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1. Super manifolds and super Lie groups

1.1. Introduction. Supersymmetry was discovered by the physi-
cists in the early 1970’s. Since then an enormous effort has been devoted
to constructing supersymmetric versions of the fundamental theories of
elementary particles, their fields, and their interactions. In these and the
other lectures in this conference an attempt is being made to give a sys-
tematic account of the mathematical aspects of supersymmetry.

Everyone knows that the idea of symmetry and the role of group the-
ory in describing it goes back to very ancient times. However it was only in
the twentieth century that it became possible to erect a fully satisfactory
mathematical theory, namely the theory of Lie groups and their repre-
sentations, that was adequate and powerful for all the applications. This
theory, based on differential and algebraic geometry, was one of the ma-
jor achievements of mathematics in the last century. But, in the 1970’s,
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the physicists, driven by the desire to explain the main features of the
physical world at the most fundamental level, came up with a rather re-
markable generalization of symmetry, in particular spacetime symmetry,
that went beyond conventional limits. Indeed, the idea that one can gen-
eralize the notion of symmetry of spacetime beyond what was known for
centuries is extraordinary, and one has to thank the physicists for their
daring and imagination to have come up with such a generalization. The
effort to build a proper mathematical foundation for the discoveries of the
physicists led to the development of an entirely new part of mathematics,
namely the theory of super manifolds and super Lie groups. This is a
development of geometry beyond its conventional limits and it is not clear
at this time in what directions it will continue in the future. Certainly
the happenings in the world of elementary particles and their fields will
have a lot to say about the future growth of what may be called super
geometry.

From the historical point of view it is remarkable that already in
1854, Riemann, in his Göttingen inaugural address, had speculated on the
structure of space in its microscopic parts, and raised the possibility that
the manifold structure may not be present in the infinitely small parts.
He also advocated the point of view that we have to look for physics to
tell us what this micro-structre should be. Here is what he wrote:

Now it seems that the empirical notions on which the metric deter-

minations of Space are based, the concept of a solid body and a light

ray, lose their validity in the infinitely small; it is therefore quite def-

initely conceivable that the metric relations of Space in the infinitely

small do not conform to the hypotheses of geometry; and in fact, one

ought to assume this as soon as it permits a simpler way of explaining

phenomena.

. . . . . . . . .An answer to these questions can be found only by starting

from that conception of phenomena which has hitherto been approved

by experience, for which Newton laid the foundation, and gradually

modifying it under the compulsion of facts which cannot be explained

by it. Investigations like the one just made, which begin from general

concepts, can serve only to ensure that this work is not hindered by

too restricted concepts, and that the progress in comprehending the

connection of things is not obstructed by traditional prejudices.

The beginnings of supersymmetry can be traced to quantum field
theory in which the Hilbert space of one particle states is an orthogonal
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direct sum H = H0 ⊕ H1; here the vectors of H0 (resp. H1) define the
states where the particle is a Boson (resp. Fermion). Supersymmetries
then became transformations that exchanged the Bosonic and Fermionic
states. In mathematical terms one may say that the Hilbert spaces of
quantum field theory are Z2-graded. The attempt to have a unified way
of treating this dual aspect of fundamental particles soon led to linear
algebra over Z2-graded spaces, namely, vector spaces with a distinguished
decomposition into odd and even subspaces. However the essential point
of departure came when physicists like Salam and others realized that one

has to construct a graded generalization of classical geometry itself so that,

after quantization, one obtains the graded Hilbert spaces so characteristic

of quantum field theory . Now the manifolds in classical geometry are non
linear and are studied using local coordinates. The ideas of Salam and
others then led to the creation of a generalization of classical geometry in
which the usual local coordinates were supplemented by a set of Grass-

mann coordinates. The heuristic meaning of the Grassman coordinates
was that they encoded the fermionic aspects of matter, in particular the
Pauli exclusion principle that is at the basis of all properties of matter in
the bulk. The automorphisms of such super manifolds were to be viewed
as the supersymmetries which on quantization led to the Fermi-Bose sym-
metries of quantum field theory. Because of the novelty and conceptual
difficulty of this type of generalization of classical geometry the notion of
supersymmetry was formulated at first only infinitesimally, based on the
concept of a super Lie algebra. Indeed, the concept of a super Lie alge-
bra itself was born in the attempts by physicists to formulate this type
of symmetry. Once the concept of supersymmetry was formulated, albeit
infinitesimally, the goals of the physical side of the theory became clear:
to work out electrodynamics, and more generally, Yang-Mills theories, and
Einstein gravity, under the umbrella of supersymmetry. The structure of
these supersymmetric theories is such that they offer many advantages
over conventional theories: softer divergences, reduction of possible La-
grangians, and so on. Although the global (as opposed to infinitesimal)
formulation of supersymmetry was implicit in the physical theories, it was
not fully revealed because of the difficulties in capturing the notion of
super Lie groups (as opposed to the technically much simpler notion of
super Lie algebras).

In order to understand properly the global geometric nature of super
manifolds and supersymmetry it is necessary to look more closely at the
nature of super geometry as a profound generalization of classical differen-
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tial geometry and the age-old problem of the structure of the space we live
in. The development of classical geometry which goes back to Euclid in
ancient times, started in the modern era with Riemann’s discovery of Rie-
mannian geometry, evolving ultimately into the modern theory of smooth
manifolds and its algebraic counterpart, namely Grothendieck’s theory of
schemes. Supersymmetry, through the concepts of a super manifold and a
super scheme, continues this evolutionary development in an entirely new
direction. It adds to the usual commuting local coordinates an additional
set of anti-commuting Grassmann coordinates which cannot be seen nu-
merically but which play a fundamental role in determining the theories
that are possible on a spacetime with such a local structure. However, the
presence of the Grassmann coordinates, which are nilpotent and invisible,
has the consequence that the mathematics of the theory of super manifolds
can be developed cleanly only by using the methods and techniques that
Grothendieck has created in modern algebraic geometry, especially the
theory of schemes. This method, called the functorial method by math-
ematicians, is in fact extremely transparent, and is the one that mirrors
completely all the calculations that the physicists make, so much so that
one can have the advantage of working in the informal way that is most
characteristic of physics, and yet lose nothing in mathematical rigor.

These lectures are in three parts. In the first part (§§1-3), which is
foundational, I shall try to make precise the concept of a super manifold
and its automorphisms, the supersymmetries, and explain the functorial
method based on the functor of points. This leads naturally to the concept
of a super Lie group and the associated concept of a super Lie algebra.
I shall then discuss the concept of a unitary representation of a super
Lie group. In the second part (§4) I shall discuss the super semi direct
products and their irreducible unitary representations. In particular I
shall set up the super version of the Mackey-Wigner machine of little
groups. In the last part (§5) I shall apply this theory to describe the super
spacetimes and the super Poincaré groups in all dimensions (Minkowski
signature), their unitary irreducible representations, and the applications
to the classification of super particles and super multiplets.

1.2. The category of ringed spaces. If X is a classical smooth (C∞ =
infinitely differentiable) manifold, then for each open set U ⊂ X we have
the R-algebra C∞(U) of smooth real functions on U . The property of
smoothness is local and the mathematical concept that captures this is
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that of a sheaf , expressed by saying that the assignment

U 7−→ C∞(U)

is a sheaf of functions. The rings C∞(U) are the local rings. If X, Y are
two smooth manifolds, a morphism, i.e., a smooth map, from X to Y is a
continuous map ψ of X to Y such that for each open U ⊂ Y , the pull-back
map ψ∗ is a homomorphism of C∞(U) into C∞(ψ−1(U)). In this way we
have the category of smooth manifolds and smooth maps. But in order to
define supermanifolds where there are Grassmann coordinates locally that
are numerically unobservable, the above notion of a sheaf of functions has
to be generalized significantly in two steps.

