FINITE APPROXIMATION OF WEYL SYSTEMS
T. DIGERNES, E. HUSSTAD, AND V. S. VARADARAJAN

ABSTRACT. The functional analytic notion of approximation of Weyl systems, as intro-
duced by Digernes and Varadarajan, is considered. It is shown that the Weyl system
on any second countable locally compact abelian group can be approximated by suitably
chosen finite Weyl systems (Weyl systems on finite abelian groups).

1. INTRODUCTION

There has in recent years been considerable interest in quantum theories that are anal-
ogous to the conventional one, but differ from it in some of their main features. We
mention, without aiming at completeness, the following works: Finkelstein [5], and Chan,
Finkelstein [2] on g-deformed quantum theories; Vladimirov [14], and Vladimirov, Volovich,
Zelenov [15] on p-adic quantum mechanics; Varadarajan [12] on quantum kinematics over
general locally compact abelian groups treated from the point of view of deformation and
approximation. Quantum kinematics over finite abelian groups go back to Weyl [18], and
Schwinger [9].

In this paper, we develop the point of view in [12] further, as we discuss approximations
of quantum kinematics on locally compact abelian groups in more detail.

Our motivation for studying quantum models based on very general abelian groups does
not arise solely, or even mainly, from any desire of generality. Rather it stems from the
work of Schwinger [9] on the classification of finite quantum systems, and its variations
treated in Husstad [4], strongly influenced by Digernes and Varadarajan, and [12]. In [9]
and [4], as well as in [18], unitary representations of a finite abelian group GG and its dual
G satisfying Weyl commutation rules (= Weyl system) were studied, and it was shown
that the conventional Weyl system associated to R® may be approximated (as in Section
2) arbitrarily well by Weyl systems on finite abelian groups. The approximation scheme
of Schwinger gave remarkable numerical results on the level of generators. Motivated
by this, the validity of this approximation process was proved theoretically by Digernes,
Varadarajan, Varadhan [3]. Consequently one could take the point of view that quantum
theory associated with a finite abelian group is of much interest, and that the calculations
over R° are idealizations of the finite situation.

Our main Theorem 6.1 states that the Weyl system on any locally compact second
countable abelian group is a limit of Weyl systems on finite abelian groups. This moti-
vates dynamical considerations over other groups than R® as they in this sense also give
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idealizations of finite quantum systems. Moreover, this scheme makes it possible to obtain
numerical results for more unconventional quantum dynamical systems.

It turns out (cfr. the comments in [12]) that the Weyl system on Z/p"Z converges to
that associated to the p-adic field Q,, as n — oo. From this point of view one can for
instance study ’harmonic oscillators’, and ’coulomb’ problems over local fields and rings.
A path-integral formulation for vector spaces over division algebras over non-archimedean
local fields has been established in Varadarajan [13].

The paper is organized as follows: In Section 2, Weyl systems and limits of such are
defined. ’Continuity’ results for duality and direct sum are presented, and the structure of
finite Weyl systems is discussed.

In Section 3 we approximate any second countable locally compact abelian group G' by
elementary groups Hy /K, ~ Re@ T GFy BZN, Hy open compactly generated subgroup,
while K, is a compact subgroup for which GG/ K, is the dual of a compactly generated group.
The group FR; is finite abelian. This follows from the more general results of van Kampen
[11], and Pontrjagin [7]. Let N < n. Here, Hy C H, which by [7] in particular induces
an injection (%, : Z*N — Z' whereas the natural map G/Ky +— G/K, induces an
injection /;?\V : o8 — 7. In the resulting mixed inductive/projective limit description
of (¢, induced maps (for which (3, and k% are two of the matrix coefficients) can be taken
to be semi-aligned, but not diagonal in general.

Section 4 is used to define finite abelian groups (7, (and maps), candidates for approx-
imating the Weyl system on G. We do a two-step approximation in the sense that we
first take the diagonal H,/K,, and then construct G, based on H, /K, and the matrix
coefficients ¢! and @, for all © < n. We choose to treat circle parts essentially as integer
parts through Fourier transforms. In effect, the embedded finite translation on [*(Z""),
and the embedded finite multiplication by character on L?(T“"), are intertwined by the
non-finite Fourier transform F" : [*(Z"") — L*(T).

