

G = T ×′ Spin(1, n)

is a super Poincaré group.

22



SUSY Field theory

All of the machinery is now in place for introducing the-
Lagrangians and doing SUSY field theory on flat super
Minkowski spacetime: Wess-Zumino (SUSY electrody-
namics) and Ferrara-Zumino (SUSY Yang-Mills).

The susy extension of Einstein spacetime is more compli-
cated and was first done in 1976 by Ferrara, Freedman,
and van Nieuwenhuizen, and a little later, by Deser
and Zumino. It is called supergravity.
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Classification of super particles

In quantum theory the unitary irreducible representa-
tions (UIR) of the Poincare group classify free elemen-
tary particles. In SUSY quantum theory, the UIR’s of a
super Poincaré group classify elementary super particles.
Each super particle, when viewed as a UR of the under-
lying Poincaré group, is the direct sum of a collection of
ordinary particles, called a multiplet. The members of
a multiplet are called partners of each other.

Unlike the classical case, the positivity of energy
is a consequence of supersymmetry.

The existence of the superpartners of the known particles
is the biggest prediction of supersymmetry.

It may be hoped that the new super collider being readied
at CERN will create the super partners of the usual ele-
mentary particles. This is not certain because one does
not know exactly the scale at which supersymmetry is
broken.
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Unitary representations of super Lie groups and the

imprimitivity theorem for even super homogeneous spaces
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Summary

We introduce the concepts of unitary representations
and systems of imprimitivity for super Lie groups, us-
ing the well known equivalence of the category of super
Lie groups with the category of super Harish-Chandra
pairs. We extend the Mackey theory of induced repre-
sentations to the super context when the homogeneous
space is purely even.
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Super Lie groups and super Lie algebras

The word super indicates Z2-graded objects; the suffixes
0 and 1 denote the graded components of even and odd el-
ements. p is the parity function defined on homogeneous
nonzero elements.

For a super Lie algebra g and homogeneous X,Y ∈ g,

ad(X)(Y ) = [X,Y ].

Then the super Jacobi identity is equivalent to

ad[X,Y ] = ad(X)ad(Y )− (−1)p(X)p(Y )ad(Y )ad(X)

A super Lie group is a group object in the category of
super manifolds. For any super Lie group G and any
manifold T ,

T 7−→ G(T ), G(T ) = Morph(T,G)

is a contravariant functor into the category of groups
which determines G up to isomorphism.
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Super Harish-Chandra pairs

(G0, g) is a super Harish-Chandra pair (SHP) if

• G0 is a Lie group, g is a super Lie algebra with g0 =
Lie(G0)

• g is a G0-module, and the action of g0 on g1 is the
differential of the action of G0 on g1.

For G a super Lie group, g = Lie(G), and G0 the classical
Lie group underlying G, (G0, g) is a SHP and we have an
equivalence of categories

G 7−→ (G0, g).

• G = Rp|q, with addition.

• G = GL(p|q) with the pair G0 = GL(p)×GL(q), g =
gl(p|q).

• G = SL(p|q) with the pair G0 = (GL(p)×GL(q))1,
suffix 1 meaning determinant 1, and g = sl(p|q)
where s means that the super trace is 0. Globally
this is the sub super Lie group of elements with the
Berezinian equal to 1.
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Super Poincaré groups

To say that a super Lie group G = (G0, g) is a super
Poincaré group means the following.

• G0 is the semidirect product R1,D−1×′Spin(1, D−1)
where Spin(1, D−1) is the 2-fold cover of the classical
connected orthogonal group of signature (1, D − 1)

• The G0-module g1 is a direct sum (over C) of spin
modules

• R1,D−1 acts trivially on g1

• [g1, g1] ⊂ R1,D−1

The last condition means there is a non zero
Spin(1, D − 1)-equivariant symmetric bilinear map
from g1 × g1 to R1,D−1. Such a map always exists
and is projectively unique if g1 is irreducible, and,
upto a change of sign, the image of the map g1 × g1

is inside the forward light cone (minus the origin)
(positivity of energy).

N usually denotes the number of irreducible components
of g1. If N > 1 we speak of N -extended supersymmetry .
In this case positivity of the energy is an added require-
ment.

• S := T0 ×
′ g1 is a super Minkowski spacetime and

G = Aut(S).
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SUSY quantum mechanics

Super Hilbert space (SHS)

• A SHS is a super vector space H over C, with H =
H0 ⊕H1.