The first step of such a generalization is already present in the notion,
due to Grothendieck, of a ringed space. This is obtained by giving up the
idea that the local rings consist of numerical functions defined on open
sets U , but are rather abstract commutative rings, denoted usually by
OX(U). Unlike numerical functions the elements of these abstract local
rings cannot be restricted to open subsets, and so we have to build the
restriction maps as a part of the data defining a ringed space. Thus, for
open sets U, V with V ⊂ U , we have restriction maps

OX(U) −→ OX(V ), f 7−→ f
∣∣
V

with the property that if W ⊂ V ⊂ U are open, the restriction from U to
W is the same as restricting first to V and then to W . The local nature
of these “functions”is expressed by the requirement that the assignment

U 7−→ OX(U)

is a sheaf of rings. The sheaf axiom, which is the exact encoding of locality,
is the following: if U is an open set and (Ui) is an open covering of U , and
if fi ∈ OX(Ui) are given, then the following two statements are equivalent:

(a) there is a unique element f ∈ OX(U) such that f
∣∣
Ui

= fi for all
indices i

(b) for any two indices i1, i2, fi1

∣∣
Ui1

∩Ui2

= fi2

∣∣
Ui1

∩Ui2

(as elements

of OX(U1 ∩ U2)).

A ringed space is thus a pair (X,OX = O) where X is a topological space
and O is a sheaf of commutative rings on X . A morphism of a ringed space
X into a ringed space Y is a continuous map ψ : X −→ Y together with a
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pull-back map ψ∗ of OY into OX above ψ; this means that for each open
U ⊂ Y , ψ∗ is a homomorphism of OY (U) into OX(ψ−1(U)). Notice that
unlike the case when the rings of the sheaves are rings of functions, the
pull-backs ψ∗ for any open set U ⊂ Y have to be specified as part of the
data defining morphisms, and that these pull-backs have to be compatible
with restrictions. One thus obtains the category of ringed spaces and their

morphisms.

One may view the open sets in X as a category where the set of
morphisms from U to V is empty unless U ⊂ V , in which case it consists
of the natural inclusion of U in V . Then a presheaf is a contravariant
functor from the category of open sets in to the category of rings, and the
morphisms of ringed spaces are natural transformations between these
functors.

Super manifolds are generalizations of ringed spaces. In order to
introduce these we have to make the second step of the generalization
mentioned above. In the concept of a ringed space introduced above we
have made the assumption that the local rings are commutative. How-
ever, to reach the concept of a super manifold or more generally a super
geometric object such as a super ringed space, we must give up the com-
mutativity assumption on the local rings and make them more general,
at least general enough to include the algebras in the commutative and
Grassmann coordinates characteristic of the physicists’ supersymmetric
description of space, time, and matter. Moreover, in order to encode the
fact that the supersymmetries exchange the classical and Grassmann co-
ordinates, we must make sure that the local rings do not contain any more
information other than the possibility that local Grassmann coordinates
can be introduced. It turns out that the correct condition is that the local
rings are super commutative. This means that they are Z2-graded, and
commutative in the super sense, that is, instead of the relation ab = ba
between arbitrary elements of the ring, we will have ab = ±ba where the
sign is always plus unless both a and b are odd, in which case the minus
sign is taken. Thus a super ringed space is a pair (X,OX) where OX is
a sheaf of super commutative rings on the topological space X . A super
manifold is a super ringed space with the property that X is a classical
smooth manifold, and that locally the sheaf looks like the sheaf of rings
on Rp of the form

U 7−→ C∞(U) ⊗ Λ[ξ1, ξ2, . . . , ξq] = C∞(U)[ξ1, . . . , ξ1]
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where the ξ are Grassmann variables satisfying

ξ2i = 0, ξiξj + ξjξi = 0 (i, j = 1, 2, . . . , q)

so that Λ[ξ1, . . . , ξq] is the exterior algebra over R in q indeterminates.
The reader who is familiar with quantum field theory will recognize in the
requirement of super commutativity for the local rings the idea that to
make the transition from a description of classical fields to Fermi fields
one should replace the classical commutators by anticommutators.

It is clear that one can formulate the notion of a real analytic or even
a complex analytic super manifold by replacing the underlying classical
manifold by a real or complex analytic super manifold. The natural end
of this line of thought is the concept of a super scheme.

1.3. The category of super vector spaces and super algebras. If A
is an abelian group and we have a direct sum decomposition A = ⊕Ai∈I ,
we say that A is graded by I if I itself is an abelian group and AiAj ⊂
Ai+j for i, j ∈ I. The Ai are sometimes referred to as the homogeneous

components of A. The most common index group I is Z, the ring of
integers. If V is a vector space and S(V ), E(V ) are the symmetric and
exterior algebras of V , then S(V ) andE(V ) are graded in a natural manner
by Z. In supergeometry grading by Z2 = Z/2Z is fundamental; if A is
Z2-graded, the elements of A0 are called even and those of A1 are called
odd .

The infinitesimal structure of a super manifold at a point is captured
by the properties of the category of super vector spaces, namely the cat-
egory of Z2-graded vector spaces. This is a category with direct sum ⊕,
dual ∗, and tensor product ⊗, and is a prime example of a tensor category

where the objects are abstract and the category has the three operations
above with suitable functorial properties that imitate those of the vector
space category. In particular we have isomorphisms cUV ,

cUV : U ⊗ V −→ V ⊗ U

which (through various requirements such as the hexagon axiom) capture
the essential properties of the isomorphisms in the vector space category.
There the isomorphisms are given by

cUV : u⊗ v 7−→ (−1)p(u)p(v)v ⊗ u (u ∈ U, v ∈ V ).
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Here p(x) is the parity of x and is either 0 or 1. These structural as-
sumptions explain all the characteristic features of the practical use of
super vector spaces: sign rule, definition of super commutativity, super
Lie algebras, and so on. Moreover they “hide”all the signs in the various
definitions. In what follows we shall discuss a few of these. The reader
should note that almost everything makes sense for abstract tensor cate-
gories and this more general interpretation gives great insight. Finally the
field over which all vector spaces, and more generally, the tensor category,
is defined, is assumed to be of characteristic 0; in applications it is either
R or C.

For instance an algebra in the super category is an object A with a
map µ : A ⊗ A −→ A. It is commutative (which means super commu-
tative) if µ = µ ◦ cAA. For super vector spaces this means the relation
ab = (−1)p(a)p(b)ba between any two elements a, b of A, a first example of
the sign rule: in any classical formula, whenever two odd elements are in-

terchanged, there should appear a minus sign. The cUV can be generalized
to an action of the symmetric group SN in N letters on V ⊗ V ⊗ . . .⊗ V
(N factors). A Lie algebra in the tensor category is an algebra object g

with multiplication denoted by [·, ·], having the properties:

[·, ·](1 + cgg) = 0

[·, [·, ·]](1 + σ + σ2) = 0

where σ is the automorphism of g ⊗ g ⊗ g induced by the permutation
(123) −→ (312). If we unscramble these definitions we obtain the usual
working definition of a super Lie algebra. Historically, super Lie algebras
first came up in the work of the physicists when the first supersymmetric
infinitesimal transformations were written down. Gol’fand-Likhtman and
Volkov-Akulov discovered the minimal SUSY extension of the Poincaré Lie
algebra in the early 1970’s. Wess-Zumino discovered a little later, in 1974,
the first example of a simple super Lie algebra, namely the minimal SUSY
extension of the conformal Lie algebra. In 1975 V. Kac formally defined
super Lie algebras and carried out the super version of the Cartan-Killing
classification of simple Lie algebras over C.

Super Lie algebras. A Lie super algebra or super Lie algebra is a
super vector space g with a bracket [ , ] which is a morphism from g ⊗ g

to g with the following properties:

(a) [a, b] = −(−1)p(a)p(b)[b, a].
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(b) The (super) Jacobi identity

[a, [b, c]] + (−1)p(a)[p(b)+p(c)][b, [c, a]] + (−1)p(c)[p(a)+p(b)][c, [a, b]] = 0.

One can hide the signs above by rewriting these relations as we did previ-
ously, using cgg and the action of S3 on g⊗g⊗g. Thus, (b) shows that the
super Jacobi identity has the same form as the ordinary Jacobi identity
for ordinary Lie algebras. Thus the super Lie algebra is defined in exactly
the same manner in the category of super vector spaces as an ordinary Lie
algebra is in the category of ordinary vector spaces. It thus appears as an
entirely natural object. One might therefore say that a super Lie algebra
is a Lie object in the category of super vector spaces.