The space of Schwartz-Bruhat [1] functions S(G), functions which live on the elementary
group H, /K, for some n, is introduced in Section 5 to deal with the analysis. The key point
is that S(G) is invariant under the standard Weyl system. This moves our calculations
to H,/K,, and immediately shows that the Weyl system on G can be approximated by
Weyl systems on elementary groups. In this section, we get around problems with semi-
alignment: Given simple tensors in S(V) for which we control the support of their images
in the discrete space [2(Z*¥ & FN ¢ Z*~), we find that we also control the support of their
images in [2(Z% & F* @ Z*) for n > N (Lemma 5.3). Their support is governed by the
maps Ly and @V

In Section 6, the general approximation result is proved. First, pointwise convergence
of characters is verified. The important point is that in Z-directions, the approximation is
exact from some n, and by semi-alignment we control the coordinate in these directions.
In T-directions we have no such control, but the result follows as the approximation in
T-directions is uniform. The strong convergence of projections follows directly from the
support control of Section 5. The remaining statements essentially follow from pointwise
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convergence of characters, and the support control Lemma 5.3. For the sake of complete-
ness, we conclude with a proof for the conventional case R Finally, some applications to
local fields and rings are mentioned.

2. LiMIiTs OF WEYL SYSTEMS

Let G be a second countable locally compact abelian group, with G as its Pontrjagin
dual.A The Weyl representations V' and U of G and G, respectively, are, for z € G and
~ € (7, given by

V(2)Ny) = fly— =),
UNNY) = wNfly), [el)G), yed.

This pair of strongly continuous unitary representations satisfies the Weyl relations;
(1) Uy)V(z) = (z,)V(@)U(y) zeG e

The pair (V,U) is called the standard Weyl system on (G. The standard Weyl system is

irreducible; the resulting projective unitary representation of G' & (@ has no non-trivial
invariant subspaces in L*(G).

Definition 2.1. (Limit of Weyl systems) Let {G,}°2,, G be second countable, locally
compact abelian groups with associated standard Weyl systems {(V,,U,)} and (V,U).

Then we say that the sequence {(,,} converges to (& in the sense of Weyl systems (or that
(V,U) on G is the limit of (V,,U,) on G,,) if the following conditions are satisfied:

i) There is a Hilbert space §) and isometries I, : L*(G,) — 9, [ : L*(G) — 9, such
that P, — P strongly. Here, P, and P are the orthogonal projections on I,(L*(G,,))
and I(L*(()), respectively.

ii) Setting

, IU(W)I™Y on I(L*G A
Ulw) = { ideflti)ty on [ELQEGggL we G,

A

and defining V', U! and V! similarly, there are, for each z € G, v € G, sequences
{z"} and {y"} such that 2" € G,, v" € GG,, and

U,(y") — U'(y), V(") — V'(z)
strongly.

If the conditions in Definition 2.1 are satisfied, we easily see that (z”,4") — (z,7), so
pointwise convergence of characters is necessary for Weyl convergence.

Assume that the standard Weyl system on 7 is a limit of the standard Weyl systems on
G,,. The Stone-von Neumann-Mackey Theorem says that up to multiplicity and unitary
equivalence, the Weyl relations for G have a unique solution. Thus, in the natural sense
we can approximate any Weyl system on G (= any other solution of (1)) by Weyl systems
on (&,. In this paper, we exclusively work with standard Weyl systems.
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2.1. Duality. The standard Weyl system (V, U) on GG (identify G and its bidual) is con-
nected to the standard Weyl system (V,U) on G through the Fourier transform; V =
FUF ' and U = FV}—_l The Fourier transform F : L*(G) — L*(() is for suitable f

given by (Ff)(vy fxer (—x,v)dz, v € G.

Proposition 2.2. If G is a limit (Definition 2.1) for G.,, then G is a limil for G, in the
sense of Weyl systems.