• H is a Hilbert space, the Hi are closed and orthogo-
nal

Super adjoints

• If T is an operator of H with adjoint T ∗, its super

adjoint T † is defined as follows:

p(T †) = p(T ), T † =

{

T ∗ if T is even

−iT ∗ if T is odd.

A Hamiltonian H is supersymmetric if H = X2 where X
is an odd operator.

• Supersymmetry makes the energy positive.
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Self adjointness and symmetry

For H infinite dimensional, Hamiltonians are usually un-
bounded operators. Indeed, most Hamiltonians are dif-
ferential operators, and so are defined only on functions
which are sufficiently smooth. The property of self ad-
jointness is more than just demanding symmetry. The
fact that it is self adjointness that implies a spectral res-
olution means that Hamiltonians have to be self adjoint,
not merely symmetric. Heuristically, self adjointness for a
differential operator means that the boundary conditions
are correctly posed. A core for a symmetric operator is
a dense subspace on which it is defined, with the prop-
erty that there is a unique self adjoint extension. For
most (atomic) quantum Hamiltonians the smooth func-
tions with compact support is a core; this is a famous
result of Kato. For any operator A, D(A) is its domain
of definition.

Lemma. Let H be self adjoint on H, U(t) = eitH , and
B ⊂ D(H) a dense U -invariant subspace. Then B is
a core for H. If X is a symmetric operator such that
XB ⊂ D(X) and H = X2 on B, for example if XB ⊂ B,

then X is essentially self adjoint on B and X
2

= H. In

particular, X
1/2

= H ≥ 0.
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UR’s of super Lie groups (finite dimensional)

A finite dimensional unitary representation (UR) of a
super Lie group G = (G0, g) is a pair (π, γ) where π is an
even representation of G0 in a SHS H, and γ is a super
representation of g in H such that

• γ
∣

∣

g0

= dπ,

• γ(gX) = π(g)γ(X)π(g)−1 (g ∈ G0, X ∈ g)

• (unitarity condition) γ(X)† = −γ(X) (X ∈ g)

Let
ζ = e−iπ/4, ρ(X) = ζγ(X).

Then finite dimensional UR’s are pairs (π, ρ) with

• π an even UR of G0 in a SHS H

• ρ : g1 −→ End(H)1 linear and self adjoint

• −idπ([X,Y ]) = ρ(X)ρ(Y )+ρ(Y )ρ(X) for X,Y ∈ g1

• ρ(gX) = π(g)ρ(X)π(g)−1 for g ∈ G0, X ∈ g1.

We can then take

γ(X) = dπ(X0) + ζ−1ρ(X1) for X ∈ g.
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Infinite dimensional UR’s of super Lie groups

The main (apparent) obstruction in transferring the def-
inition to the infinite dimensional case is that the oper-
ators ρ(X) will in general be unbounded. We make the
following definition and discuss possible variants.

For any UR λ ofG0, C
∞(λ) is the space of smooth vectors

for λ. Then UR’s of (G0, g) are pairs (π, ρ) with

• π an even UR of G0 in H

• ρ : g1 −→ End(C∞(π))1 linear and symmetric

• −idπ([X,Y ]) = ρ(X)ρ(Y )+ρ(Y )ρ(X) for X,Y ∈ g1

• ρ(gX) = π(g)ρ(X)π(g)−1 for g ∈ G0, X ∈ g1.

Then

X 7−→ dπ(X0) + ζ−1ρ(X) (X ∈ g)

is a super representation of g in C∞(π)1.
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Variants

It may appear that the choice of C∞(π) in the above
definition, while natural and canonical, is still somewhat
arbitrary; for instance we could have chosen the space of
analytic vectors for π in its place. It turns out that all
such choices are essentially equivalent in the sense that
for any variant of the above definition which uses a dif-
ferent subspace than C∞(π), the operators ρ(X) can be
extended all the way to C∞(π) so that we obtain a UR in
the above sense, and moreover, the ρ(X) will all be self
adjoint with C∞(π) as a core.

UR’s of (G0, g) are systems (π0, ρ,B) with

• B a dense π-invariant super linear subspace of H,
B ⊂ D(dπ(Z)) for all Z ∈ [g1, g1]

• ρ a linear map of g1 into Hom(B,H)1 such that

(i) ρ(X) is symmetric for all X ∈ g1

(ii) ρ(gX) = π(g)ρ(X)π(g)−1 for all g ∈ G0, X ∈ g1

(iii) −idπ([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X) for
X,Y ∈ g1

(iv) ρ(X)B ⊂ D(ρ(Y )) for all X,Y ∈ g1
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Equivalence of the various definitions

The basic result on the concept of a UR of a super Lie
group is the following theorem.