There is a second way to comprehend the notion of a super Lie algebra
which is more practical. The bracket is skew symmetric if one of the
elements is even and symmetric if both are odd. The super Jacobi identity
has 8 special cases depending on the parities of the three elements a, b, c.
If all three are even the definition is simply the statement that g0 is a
(ordinary) Lie algebra. The identities with 2 even and 1 odd say that g1

is a g0-module. The identities with 2 odd and 1 even say that the bracket

g1 ⊗ g1 −→ g0

is a symmetric g0-map. Finally, the identities for all three odd elements
reduce to

[a, [b, c]] + . . .+ . . . = 0 (a, b, c ∈ g1)

where + . . . + . . . is cyclic summation in a, b, c. It is not difficult to see
that the last requirement is equivalent to

[a, [a, a]] = 0 (a ∈ g1).

Thus a super Lie algebra is a super vector space g on which a bilinear
bracket [ , ] is defined such that

(a) g0 is an ordinary Lie algebra for [ , ].

(b) g1 is a g0-module for the action a 7−→ ad(a) : b 7−→ [a, b] (b ∈ g1).

(c) a⊗ b 7−→ [a, b] is a symmetric g0-module map from g1 ⊗g1 to g0.

(d) For all a ∈ g1, we have [a, [a, a]] = 0.

Except for (d) the other conditions are linear and can be understood within
the framework of ordinary Lie algebras and their representations. The
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condition (d) is nonlinear and is the most difficult to verify in applications
when Lie super algebras are constructed by putting together an ordinary
Lie algebra and a module for it satisfying (a)-(c).

If A is a super algebra, we define

[a, b] = ab− (−1)p(a)p(b)ba (a, b ∈ A).

It is then an easy verification that [ , ] converts A into a super Lie algebra.
It is denoted by AL but often we omit the suffix L. If A = End(V ), we
often write gl(V ) for the corresponding Lie algebra; if V = Rp|q we write
gl(p|q) for gl(V ).

Let g be a super Lie algebra and for X ∈ g let us define

ad X : g −→ g, ad X(Y ) = [X, Y ].

Then
ad : X 7−→ ad X

is a morphism of g into gl(g). The super Jacobi identity is just the relation

[ad X, ad Y ] = ad [X, Y ] (X, Y ∈ g).

The development of super linear algebra including the theory of mod-
ules over super commutative rings has no real surprises till we come to
the generalization of the determinant, the Berezinian. Let R be a super
commutative algebra over a field k of characteristic 0 and Rp|q be the
free module of dimension p|q over R. Let GL(p|q)(R) be the group of
invertible even morphisms of Rp|q. Then the Berezinian is a morphism
of GL(p|q)(R) into R×

0 (the group of units of the even part R0 of R) given
by

Ber(x) = det(A−BD−1C) det(D)−1

where

x =

(
A B
C D

)
.

We have
Ber(xy) = Ber(x)Ber(y).

This is the superversion of the determinant, discovered by F. A. Berezin,
one of the pioneers of super algebra and super analysis. Since the entries
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of B and C are nilpotent, x is invertible if and only if A and D, whose
entries are in the commutative ring R0, are invertible. The usual deter-
minant in the commutative category can be interpreted as the result of
an action on the top part of the exterior algebra; for the super category
the generalization of such an interpretation is homological and lies at a
deeper level.

1.4. Properties of super manifolds. We outline in brief some of the
properties of the category of super manifolds.

Functor of points. Exactly as in the theory of schemes there is
another notion of points of a super manifold which is the true geometric
one. Let X be a super manifold. For any super manifold T we write
X(T ) for the set of maps T −→ X and view the elements of X(T ) as the
T -points of X . If T is a single point viewed as a purely even manifold,
X(T ) is the set of topological points of X . X(T ) is a contravariant functor
in T and for any super manifold Y , the set Hom(X, Y ) can be recovered
precisely as the set of natural transformations X(T ) −→ Y (T ) (Yoneda’s
lemma). One can use this to define the products of super manifolds:
the product X1 × . . . × XN is the super manifold whose T -points are
X1(T )× . . .×XN (T ). In this context we introduce the usual definition of
when a contravariant functor T 7−→ f(T ) is representable, namely when
there is a super manifold M such that M(T ) = f(T ).

Morphisms. Because the local rings C∞(x1, . . . , xp)[θ1, . . . θq] are
not algebraically generated by the x1, . . . , xp, θ1, . . . θq one has to be ap-
parently careful in defining morphisms. Actually the situation is exactly
as in the algebraic case, and this is the reason why the theory of super
manifolds can be developed for the most part as the theory of classical
manifolds. If M,N is a super manifolds and x1, . . . xp, θ1. . . . θq are coor-
dinates on N , to define a morphism from M to N it is sufficient to specify
the images of th xi, θj.

Differential calculus. Because of the above result on morphisms,
one has a theory of differentiation on super manifolds that is completely
analogous to the theory on classical manifolds. The differential criteria
for a map to be a local diffeomorphism, the structure of submanifolds, etc
remain essentially the same.

Integral calculus. Let

θI = θi1θi2 . . . θik I = (iµ), {i1 < i2 < . . . < ik}.
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On
Λ = R[θ1, . . . , θq]

the integral is a linear map

a 7−→

∫
adqθ

defined by ∫
θIdqθ =

{
0 if |I| < q
1 if I =: Q = {1, 2, . . . , q}.

Integration is also differentiation:

∫
=

(
∂

∂θq

) (
∂

∂θq−1

)
. . .

(
∂

∂θ1

)
.

In the local ring with coordinates xi, θj,

∫
sdpxdqθ =

∫
sQd

px (s =
∑

I

sIθ
I).

The change of variables formula. For a morphism given locally
as

ψ : (x, θ) 7−→ (y, ϕ)

we define the Jacobian matrix

J =

( ∂y
∂x −∂y

∂θ
∂ϕ
∂x

∂ϕ
∂θ

)
.

Then ∫
s =

∫
ψ∗(s)Ber(Jψ)

for compactly supported sections of the local ring. For arbitrary mani-
folds we use partitions of unity as in the classical case. This beautiful
formula goes back to Berezin. The justification for the peculiar definition
of integration in the anticommuting variables is the change of variables
formula.

The global section functor. Finally, we have the global section

functor which associates to any C∞ manifold M the super algebra A(M)
of global sections, namely, A(M) = OM (M). It is possible to show that
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M can be recovered from A(M), more precisely, the functor of globals
sections is fully faithful.

Heuristic conception of a super manifold. In calculations with
super manifolds physicists work with coordinates and manipulate the odd
variables more or less on the same footing as the classical commuting
coordinates. The functor of points approach is essentially a way to make
sense of such calculations.

The intuitive picture of M is that of a classical smooth manifold |M |
surrounded by a grassmannian cloud. The cloud cannot be seen: in
any measurement the odd variables will be 0 because they are
nilpotent. Thus measurement sees only the underlying classical
manifold |M |. Nevertheless the presence of the cloud eventually has
consequences that are striking.

1.5. Super Lie groups and their Lie algebras. Super Lie groups are
group objects in the category of super manifolds. Thus to say that G is
a super Lie group is to say that G is a super manifold, and that we have
morphisms

µ : G×G −→ G, ι : G −→ G

that have the associativity properties usually ascribed to multiplication
and inverse, together with the identity element

e : {point} −→ G.

From the perspective of functor of points the functor G(T ) takes values
in groups, so that a super Lie group may be defined as a contravariant
functor from the category of super manifolds to the category of groups,
which is representable. The theory of super Lie groups may be built up
in the same way as the theory of classical Lie groups, but some of the
technical aspects become more involved because things have to be done
using the functor of points.

One can define on any super Lie group the notion of left (or right)
invariant vector fields, and hence the notion of a Lie algebra of a super
Lie group. This is a super Lie algebra and the correspondence between G
and its super Lie algebra g has essentially all the features of the classical
correspondence.

Super Harish-Chandra pairs. Of great importance for us is a
theorem which allows one to describe a super Lie group in more concrete
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terms. Given a super Lie group G we have a pair (G0, g) where G0 is the
classical Lie group underlying G, and g is the super Lie algebra of G. We
have

(1) Lie(G0) = g0.

(2) G0 has an action on g and its differential is the adjoint action of g0

on g.