Proof. Define I, : LQ(G ) — $ and I: L}(G ) — S by l, =1, F-! and [ =I1F" By
construction, P, = P, and P = P. Let z € G. Then we easily see that 1,0, (x )[n_

LV, (z")I71 on P,($) and ]U( )[ V= TV(z)I7" on P($). Similar formulas for 1% prove
the proposition. a

2.2. Direct Sum. If G is decomposable, say the direct sum of two subgroups, G = G1EBG,,
then the standard Weyl system of G can be identified with the sum of the standard Weyl
systems (Vg,,Ug,) on Gj, j =1, 2. This means, for z = (z1,2,) € G, L*(G) ~ L*(G1) ®

L*(G3) and Vg(z) ~ Vi, (21) ® Vg, (72). Similar relations hold for U. This extends to finite

index sets.

Proposition 2.3. If (V?,U?) on G is the limit of (V/,UJ) on G for j in a finite sel,
then (V,U) on G = @;G7 is the limit of (V,,,U,) on G, = @;G.

Proof. The result follows from strong continuity of tensor products for uniformly bounded
sequences of operators. Let us give some details in the case of two summands: Define
I,=1'® I?, and I = I' @ I*, both acting on $ := H' ® H2. Then P, = P! @ P? and
P = P'® P2 Likewise, for v = (z, %) € G, put 2" = (2}, 2%). Applied to a simple tensor
b= i@ s € 9, VI = V(o) © V() and V()b = Vi(w)n © VV(wa)ih.
As P} and V(2?) are uniformly bounded in norm, we get the expected convergence. The

arguments are the same for U when we take v* = (v7,75) for v = (y1,72) € G =Gi®G,. O

2.3. Finite Weyl systems. Let n = p{'p}?---p;* be the prime expansion of n (p; are
different primes while r; are non-negative integers). Then, Z,, ~ Zpgl fant Zp;2 @D szk,
and Z, is indecomposable if and only if n is a prime power.

So, recalling the direct sum construction in the previous paragraph, the standard Weyl
system (V,U) on Z,, is indecomposable in this geometrical sense, precisely when n = p” is a
prime power. By their structure theory, namely as direct sums of finite cyclic groups, we can
build the Weyl system on any finite abelian group from these geometrically indecomposable
finite Weyl systems. Schwinger [9] started constructing this theory of finite degree of
freedom. Finite quantum systems were also studied by Sfovicek and Tolar [10], and later

in [4].
3. STRUCTURE OF SECOND COUNTABLE LOCALLY COMPACT ABELIAN (GROUPS

Recall structure theorems on l.c.a. groups: Pontrjagin [7], Section 39, Theorem 51 proves
that any compactly generated group is of the form R® @ C @ Z°, where C is a compact
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abelian group (‘compactly generated’ means 'generated by a compact neighbourhood of
the identity’). In the same reference, Section 39, Proposition A, he proves that for any
l.c.a. group (5, and any compact set K C G, there is a compactly generated open subgroup
H such that K € H C G. Moreover, the structure theorem of van Kampen [11], Theorem
2, says that any l.c.a. group ( is of the form R & G', where (! contains a compact open
subgroup K. For any other such decomposition, the exponent e is the same. Following
Reiter [8], we say that GG is a G'-group if e = 0 in this decomposition. In particular, a
compactly generated Gi'-group is of the form C' @ Z°, where C' is compact.

If G is second countable and l.c.a., so is G and any subgroup and quotient of (. Likewise,
the property of being a G'-group is preserved under these operations.

We have not found Proposition 3.2 in any standard source in topological group theory.
That proposition follows from the next lemma, which is probably also stated somewhere.

Lemma 3.1. Let G be a G'-group, H C G* a compactly generaled open subgroup, and lel
K’ be a compactly generaled open subgroup of G'. If K := (K')- C H (the annihilator is
taken in GV), then H/K ~ T*® F & Z°, an elementary group (F is a finite abelian group).