Theorem. Let (π, ρ,B) be a UR. Then

(i) For any X ∈ g1, ρ(X) is essentially self adjoint on
B and C∞(π) ⊂ D(ρ(X))

(ii) Let ρ(X) = ρ(X)
∣

∣

C∞(π)
for X ∈ g1. Then (π0, ρ) is

a UR in the first sense

If (π0, ρ
′,H) is a UR such that B ⊂ D(ρ′(X)) and ρ′(X)

restricts to ρ(X) on B for all X ∈ g1, then ρ′ = ρ.

This theorem makes it clear that the concept of a UR
of a super Lie group is a viable one even in the infinite
dimensional case.
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Variant for analytic vectors

There is a variant using analytic vectors. Let Cω(π) be
the subspace of analytic vectors for π. We then have

• For any UR (π, ρ), the ρ(X)(X ∈ g1) map Cω(π)
into itself and so

γ : X 7−→ dπ(X0) + ζ−1ρ(X1)

is a super representation of g in Cω(π)

LetG0 be connected, π an even UR ofG0, and B ⊂ Cω(π)
a dense subspace on which we have a super representation
γ of g such that γ(Z) is a restriction of dπ(Z) to B for
Z ∈ g0 and ρ(X) = ζγ(X) is symmetric on B for X ∈ g1.
Then

• ρ(X) is essentially self adjoint on B and C∞(π) ⊂
D(ρ(X)) for X ∈ g1

• (π, ρ) is a UR if we define ρ(X) = ρ(X)
∣

∣

C∞(π)

• Uniqueness as in the Theorem above.

36



The category of UR’s of a super Lie group

A morphism
(π, ρ) −→ (π′, ρ′)

is a bounded operator

A : H −→ H′

such that
Aπ0 = π′

0A, Aρ = ρ′A.

Note that the first condition implies that

A(C∞(π)) ⊂ C∞(π′)

so that the second condition makes sense.

• For any UR (π, ρ) and any closed π-invariant sub-
space M, the invariance of M∞ =M∩ C∞(π) un-
der all ρ(X) is equivalent to its invariance under all
the spectral projections of all the ρ(X).

• The UR (π, ρ) is irreducible if the only self mor-
phisms are scalars, or equivalently, if the only closed
super linear subspaces invariant under π and the
spectral projections of the ρ(X) are 0 and the whole
Hilbert space
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Systems of imprimitivity

Let G = (G0, g) act on M a super manifold.

• D(M)=the super algebra of compactly supported
smooth sections of OM

Then G0 acts on the super algebra D(M). We have an
anti-morphism λ of g into the super Lie algebra of vector
fields on M .

• λ(X) = vector field on M corresponding to X ∈ g1

A super system of imprimitivity forG based onM is (ten-
tatively) a UR (π, ρ) of G together with a representation
B of D(M) in C∞(π) by bounded operators such that

• π(g)B(s)π(g)−1 = B(g·s) (g ∈ G0, s ∈ O(M))

• [ρ(X), B(s)] = B(λ(X)s) (X ∈ g1, s ∈ O(M))

The main application is when M is transitive, i.e., when

M ≃ G/H, H = (H0, h).
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Special subgroups and imprimitivity systems

The sub super Lie group H = (H0, h) of G = (G0, g)
is special if h1 = g1. The quotient super manifold Ω =
G/H ≃ G0/H0 is then purely even. Since λ(X) is odd
for X ∈ g1, it follows that λ(X) = 0 on Ω. Hence ρ(X)
commutes with B(s) for all X ∈ g1 and s ∈ D(M). In
this special case we require that B is a ∗-representation.
We then have the following precise description.

A system of imprimitivity based on Ω is a system
(π, ρπ, P ) where (π, ρπ) is a UR of (G0, g), P an even
projection valued measure on Ω such that (π, P ) is a
classical system of imprimitivity and the projections of
P commute with the spectral projections of ρ(X) for all
x ∈ g1 (P ↔ ρπ).

The super imprimitivity theorem. There is a natural
equivalence of categories from UR’s of (H0, h) to special
systems of imprimitivity on Ω.
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Explicit construction

Let (σ, ρσ,K) be a UR of (H0, h). We assume that Ω has
a G0-invariant measure (this is unnecessary but makes
life easier) dΩ. Then π is left translation acting on the
Hilbert space H of functions from G0 to K such that

• f(xξ) = σ(ξ)−1f(x) (x ∈ G0, ξ ∈ H0)

• ||f ||2H =
∫

Ω
||f(x)||2KdΩ <∞

Then the space B of smooth vectors for π which are com-
pactly supported mod H0 is also the space of smooth f ’s
with compact support mod H. Moreover, for f ∈ B, one
can show that f(x) ∈ C∞(σ) for all x ∈ G0. We now
define ρπ as follows:

(ρπ(X)f)(x) = ρσ(x−1X)f(x) (X ∈ g1).