Such pairs (G0, g) can be also introduced a priori without reference to a
super Lie group. They are then called super Harish-Chandra pairs. The
basic theorem, which is fundamental for us, is the result that

G 7−→ (G0, g)

is a covariant functor which is an equivalence of categories from the cate-
gory of super Lie groups to the category of super Harish-Chandra pairs.
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2. The category of unitary representations of a super Lie group

2.1. Introduction. The study of unitary representations of super Lie
algebras began not long after super Lie algebras were discovered and clas-
sified. However unitary representations of super Lie groups are a different
story because of the subtle manner in which a super Lie group differs from
an ordinary Lie group, and their study has lagged far behind that of the
representations of super Lie algebras. In this section I shall discuss how
to make the correct definition for a unitary representation of a super Lie
group. It seems likely that further developments of the representation the-
ory of super Lie groups will require a theory of representations of super
Lie groups in Banach and even Frechet spaces, but we shall not take up
these generalizations here.

Our point of view is that a super Lie group may be identified with
a super Harish-Chandra pair (G0, g). This is reasonable, since as we saw
earlier, the category of super Lie groups is equivalent to the category of
super Harish-Chandra pairs. Let me recall that (G0, g) is a super Harish-
Chandra pair if G0 is a classical Lie group and g is a super Lie algebra
with an action of G0 on it such that

(i) Lie(G0) = g0 (=the even part of g).

(ii) The action of G0 on g is the adjoint action of G0; more precisely,
the adjoint action of g0 on g is the differential of the action of
G0 on g.

We shall make no distinction between super Lie groups and super Harish-
Chandra pairs. If we carry over this principle to representations we are
led to the idea that a representation of a super Lie group (G0, g) may be
thought of as a triple (π0, γ,H) where π0 is an even representation of G0

in a super Banach (or Frechet) space H (this means that π0(g) is even for
all g ∈ G0), and γ is a super representation of g in H compatible with
π0. We shall only be interested in the case of unitary representations.
This means that H is a super Hilbert space, π0 is unitary, and γ satisfies
an appropriate condition that reflects the unitarity of the representation.
It turns out that one should require that γ(X) be skew self adjoint in
the super sense for all X ∈ g. There is in addition a technical point:
for X ∈ g1, [X,X ] ∈ g0 and γ([X,X ]) = 2γ(X)2, and so the operators
γ(X)(X ∈ g1) will in general be unbounded; this means that there are
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domain considerations to be taken care of. In the next section we shall
address both these points.

2.2. The basic definitions. All sesquilinear forms are linear in the first
argument and conjugate linear in the second (opposite to the physicists’
convention regrettably!). A super Hilbert space is a Z2-graded Hilbert
space H where the Hi(i = 0, 1) are closed mutually orthogonal subspaces.
If 〈x, y〉 is defined as ip(x)p(y)(x, y), then 〈x, y〉 is an even super Hermitian
form. For bounded operators T : H −→ H the adjoint with respect to

the super form is denoted by T † and is related to the usual Hilbert space

adjoint by T † = T ∗ or −iT ∗ according as T is even or odd. We define T †

for unbounded T by this rule in terms of T ∗.

In order to motivate our definition of unitary representations of super
Lie groups we begin by observing that in the even case of an ordinary Lie
group, the unitarity of a representation π of it is usually expressed at the
infinitesimal level as follows: if dπ is the representation of the Lie algebra,
then for all X in the Lie algebra the operators dπ(X) are skew Hermitian.
If we carry this over to the super setting the condition should be that
the dπ(X) should be skew super Hermitian for all X ∈ g. This means
that for X ∈ g0 we should require that dπ(X) should be skew Hermitian
while for X ∈ g1 we should have dπ(X)∗ = −idπ(X), ignoring domain
considerations. Let

ζ = e−iπ/4.

Then this last condition can be written as the condition that

ρ(X) = ζdπ(X) (X ∈ g1)

be Hermitian symmetric.Thus at the formal level we define a unitary rep-
resentation of (G0, g) to be a triple (π0, γ,H) where π0 is an even uni-
tary representation in a super Hilbert space H, γ is a representation of
g that is compatible with the action of G0 on g, with γ = dπ0 on g0

and ρ(X) = ζγ(X) Hermitian symmetric for all X ∈ g1. In other words,
unitary representations are triples (π0, ρ,H) with the appropriate compat-
ibility and symmetry conditions described above.

To make this definition precise we have to bring in the domains of the
operators ρ(X) for X ∈ g1. It is natural to start with the assumption that
they should have a common dense domain. Initially we shall suppose that
this domain is the space of all differentiable vectors for π0, but this will
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be relaxed later and we shall see that even if one starts with a different
domain, the compatibility and symmetry conditions force the operators

ρ(X)(X ∈ g1)to be well defined on the space of all differentiable vectors

for π0.

We therefore make the following definition. A unitary representa-
tion of a super Lie group (G0, g) is a triple (π0, ρ,H) with the following
properties:

(i) π0 is an even unitary representation of G0 in the super Hilbert space
H.

(ii) ρ is a linear map of g1 into the subspace of odd endomorphisms of
C∞(π0). Here C∞(π0) is the space of differentiable vectors for π0 (it
is super linear, i.e., it contains the odd and even components of each
of its elements).

(iii) ρ satisfies the requirements below:

(a) ρ(g0X) = π0(g0)ρ(X)π0(g0)−1 (X ∈ g1, g0 ∈ G0) (compatibility
of ρ with π0).

(b) ρ(X) with domain C∞(π0) is symmetric for all X ∈ g1. This
means that the adjoint ρ(X)∗ is an extension of ρ(X) for X ∈ g1.

(c) −idπ0([X, Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X)(X, Y ∈ g1) on C∞(π0).

Theorem 1. If (π0, ρ,H) is a unitary representation of (G0, g), then for

any X ∈ g1 the operator ρ(X) with domain C∞(π0) is essentially self

adjoint, and

π : X0 +X1 7−→ dπ0(X0) + ζ−1ρ(X1)(X0 ∈ g0, X1 ∈ g1)

is a super representation of the super Lie algebra g in C∞(π0) compatible

with π0.

The choice of C∞(π0) as the domain for the operators ρ(X), while
natural, might seem arbitrary. For instance one might use the analytic

vectors instead of the differentiable ones. It turns out that this objection
is illusory, i.e., any alternative system leads always to a unitary represen-
tation in the above sense. This makes it clear that in spite of appearances
our definition of a unitary representation of a super Lie group is a very vi-
able notion. To make these remarks more precise let us consider a system
(π0, ρ,B,H) with the following properties.

(i) B is a dense super linear subspace of H invariant under π0, π0 being
an even unitary representation of G0 in the super Hilbert space H.
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Moreover B ⊂ D(dπ0(Z)) for all Z ∈ [g1, g1], D(A) denoting the
domain of the operator A. Here for any Z ∈ g0, we write −idπ0(Z)
for the unique self adjoint operator in H such that π0(exp tZ) =
exp tdπ0(Z)) for all t ∈ R.

(ii) Each ρ(X) for X ∈ g1 is a linear operator in H with B ⊂ D(ρ(X))
such that X 7−→ ρ(X) is a linear map of g1 into Hom(B,H). More-
over,

(a) ρ(X) is symmetric for all X ∈ g1.

(c) ρ(X)Bi ⊂ Hi+1(mod 2) for all X ∈ g1.

(d) ρ is compatible with π0, i.e.,

π0(g)ρ(X)π0(g)−1 = ρ(gX)

on B for g ∈ G0, X ∈ g1.

(e) ρ(X)B ⊂ D(ρ(Y )) for all X, Y ∈ g1 and

−idπ0([X, Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X)

for all X, Y ∈ g1 on B.

Theorem 2. Let (π0, ρ,B,H) be as above. Then for any X ∈ g1, ρ(X) is

essentially self adjoint on B and C∞(π0) ⊂ D(ρ(X)). Let us write ρ(X)
for the restriction of ρ(X) to C∞(π0). Then (π0, ρ,H) is a unitary rep-

resentation of (G0, g). If (π0, ρ
′,H) is a unitary representation of (G0, g)

such that B ⊂ D(ρ′(X)) and ρ′(X) restricts to ρ(X) on B for all X ∈ g1,

then ρ′ = ρ.