Proof. Use the structure theorem of Pontrjagin 7], Section 39, Theorem 51, for compactly
generated groups on both H and K’. By duality, G'/K ~ T*@® D, where D is a discrete
abelian group. Moreover, as K is compact, H/K ~ C/K & Z° where C'/K is a compact
group. As H C G' is open, H/K C G'/K is open, and there is an open injection
C/K®Z — T*® D. In particular, the compact open subgroup C/K & {0} must map to
a compact open subgroup. As T® has no open subgroups but itself, the image of C'/ K &{0}
is of the form T* & F', where F' C D is discrete, but also compact. Thus F is finite. a

Proposition 3.2. Let G be a second countable locally compact abelian group. Then G ~
R¢ @ G, where the following is true for the group G': There exisls an increasing sequence
of open subgroups {H,}°, such that UH, = G', and a decreasing sequence of compact
subgroups {K,}, Hi O K, D K41, such that NK, = {0}. Moreover, H, /K, ~ T* &
F, & Z"», where F, is a finite abelian group (a, and b, are non-negative inlegers).

Proof. The first part follows from [11].

Any separable l.c.a. group can be written as a countable union of compact sets (take an
open neighbourhood of 0 with compact closure, and translate this closure with elements
from a countable dense subset of G'). Thus, by [7], Section 39, Proposition A, and The-
orem 51, there is {H!} such that UH! = G', and H! is open and compactly generated.
Let H) = H{ + HY +---+ H/, this subgroup is also open and compactly generated. Then
H, C H]_,. Likewise, construct {K] } such that K] is open and compactly generated,

and K, al. Thus, K, := (K! )" is a compact subgroup of G' such that K,, \,{0}. As
K, is compact and {H/} covers GG!, there is an integer N such that for n > N, K; C H].
Let H, := H}y,. Then, by the previous lemma, we are done. a

The proof of Lemma 3.1 implies that H,/K,, ~ T & F™ & Z', so we get elementary
groups also if n # m. Here, F? =T,.
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3.1. Semi-alignment for G'-groups. Let G' be a second countable G'-group with {H,,}
and {K,,} from Proposition 3.2. Let 7, : G* — G'/K,, and m,, : G'/K,, — G'/ K| be
the natural maps (m > [). We have m; = 71, 0 my,,, and the kernel of 7, is the compact
group K;/K,,. From the proof of Lemma 3.1, there are subgroups Z,,C, C G', where
Z, ~ Z' C, is compact, such that H, = C, + Z, (direct sum). Likewise, there are
subgroups 1,,, D,, C G/K,, with T,, ~ T*~, D, is discrete, such that G/K,, = T,, + Dy,
(direct sum). For m > [ and k& > n we then have the following commuting diagram, which
describes the structure of G' in terms of elementary groups; the top row gives G! as an
inductive limit, while the right-most column describes G as a projective limit:

Cn,+ 2, - Cr + Zy, C G!

7Tm|Hn J”’rm|Hk J”’rm
(2) Tn+Fr+7Z, C T+ Fr+27Z, C T+ Dy

| | J

n+F, +Z, C T+F+2%Z. C Ti+D.

All sums are direct. By the subgroup 7, C G'/K,, we mean the isomorphic image of
Z, under m,. The subgroups F! ~ F are finite. This setup follows from the comment
following Proposition 3.2. However, in this diagram we select a basis for all Z*-parts from
that in the top row, and a basis on all T*-parts from that in the right-most column. We
make no particular choice for the finite parts. Thus, in this basis the inclusion H,/K,, C
Hy/K,, is represented by a 3 x 3-matrix

id
(3) Ink = O Pnr | s
k
Ln
for some morphisms 07 : F™ —s F/ @™ ¢ Z, — F", and «f : 7, — Z;. The empty
places represent 0-maps. The 2 x 2-matrix in the lower right corner is triangular because
7 has no finite subgroups.

k

Lemma 3.3. In the preceeding malriz representalion, 07, 7 are both injective.

Proof. The map 07} is injective as the finite part is only mapped into the finite part.

Let 0 # z € Z,. Let [z] be the image of z in Z, / Ker(¢.) ~ Im(¢%.). As this quotient
is a finite abelian group, there is some integer k such that [kz] = k[z] = 0. Consequently,
kz € Ker(¢™.). Thus, by injectivity of i, 0 # ™ (0,0,kz) = (0,0,:5(kz)), so 5(2) # 0.

O

Thus, ¢* is injective.