Then
(π, ρπ,B)

defines a UR of (G0, g). If P is the natural projection
valued measure in H based on Ω, then

(π, ρπ, P )

is the special system of imprimitivity associated with
(σ, ρσ) in the above equivalence of categories.
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Unitary representations of super semidirect products
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Summary

We show that the unitary irreducible representations of
super semidirect products can be classified by a gener-
alization of the classical little group method to the su-
per context. We apply this theory to the classification
of super particles and the description of their multiplet
structure.
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UIR’s of a classical semidirect product (SDP)

Projective UIR’s of the underlying symmetry group G
classify elementary particles.

• G = Galilean group

The UIR’s classify Schrödinger particles of massm >
0 and spin j and give rise to mass superselection
sectors .

• G = Poincaré group

All projective UR’s are ordinary and the UIR’s clas-
sify Dirac particles of mass m > 0 and spin j, and
Weyl particles of mass m = 0 and helicity j.

G = T0 ×
′ L0, T0 a real (f.d) vector space amd L0 ⊂

SL(T0) a closed subgroup. If P is the spectral measure of
T0 in a UR of G0, its support is the spectrum of the UR.
O(λ) is the orbit of λ. We assume that the orbit space
T ∗

0 /L0 is smooth in the Borel sense.

For λ ∈ T ∗
0 , Lλ

0 = stabilizer (little group) of λ in Lλ
0 ;

Gλ
0 = T0L

λ
0 . A UR of Gλ

0 is λ-admissible if T0 acts as the
character eiλ.

UIR’s of G0 with spectrum = O(λ)

⇐⇒ admissible UIR’s of Gλ
0 .
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Super semidirect products (SSDP)

and super Poincaré groups

(G0, g) is a super semidirect product if:

• G0 = T0 ×
′ L0, T0 a real (f.d) vector space, L0 ⊂

SL(T0) a closed subgroup

• T0 acts trivially on g1 and [g1, g1] ⊂ t0 := Lie(T0)

(G0, g) is a super Poincaré group if:

• T0 is a Minkowski space of signature (1, D − 1) and
L0 = Spin(1, D − 1) (2-fold cover of SO(1, D − 1)0)

• L0 acts on g1 spinorially, i.e., its complexification
splits as a direct sum of spin modules.

• The odd commutator map g1 × g1 −→ t0 maps into
the closure of the open forward light come (minus
the origin) (positivity of energy)

Theorem Given any spinorial module V there is a super
Poincaré group (G0, g) with g0 = Lie(G0), g1 = V . The
bracket on g1 is projectively unique if V is irreducible.
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UIR’s of a SSDP

For λ ∈ T ∗
0 , Sλ = (Gλ

0 , g
λ) is the little (super) group at

λ: Gλ
0 = T0L

λ
0 and gλ = t0 ⊕ lλ0 ⊕ g1. It is a special

sub super Lie group. For a UR (π, ρπ) of G = (G0, g),
P is the spectral measure of π

∣

∣

T0

. Since T0 acts trivially

on g1, the π(t) commute with the ρπ(X). If the UR is
irreducible (UIR), then P is concentrated on an orbit.

If λ ∈ T ∗
0 , a UR of G is λ-admissible if π(t) = eiλ(t)I(t ∈

T0). λ itself is admissible if there is a λ-admissible UR
(⇐⇒ if there is a λ-admissible UIR).

T+
0 =

{

λ
∣

∣ λ ∈ T ∗
0 , λ admissible

}

.

Theorem. For any λ ∈ T+
0 , the super imprimitivity the-

orem gives an equivalence of categories from the category
of λ-admissible UR’s of Sλ with the UR’s of (G0, g) whose
spectra are contained in the orbit of λ. In particular, a
UIR has spectrum in the orbit of λ if and only if λ is
admissible, and then we have a bijection between the sets
of equivalence classes of UIR’s of G and Sλ.

Remark. Note the significant difference from the clas-
sical one in that there is a selection rule for the orbits:
admissibility.
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Admissibility as the positive energy condition

Let λ be admissible and (σ, ρσ) be a λ-admissible UIR for
Sλ. Then

−idσ(Z) = λ(Z)I (Z ∈ t0).