Remark. For operators A,B in H write A ≺ B if D(A) ⊂ D(B) and
B coincides with A on D(A). Let A be a densely defined symmetric
operator which is essentially self adjoint. Then A, the closure of A (which
exists because A is symmetric), is the unique self adjoint extension of A;
moreover, if B is any symmetric operator such that A ≺ B, we have A = B
so that A ≺ B ≺ A = B. Thus, as a consequence of the first statement in
Theorem 2 we see that extension by closure of ρ(X) is self adjoint and its
domain contains C∞(π0). This is the key fact in the theorems.

In the classical theory of representations of semi simple or reductive
Lie groups the K-finite vectors play a decisive role. The space of K-finite
vectors, although in general a subspace of the space of analytic vectors, is
not invariant under the group but only under the Lie algebra. So it would
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appear useful to have a variant of Theorem 2 where B is a subspace of
Cω(π0), the space of analytic vectors of π0, with B stable under g rather
than G0. We then have the following theorem.

Theorem 3. (i) If (π0, ρ,H) is a unitary representation of (G0, g), then

the ρ(X) for X ∈ g1 map Cω(π0) into itself, and π as in Theorem 1is a

representation of g in Cω(π0). (ii) Let G0 be connected, let B be a dense

super linear subspace of Cω(π0), and let π be a representation of g in B
such that π(Z) ≺ dπ0(Z) for all Z ∈ g0 and ρ(X) = ζπ(X) symmetric

for X ∈ g1. Then for any X ∈ g1, ρ(X) is essentially self adjoint on B
and C∞(π0) ⊂ D(ρ(X)). Let us write ρ(X) for the restriction of ρ(X) to

C∞(π0). Then (π0, ρ,H) is a unitary representation of (G0, g). Finally, if

(π0, ρ
′,H) is a unitary representation of (G0, g) such that B ⊂ D(ρ′(X))

and ρ′(X) restricts to ρ(X) on B for all X ∈ g1, then ρ′ = ρ.

With these theorems we have realized our objective, namely to in-
troduce a viable category of unitary representations of a super Lie group.
A morphism from Π = (π0, ρ,H) to Π′ = (π′

0, ρ
′,H′) is a bounded linear

map A(H −→ H′) that intertwines π0, π
′
0 and ρ, ρ′. Note that as soon

as A intertwines π0 and π′
0, it maps C∞(π0) into C∞(π′

0), and so the
statement that A intertwine ρ, ρ′ makes sense. If A an isomorphism and
unitary we speak of unitary equivalence. Π′ is a subrepresentation of Π
if H′ is a closed graded subspace of H invariant under π0, H′ ∩ C∞(π0)
is invariant under ρ, and π′

0 (resp. ρ′) is the restriction of π0 (resp. ρ)
to H′ (resp. H ∩C∞(π0)). If Π′ is a proper nonzero subrepresentation of

Π, H′′ = H′⊥, and π′′
0 is the restriction of π0 to H′′, then C∞(π0) is the

direct sum od C∞(π′
0) and C∞(π′′

0 ), and it follows from the essential self
adjointness of ρ(X)(X ∈ g1) that C∞(π′′) is stable under all the ρ(X); if
ρ′′ is the restriction of ρ to C∞(π′′

0 ), then Π′′ := (π′′
0 , ρ

′′,H′′) is a unitary
representation of (G0, g), and Π = Π′ ⊕ Π′′. Π is irreducible if the only
subrepresentation of Π that is non zero is Π itself. We have the following
theorem.

Theorem 4. (i) Π is irreducible if and only if Hom(Π,Π) = C. (ii)
Let Π be a unitary representation of (G0, g) and let PX be the spectral

measure of ρ(X) for X ∈ g1. If H′ is a closed super linear subspace of

H′, then the following statements are equivalent: (a) H′ is stable under

π0 and H′ ∩ C∞(π0) is stable under all ρ(X)(X ∈ g1) (b) H′ is stable

under π0 and all the projections PX
F , F Borel and ⊂ R. In particular, Π
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is irreducible if and only if there is no nonzero proper closed super linear

subspace invariant under π0 and all PX
F (X ∈ g1).

2.3. Some comments on the proofs. The most striking aspects of the
above theorems are the essential self adjointness of the ρ(X)(X ∈ g1) and
the fact that C∞(π0) ⊂ D(ρ(X)). It is clearly because of these facts that
no matter what subspace B we start from, all the operators ρ(X) extend
naturally to C∞(π0) and we obtain a unitary representation in the precise
sense we have defined. I shall try to explain the idea behind proving these
facts.

First let us introduce some definitions. If A is a closable operator
and D ⊂ D(A) a dense linear subspace, we say that D is a core for A
if A is the closure of its restriction to D. Let A be symmetric. We say
that a vector ψ ∈ D(A) is analytic for A if ψ ∈ D(An) for all n and the
series

∑
n t

n||Anψ||/n! converges for some t > 0. It is a well known result
that if A ⊂ D(A) contains a dense set of vectors analytic for A then A is
essentially self adjoint and A is a core for A.

In SUSY quantum mechanics the key assumption is that the Hamilto-
nian H = L2, L being an odd symmetric operator. It is usually suggested
that this assumption implies the positivity of the energy operator H. Ac-
tually this condition has deep consequences, not just to the positivity of
the energy but to our entire theory. Let us consider the context of Theo-
rem 2. Then, for X ∈ g1, we have on B,

2ρ(X)2 = ρ([X,X ]) = −idπ0([X,X ]).

Now
Ut = π0(exp t[X,X ]) = eitK

where K is self adjoint by Stone’s theorem. Under our hypotheses

K = 2ρ(X)2

on B. The key lemma in the proofs of the theorems stated above is the
following.

Lemma. Let H be a self adjoint operator and Ut = eitH . Let A ⊂
D(H) be a dense linear subspace. Assume that A satisfies one of the two

conditions: (a) A is invariant under the one-parameter group (Ut) (b) A
contains a dense set of vectors analytic for H. We then have the following.
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(i) A is a core for H.

(ii) Let L be a symmetric operator with A ⊂ D(L) such that LA ⊂
D(L) (so that A ⊂ D(L2)) and L2 coincides with H on A. Then L is

essentially self adjoint and A is a core for it. Moreover, H = L
2
. In

particular, H ≥ 0, D(H) ⊂ D(L).

Remark. This lemma not only gives the precise conditions under which
we can say that a SUSY Hamiltonian is positive, but also shows how the
“odd square root”of the Hamiltonian is itself controlled by the Hamilto-
nian.
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3. Super systems of imprimitivity on

purely even super homogeneous spaces

3.1. Special subgroups and associated super systems of imprim-
itivity. For ordinary Lie groups the central results of representations of
semi direct product Lie groups follow as an application of the imprimitivity

theorem which establishes a functorial equivalence between the category
of unitary representations of a closed subgroup H0 of the Lie group G0

and systems of imprimitivity for G0 based on Ω = G0/H0. Actually the
theory is valid in the wider category of locally compacts second countable
groups but we are interested only in the case of Lie groups. Also we shall
assume that G0/H0 has a G0-invariant measure although this is not an
essential restriction. A system of imprimitivity (SI) for G0 based on Ω is
noting more than a representation of the G0-action on Ω. More precisely
it is a pair (π, P ) that consists of a unitary representation π of G0 in a
Hilbert space H and a projection valued measure P on Ω in H such that

π(g)PEπ(g)−1 = PgE (g ∈ G0, E Borel ⊂ Ω).

If σ is a unitary representation of H0 in a Hilbert space K, then one can
associate canonically to σ a SI (πσ, P σ) for G0 based on Ω: πσ is the
representation of G0 induced by σ and P σ is the natural projection valued
measure on Ω in the space of πσ. Here we must recall that the Hilbert
space H of πσ is the space of (equivalence classes of) measurable functions
f from G0 to K such that (a) f(xξ) = σ(ξ)−1f(x) for each ξ ∈ H0 for
almost all x and (b)

∫
|f(x)|2Kdx̄ <∞ (in view of (a) the K-norm of f(x)

is really defined on Ω, and dx̄ is the invariant measure on Ω.). For any
Borel E ⊂ Ω the projection P σ

E is the map f 7−→ χEf (f ∈ H) where
χE is the characteristic function of E. The imprimitivity theorem is the
statement that

σ 7−→ (πσ, P σ)

is a functorial equivalence from the category of unitary representations of
H0 to the category of SIs based on Ω. It is well known how this theo-
rem leads in a straightforward manner to the classification of irreducible
unitary representations of regular∗ semi direct products.

∗ The semi direct product T0 ×′ L0 is regular, T0 being an abelian group, if the

action of L0 on the dual group T̂0 is nice in the Borel sense, i.e., there is a Borel cross

section for the orbits.
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Our intention in this section is to formulate a generalization of this
result in the super setting. Exactly as in the classical theory such a gener-
alization will lead to a classification of irreducible unitary representations
of super semi direct products. To this end we work with a super Lie group
(G0, g) and a closed super subgroup (H0, h). We shall assume that the sub-
group is special , namely that h1 = g1, or that the odd part of h coincides

with the odd part of g). This means that the associated homogeneous space

is classical, namely Ω = G0/H0. At this moment it is not entirely clear
how to remove this restriction. However this condition is still adequate
enough to provide a solution to our main problem, that of classifying the
irreducible unitary representations of regular super semi direct products.

3.2. The super imprimitivity theorem. A super system of imprimi-

tivity (SSI) based on Ω = G0/H0 is a system (π, ρπ,H, P ) where (π, ρπ,H)
is a unitary representation of the super Lie group (G0, g), (π,H, P ) is a
classical system of imprimitivity for G0 based on Ω, and ρπ commutes
with P ; this means that the spectral projections of the ρπ(X)(X ∈ g1)
commute with the projections PE(E Borel ⊂ Ω). The last condition,
characteristic of the fact that we are dealing with special SSIs, reduces
in practice to verifying the following: if B is a common core for all the
ρπ(X)(X ∈ g1) which is left invariant by all the ρ(X) and the operators
M(u) :=

∫
Ω
udP where u ∈ C∞

c (Ω), then the ρπ(X) and M(u) commute
on B in the usual sense.

We shall now associate to any unitary representation (σ, ρσ,K) of the
super Lie group (H0, h), a SSI of (G0, g0). To this end we must define π
and ρπ. We shall use the flexibility provided by Theorem 3.2 and define
the ρπ(X) on a suitable space B. We define π by

π = IndG0

H0
σ

in the Hilbert space H introduced earlier. Let B = C∞
c (π), the space of

C∞ vectors for π in H which, as functions from G0 to K, are smooth and
have compact support mod H0. It can be shown (as a consequence of the
Dixmier-Malliavin theorem) that B is precisely the space of all smooth
functions f from G0 to K such that f(xξ) = σ(ξ)−1f(x)(x ∈ G0, ξ ∈ H0)
and have compact support mod H0. It is then easy to see that tthe values
of any f ∈ |bb lie in C∞(σ) so that all the operators ρσ(X)(X ∈ h1 = g1)
act on all the values of any f ∈ B. We define

(ρπ(X)f)(x) = ρσ(x−1X)f(x) (f ∈ B, x ∈ G0).
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Of course the projection valued measure is the standard one associated to
π. We then have the following theorem.

Theorem 1. (π, ρπ,B, P ) is a SSI for the super Lie group (G), g) based

on Ω = G0/H0. The assignment

(σ, ρσ,K) 7−→ (π, ρπ, P )

is a functorial equivalence of categories from the category of unitary rep-

resentations of (H0, h1) to the category of SSIs for (G0, g) based on Ω =
G0/H0. In particular we have a bijection from irreducible unitary repre-

sentations of (H0, h) with irreducible SSIs for (G0, g) based on G0/H0.
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4. Representations of super semi direct products

4.1. Super semi direct products. We start with a classical semi direct
product G0 = T0 ×

′ L0 where T0 is a real finite dimensional vector space
(the spacetime translation group) and L0 a closed unimodular subgroup
of GL(T0) acting naturally on T). We shall assume that the semi direct
product is regular , namely, that for the action of L0 on the dual T ∗

0 there
is a Borel cross section; this is equivalent to saying that all the L0-orbits in
T ∗

0 are locally closed (Effros). Let t0 = Lie(T0), l0 = Lie(L0), g0 = Lie(G0).

By a super translation group we mean a super Lie group (T0, t) where
t0 acts trivially on t1. In particular this means that [t1, t1] ⊂ t0. Suppose
now that t1 is an L0-module and that the super commutator map a, b 7−→
[a, b] is L0equivariant from t1 × t1 into t0. Then g := l0 ⊕ t is a super Lie
algebra with g0 = l0 ⊕ t0 = Lie(G0), g1 = t1. The super Lie group S :=
(G0, g) is the super semi direct product of L0 and the super translation
group (T0, t). For any closed subgroup S0 ⊂ L0 we have H0 = T0S0 is a
closed subgroup of G0 and (H0, h) is a special super Lie subgroup of (G0, g)
where h = h0⊕ t1, h0 being Lie(H0); if s0 = Lie(S0), then h) = s0⊕ t0. We
are interested in describing all the irreducible unitary representations of
(G0, g). The super Poincaré groups that occur in the physical literature
are special cases of the above construction where L0 is an orthogonal group
(rather its two-fold cover, the spin group) with respect to a nondegenerate
quadratic form on t0, and t1 is chosen as a spin module for L0. But in this
section we shall discuss the general case.

The aim is to show that the irreducible unitary representations of
the super semi direct product may be classified by the Frobenius-Mackey-
Wigner method of little groups. For any λ ∈ T ∗

0 let Lλ
0 be the stabilizer of

λ in L0 and let
gλ = t0 ⊕ lλ0 ⊕ g1, lλ0 = Lie(Lλ

0 ).

We shall refer to the super Lie group Sλ := (T0L
λ
0 , g

λ) as the super little

group at λ. It is a special sub super Lie group of S = (G0, g). Given a
unitary representation (σ, ρσ) of Sλ, we shall say that it is λ-admissible

if σ(t) = eiλ(t)I for all t ∈ T0; λ itself is called admissible if there is an
irreducible unitary representation of Sλ which is λ-admissible. Let

T+
0 =

{
λ ∈ T ∗

0

∣∣∣∣λ admissible

}
.
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It is easy to see that T+
0 is L0-invariant.

Given a unitary representation (π, ρπ) of the super Lie group S we
obtain a spectral measure on P on T ∗ by Fourier transformation of the
restriction of π to T0:

π(t) =

∫

T∗

eiλ(t)dP (λ) (t ∈ T ).

If E is any L0-invariant Borel set, the spectrum of the unitary represen-
tation is said to be in E if PE = I.

Theorem 1. The spectrum of every irreducible unitary representation of

the super Lie group S = (G0, g) is in some orbit in T+
0 . For each orbit in

T+
0 and choice of λ in that orbit, the assignment that takes a λ-admissible

unitary representation γ := (σ, ρσ) of Sλ into the unitary representation

Uγ of (G0, g) induced by it, is a functor which is an equivalence of cate-

gories between the category of the λ-admissible unitary representations of

Sλ and the category of unitary representations of (G0, g) with their spectra

in that orbit. Varying λ in that orbit changes the functor into an equiva-

lent one. In particular this functor gives a bijection between the respective

sets of equivalence classes of irreducible unitary representations.

Proof (Sketch). Since T0 acts trivially on g1 it follows that for any
unitary representation (π, ρπ) of S the operators π(t)(t ∈ T0) commute
with ρπ(X)(X ∈ g1) and so the spectral measure P and ρπ commute
with each other. If (π, ρπ) is irreducible and E is a L0-invariant Borel
set, PE commutes with π also and so PE = 0 or I. Thus, by regularity
of the semi direct product, PO = I for some orbit O. If λ ∈ O we can
view P as a projection valued measure on L0/L

λ
0 . Clearly (π, ρπ, P ) is

a SSI for S based on L0/L
λ
0 . By the super imprimitivity theorem this

is the SSI associated to a unitary representation (σ, ρσ) of Sλ. From the
classical theory one knows that σ(t) = eiλ(t)I for all t ∈ T0. If (π, ρπ) is
irreducible, (σ, ρσ) is irreducible, and so λ is admissible, i.e., λ ∈ T+.