• Qλ(X) = (1/2)λ([X,X]) is a Lλ
0 -invariant quadratic

form on g1

• ρσ(X)2 = Qλ(X)I on C∞(σ)

It follows, as ρσ(X) is essentially self adjoint on C∞(σ),
that

• Qλ is nonnegative and the ρσ are bounded.

Theorem.Let λ ∈ T ∗
0 . Then the following are equivalent.

(i) λ is admissible

(ii) Qλ(X) ≥ 0 for all X ∈ g1.

We shall see that if G is a super Poincaré group, condi-
tion (ii) is essentially the condition that energy is positive.
Hence we refer to (ii) as the positive energy condition. We
shall sketch an outline of the proof assuming Lλ

0 is con-
nected. This is satisfied for super Poincaré groups.
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Clifford algebras associated to positive energy orbits

Let Cλ be the algebra generated by g1 with the relations

X2 = Qλ(X)1(X ∈ g1).

Even though Qλ may have a nonzero radical we call Cλ
the Clifford algebra of (g1, Qλ). If

g1λ := g1/rad Qλ

then Qλ is strictly positive on g1λ and there is a natural
map

Cλ −→ C
∼
λ = Clifford algebra of g1λ

with kernel as the ideal generated by the radical of Qλ.

We wish to build a UIR (σ, ρ) of the little group Sλ with

• ρ a representation of Cλ by bounded operators , ρ(X)
self adjoint and odd for all X ∈ g1; ρ is called a self
adjoint representation.

• σ is an even UR of Lλ
0 such that

σ(t)ρ(X)σ(t)−1 = ρ(tX) (t ∈ Lλ
0 , X ∈ g1)
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Simply connected little super groups

We shall assume that Lλ
0 is simply connected. This is

satisfied if G is a super Poincaré group and D ≥ 4. Since
Qλ is Lλ

0 -invariant we have a map

Lλ
0 −→ SO(g1λ)

which lifts to a map

Lλ
0 −→ Spin(g1λ).

There is an irreducible self adjoint representation τλ of
Cλ, finite dimensional, unique if dim(g1λ) is odd, unique
up to parity reversal otherwise. The spin representation
of Spin(g1λ) lifts to an even UR κλ of Lλ

0 , with

κλ(t)τλ(X)κλ(t)−1 = τλ(tX) (t ∈ Lλ
0 , X ∈ g1).

The assignment

r 7−→ θrλ = (σ, ρ), σ = eiλr ⊗ κλ, ρ = 1⊗ τλ

is an equivalence of categories from the category of purely
even UR’s r of Lλ

0 to the category of λ-admissible UR’s
of the little super group Sλ. It gives a bijection (up to
equivalence) between UIR’s of Lλ

0 and UIR’s of Sλ.
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When the little group is only connected

If Lλ
0 is connected but not simply connected, we assume

that it is of the form

Lλ
0 = A×′ T (A simply connected , T a torus).

Then there is a 2-fold cover

T∼ −→ T

such that
Lλ

0 −→ SO(g1λ)

lifts to

p : L∼
0 −→ Spin(g1λ), L∼

0 = A×′ T∼, p(1, ξ) = −1

where ξ is the non trivial element in the kernel of T∼ −→
T . We can lift the spin representation of Spin(g1λ) to
a UR κ′λ of L∼

0 . If we take a character χ of T∼ with
χ(ξ) = −1, and view it as a character of L∼, then

κλ = χκ′λ

takes (1, ξ) to 1, hence may be viewed as a UR of Lλ
0 .

From now on the development is the same as before.
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The fundamental multiplet

The theory now gives a bijection

r ←→ θrλ ←→ Θrλ

between UIR’s r of Lλ
0 and UIR’s Θrλ of G with spectrum

in the orbit of λ. The Θrλ represent the super particles.
The corresponding UR’s of G0 are not irreducible and
their irreducible constituents define the so-called super
multiplets. The members of the multiplet are the ordi-
nary particles that correspond to the orbit of λ and the
irreducible constituents of r ⊗ κλ. When r is the triv-
ial representation we obtain the fundamental multiplet.
They are the ordinary particles defined by the orbit of λ
and the irreducible constituents of κλ. In the case of su-
per Poincaré groups κλ can be explicitly determined and
its decomposition into irredeucibles described (in princi-
ple). When D = 4 this was done using the R-group in
the paper of Ferrara, Savoy, and Zumino.
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