Remark. The reader should notice the sharp difference between the clas-
sical and super symmetric situations. In the classical theory, all orbits
in T ∗

0 are allowed, while in the SUSY case only those in T+
0 are. Actu-

ally, when everything is even, T+
0 = T ∗

0 ; in fact, given any λ, the map
tx 7−→ eiλ(t)(t ∈ T0, x ∈ Lλ

0 ) is well defined and gives an one dimensional
irreducible unitary representation of T0L

λ
0 , thus showing that λ ∈ T+

0 . But

26



when super symmetry is present, the restriction to T+
0 is a genuine selec-

tion rule. We shall see below that T+
0 may be interpreted as the condition

of the positivity of energy . This is very different from the classical the-
ory where representations of negative energy (tachyons) are theoretically
possible and have to be excluded ad hoc.

Suppose λ ∈ T ∗
0 and (σ, ρσ) is a unitary representation of Sλ such

that σ(t) = eiλ(t)I for all t ∈ T0. Then

−idσ(Z) = λ(Z)I (Z ∈ t0).

On the other hand, if X1, X2 ∈ g1, then [X1, X2] ∈ t0. Thus

[ρσ(X1), ρσ(X2)] = 2Φλ(X1, X2)I (X1, X2 ∈ g1)

where Φλ is the symmetric bilinear form on g1 × g1 defined by

Φλ(X1, X2) = (1/2)λ([X1, X2]).

If we now take X1 = X2 = X we see that

ρσ(X)2 = Qλ(X)I, Qλ(X) = Φλ(X,X) (X ∈ g1)

on C∞(σ). Since ρσ(X) is essentially self adjoint on C∞(σ) it follows that

Qλ(X) ≥ 0 (X ∈ g1).

This is thus a necessary condition that there should exist a unitary repre-
sentation (σ, ρσ) with σ(t) = eiλ(t)I for all t ∈ T0.

Theorem 2. For a λ ∈ T ∗
0 the following are equivalent.

(a) There is an irreducible unitary representation (σ, ρσ) of Sλ with

σ(t) = eiλ(t)I for all t ∈ T0.

(b) There is a unitary representation (σ, ρσ) of Sλ with σ(t) = eiλ(t)I
for all t ∈ T0.

(c) Qλ(X) ≥ 0 for all X ∈ g1.

Remark. When the super semi direct product is specialized to the super
Poincaré group, the condition Qλ ≥ 0 is the same as the positivity of the
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energy . This is the reason why we refer to this condition as the positive
energy condition in the general case.

4.2. Clifford structure when Qλ ≥ 0. To complete the proof of
Theorem 2 we must show that ifQλ ≥ 0 then there is an irreducible unitary
representation (σ, ρσ) of Sλ sich that σ(t) = eiλ(t)I for all t ∈ T0. Actually
it is necessary to construct all such so that we can get a description of
all irreducible unitary representations of the super semi direct product
S = (G0, g). This depends on exploiting the Clifford structure that arises
from the quadratic form Qλ.

The form Qλ is invariant under  Lλ
0 . Moreover the condition ρσ(X)2 =

Qλ(X)I shows that the operators ρσ(X) are bounded self adjoint so that
the situation is much nicer than for the big group. We define Cλ as the
quotient of the tensor algebra generated by g1 with respect to the relations
X2 = Qλ(X)(X ∈ g1). If Qλ is non degenerate this would be the Clifford
algebra associated to the quadratic form Qλ; by abuse of language we shall
refer to it as the Clifford algebra associated to Qλ even if Qλ is singular.

Clearly ρσ may now be viewed as a representation of Cλ in a super
Hilbert space K such that ρσ(X) is odd and self adjoint for all X ∈
g1 (SA representations). Now Lλ

0 acts on g1 and leaves Qλ invariant.
Hence its action lifts to an action x, a 7−→ x[a] on Cλ. Then the unitary
representations of Sλ are pairs (σ, τ) where tau is an SA representation
and σ a unitary representation in the space of τ such that

τ(x[a]) = σ(x)τ(a)σ(x)−1 for a ∈ Cλ, x ∈ Lλ
0 .

While there is nothing really difficult in the determination of the pairs
(σ, τ), it is technically involved and I do not want to go into all the details.
To simplify matters I shall assume the following condition is satisfied:

Lλ
0 ≃ A×′ T , A simply connected and normal, T a torus. (C)

This condition may look artificial but in its defense let me say that it is
satisfied when S = (G0, g) is a super Poincaré group. It is also close to
the exact conditions needed for the lemma below.

Since Qλ may have a radical, say rλ, we introduce

g1λ = g1/rλ.
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Then Qλ defines a non degenerate quadratic form on g1λ which we denote
by Q∼

λ . Since Lλ
0 preserves Qλ and is connected, we have a map

j : Lλ
0 −→ SO(g1λ).

Then there are two possibilities:

(1) The map j lifts to a map (this is the case when Lλ
0 is simply connected)

ĵ : Lλ
0 :−→ Spin(g1λ).

(2) j does not lift as in (1) but there is a two-fold cover Hλ of Lλ
0 such

that j lifts to a map

ĵ : Hλ :−→ Spin(g1λ).

In this case the covering map

Hλ −→ Lλ
0

has kernel {±1}. We write ξ for the non trivial element of this kernel.
In this case we can take Hλ = A ×′ T∼ where T∼ is a torus which is a
two-fold cover of T , and ξ = (1, t). Then there is a character χ of Hλ such
that χ(ξ) = −1.

Lemma 1. We have the following.

(a) There exist irreducible SA representations of Cλ. These are finite

dimensional, unique if dim(g1λ) is odd, unique up to parity reversal

if dim(g1λ) is even.

(b) Let τλ be an irreducible SA representation of Cλ. Then, in the pres-

ence of condition (C) there is an even unitary representation κλ of

Lλ
0 in the space of τλ such that

τλ(x[a]) = κλ(x)τλ(a)κλ(x)−1 (x ∈ Lλ
0 , a ∈ Cλ).

κλ is unique up to multiplication by a character of Lλ
0 .

Proof (Sketch). (a) is a variant of the standard theory of Clifford alge-
bras. Let us now look at (b). The spin group Spin(g1λ) is imbedded inside
the even part of the Clifford algebra of g1λ and τλ may be viewed as a
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representation of this Clifford algebra. Its restriction, u say, to the spin
group is than an even unitary representation of the spin group compatible
with the action of g1λ. If now Lλ

0 is simply connected, or more generally,
if j lifts to a map ĵ as in case (1), we may take κλ = u ◦ u. If ĵ exists

only on a two-fold cover, κ′λ = u ◦ ĵ defines the unitary representation we
seek. It may happen that κ′λ(ξ) = −1 (it is ±1); in this case changing κ′λ
to χκ′λ we get a unitary representation which descends to Lλ

0 , which we
may take as κλ.

Theorem 2. Let λ be such that Qλ ≥ 0 and suppose that condition (C)
on Lλ

0 is satisfied. Let ρλ = τλ
∣∣
g1

, and let σλ = eiλκλ be the unitary

representation of T0L
λ
0 . We then have the following.

(a) (σλ, ρλ) is an irreducible unitary representation of the little super

group Sλ which restricts to eiλ on T0.

(b) The unitary representations (σ, ρσ) restricting to eiλ on T0 are pre-

cisely those of the form

σ = θ ⊗ κλ, ρσ = 1 ⊗ ρλ

where θ is a purely even unitary representtaion of Lλ
0 .

(c) The assignment

θ 7−→ (θ ⊗ eiλκλ, 1 ⊗ ρλ)

is an equivalence of categories from the category of purely even unitary

representations of Lλ
0 to the category of unitary representations of the

little super group Sλ which restrict to eiλ on T0.

Remark 1. We have thus reached the situation where the irreducible
unitary representations functorially determine the irreducible unitary rep-
resentations of Sλ which restrict to eiλ on T0. Theorems 4.1.1, 4.1.2, and
4.2.2 complete the theory of unitary representations of regular super semi
direct products.

Remark 2. The pair (eiλκλ, ρλ) is called the fundamental representation

of Sλ. Once it is determined, the whole structure of the irreducible uni-
tary representations of the original super semi direct product S is made
transparent. The determination of κλ and the verification of the condition
C are thus the crucial ingredients that remain to be described in the super
Poincaré case.
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5. Representations of super Poincaré groups and

multiplet structure of super particles

5.1. Super Poincaré groups. Super Poincaré groups are super semi
direct products that are super symmetric extensions of the Poincaré group
in D(≥ 4) spacetime dimensions. More precisely, in terms of the earlier
notation we take

(a) T0 = R1,D−1, the Minkowski space of signature (1, D−1) with D ≥ 4.
The Minkowski bilinear form is

〈x, y〉 = x0y0 −
∑

1≤i≤D−1

xiyi.

(b) L0 = Spin(1, D − 1) which is the simply connected covering group of
SO(1, D − 1). It is actually a 2-fold cover.

(c) g1 is a spin module for L0, i.e., a direct sum over C of irreducible
spin modules.

In order to have a super translation group we saw that we need a non zero
symmetric L0-equivariant bilinear form

g1 × g1 −→ t0, a, b 7−→ [a, b] (B).

It can be proved that when g1 is a spin module for L0, such forms always
exist. The classification of these forms then provides a classification of all
super Poincaré groups that extend the classical Poincaré group of signature
(1, D − 1).

The simplest situation is when g1 is irreducible over R. In this case
the space of forms (B) is of dimension 1. Let

Γ+ =

{
u ∈ t0

∣∣∣∣u0 > 0, 〈u, u〉 ≥ 0

}
.

Thus Γ+ is the closed forward light cone, origin being excluded , in t0. It
turns out that we can choose as a basis for this one dimensional space a
form with the following positivity property :

[X,X ] ∈ Γ+ (0 6= X ∈ g1).
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This is remarkable because it says that for any non zero form A satisfying
(B), the values of the quadratic map X 7−→ A(X,X)(X 6= 0) takes values
either in the forward light cone or the backeard light cone, hence by con-
nectitivity, in one of the two entirely . It is not difficult to show that (P)
is equivalent to

〈v, [X,X ]〉 > 0 for all 0 6= X ∈ g1, v ∈ (Γ+)0 (P)

where the index 0 denotes interior. Using this basis element, or any other
which is a positive multiple of it, we have a super Poincaré algebra (hence
a super Poincaré group) in which the positivity condition (P) is automat-
ically satisfied. A consequence of this is the result that in any unitray
representation of the super Poincaré group, the elements of Γ+ which can
be written as sums

∑
j [Xj , Xj](Xj ∈ g1) have nonnegative spectra. This

is a form of the principle of positivity of energy.

Of course it is not necessary to assume that g1 is an irreducible spin
module. If N is the number of irreducible spin modules in g1 physicists
speak of N -extended super symmetry when the odd commutator map

g1 × g1 −→ t0, X,X 7−→ [X,X ] (0 6= X ∈ g1)

takes values in Γ+. The definition of super Poincaré algebra assumes this
positivity. One can then classify all super Poincaré algebras. We shall not
go into this classification here.

5.2. Representations of super Poincaré groups.The theory of Chap-
ter 5 applies at once for S = (G0, g) a super Poincaré group. Because of
the Minkowski form we can identify t∗0 with t0 itself. For p ∈ Γ+ the
stabilizer Lp

0 is given by

Lp
0 =






Spin(1, D − 1) if 〈p, p〉 > 0
RD−2 ×′ Spin(D − 2) if 〈p, p〉 = 0, p0 > 0
L0 if p = 0.

Thus, except when D = 4, p0 > 0, 〈p, p〉 = 0, the stabilizer Lp
0 is simply

connected; in the exceptional case of zero mass in 4 space time dimensions,
the stabilizer is R2 ×′ T where T is a circle group and so still falls within
the condition (C) described in Section 5.2.

The key lemma which shows the nature of T+ in this case is the
following.
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Lemma 1. We have

Qp ≥ 0 ⇐⇒ p0 ≥ 0, 〈p, p〉 ≥ 0.

Proof (Sketch). If v ∈ (Γ+)0, 〈v, [X,X ]〉 > 0 for all 0 6= X ∈ g1 by the
structure of the super Poincaré algebra (positivity of the odd commuta-
tors). By going to the limit we see that for p ∈ Γ+, 〈p, [X,X ]〉 ≥ 0 for
all X ∈ g1. This is just the statement that Qp ≥ 0. For the converse,
suppose that Qp ≥ 0 but 〈p, p〉 < 0. Then Lp

0 ≃ Spin(1, D − 2). On the
other hand we have a map Lp

0 −→ SO(g1p). Since Spin(1, D− 2) is simple
and non compact it cannot have a nontrivial map into a compact group.
Hence Lp

0 acts trivially on g1p. Thus the action of Lp
0 on g1 contains the

trivial representation of Lp
0. But L0 acts as a spin module and it is not

difficult to show that the action of Lp
0 is a sum of spin modules, and so

cannot contain the trivial representation.

Theorem 2. The irreducible unitary representations of a super Poincaré

group S = (G0, g) are parametrized by the orbits of p with p0 ≥ 0, 〈p, p〉 ≥
0, and for such p, by irreducible unitary representations of the stabilizer

Lp
0 at p. Let τp be an irreducible SA representation of the Clifford algebra

Cp and let κp be the representation of Lp
0 in the space of τp defined earlier.

Then, for any irreducible unitary representation θ of Lp
0 the pair (σ, ρσ)

defined by

σ = eipθ ⊗ κp, ρσ(X) = 1 ⊗ τp(X) (X ∈ g1)

is an irreducible unitary representation of the little super group Sp =
(T0L

p
0, t0 ⊕ l

p
0 ⊕ g1), and all irreducible unitary representations of Sp are

obtained in this manner. The unitary representation Θpθ of the super Lie

group S induced by it is irreducible and all irreducible unitary representa-

tions of S are obtained in this manner, the correspondence (p, θ) 7−→ Θpθ

being bijective up to equivalence.

Remark 1. The reader can see that in the presence of supersymmetry,
only representations of positive energy come in, in contrast to the classical
situation where we could not exclude the tachyonic orbits. Otherwise the
reduction to the little group is exactly as before, parametrized by the
irreducible unitary representations of Lp

0, except that it has to be tensored
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with the pair (κp, τp, ). Thus the determination of (κp, τp) is the basic new
ingredient.

Remark 2. The correspondence with representations of the little group
allows us to treat zero mass super particles with infinite spin, somehting
not available in the physics literature. Also the SUSY transformations are
given on the full space of super particle states, not only on those with a
fixed momentum

5.3. Multiplets and fundamental multiplet. The irreducible unitary
representations of the super Poincaré group are the models for super par-

ticles. If we restrict the representation of G0, it will in general decompose
into a direct sum of particles and this set is called the multiplet defined
by the super particle. The operators ρ(X)(X ∈ g1) then give the trans-
formations between particles of different spin parities. The fundamental
muptiplet is the one corresponding to the trivial representation of Lp

0.
The irreducible unitary representations into which κp splits then define
the classical particles of the fundamental multiplet.

The calculation of κp can be carried out very explicitly. When D = 4
and g1 is the Majorana spinor, the multiplet with mass m > 0 has the
spins {

{j, j, j + 1/2, j − 1/2(j > 0)
{0, 0, 1/2}(j = 0)

.

For m = 0 the mulitplet has spins (helicities)

{n/2, (n+ 1)/2}.

These results are the source for the prediction that supersymmetry forces
the known elementary particles to have super partners. Whether these
partners can be seen when the new LHC opens is at best speculative,
since we do not know the threshold of supersymmetry breaking in the
development of the early universe.

Summary. In going over from the representation theory of the Poincaré
group to that of the super Poincaré group, the little group method remains
valid. The additional feature is that the space of the representation of
the little super group is Kclassical ⊗ KClifford. The second factor carries
the action of the odd operators of the little super group, and the even
representation of the little super group is θ ⊗ κp. Thus the states of the
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little group are the classical states tensored with the Clifford states; on
the latter both the odd operators and the classical part of the little super
group act.

This theory allows a discussion of super particles of mass 0 with in-
finite spin, which is new. The SUSY transformations of particle states
are globally given, which is also new; the usual formulas are restricted to
states of fixed momentum
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