Let us recall some generalities on dual groups. For l.c.a. groups {G;} (i runs over a

finite set), set G = @,G;. Then G = @ ~ @Za Duality between G and G = @ié\i is
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set up with

(4) (), (1)) = [T (=i 1)es

where for z; € G; and ~; € a, (xi,7i)a, 1s some duality between G; and F Let
: ¢ — X be a morphism between l.c.a. groups G = &;G; and X = G%X Thus,

a = (a;;), where aj; : G5 — X; is a morphism. Then the dual map & X — G (under

(4)) has matrix representation @ = (@;;) in the natural dual basis on both X, and G. Here,

aj; : X; — G is the dual map under (-,-)g,, and (-,-)x,. Thus, the rule is the same as

the usual one for the adjoint in matrix algebras.

SO, Tim|t, /K =2 I * Hn/ K — H,, [/ K; has matrix representation

S
(5) Jim = O
id
The reason is that the dual of j/!, is an open injection; of the same type as 7. Using (4):

Corollary 3.4. In this matriz representation for 5 , k7" : T, — Ty and 0" : F™ — F!
are both (non-zero) surjective. The morphism ¢}, : F* — T; could be 0.

The reason why «*, and &7 do not depend on m and n, respectively, is that all diagrams
in (2) are commutative. In fact, Lfl represents the inclusion of 7, in H, into Z; in Hy
(top row). Similarly, k]* is the matrix coefficient in 7, mapping T,, onto T; (right most
column).

Later, we need some additional technical properties on the description of G*.

Lemma 3.5. Let i : Z° —s Z be an injection. Then there is a complemented submodule
B such that i(Z*) C B C Z", B ~ 7"

Proof. Let B be those z € Z" for which nz € i(Z%) for some n € Z. This is the torsion
closure of the image of 7. It is easy to see that B is a submodule. Let non-zero n;u; € i(Z?)
for n; € Z, u; € B, where j runs over a finite set. If {n;u;} is dependent over Z, then {u;}
is also dependent over Z. Conversely, as i(Z%) C B, the rank of B over Z equals the rank
of 1(Z®%) over Z. As i is injective, this rank is b. Moreover, it follows from the definition of
B that the quotient Z* /B is torsion free. This implies that B is a direct summand (with
b generators). O

Lemma 3.6. Let Z" 55 Zb ... Zbn 2 Zhntr 2250 where {1,} consists of injections.
Then we can choose the basis on each Z'" such that for any pair m > n, for /" :=

("(Zb) € ZP @ {0} m b maps into the first b, factors.

Lp—1 0"+ 0 Ly, LI

Proof. Choose a basis on Z%. Then use Lemma 3.5 to find complemented ¢;(Z") C B, C
Z*. Now it is clear that we can choose a basis as wanted on Z". Again from Lemma 3.5
we find complemented LQ(Zb2) C B, C Z%. In particular, t2(B1) C B,. Use Lemma 3.5
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once more to find complemented t5(B;) C By C By. Now we can obviously choose a basis
on Z% where Z" is mapped into the first by coordinates, while Z% is mapped into the first
b, coordinates of Z". The proof is completed by continuing this construction. a

Define the elementary groups F,,, := T*" & F* & Zbn, F! =F, and F, := E,,. Then
H, /K, ~ E,n,.

Let us return to Diagram (2). Using this, we can assume that the induced injection
(same notation) 7% : E,,, — Fj, has a matrix representation like (3), and the induced
surjection j' : Fn,m — E, has a matrix representation like (5).

As f : ZP — 7’ is given as in Lemma 3.6, we apply that lemma to {Z’}. We use
this change of basis on Z’» in any F,;. Thus, the matrix representation of i is of the
same type as before. As a dual condition (use (4) between Z*" and T%"), we make the
kernel of ] contain T*~* & {0}*. The annihilator of the image of a morphism is the
kernel of the dual map. The observation that relates all Z*» (in H,/K)) to H, is crucial at
this point. Ordering problems would otherwise occur for the two-dimensional array (those
(k,1) € Z? for which k,l > 0), and we could not get the analogue of Lemma 3.6.

Assume that n > N are positive integers. Rename iy, := i}, and jn, := ]%n The next
result summarizes our discussion:

Proposition 3.7. (semi-alignment) Let G' be a G'-group with structure given by Propo-
sition 3.2. Then Hy /K, ~ En, = T & F, & 7~ where forn > N the induced injection
iNn : Enn — E,, and the induced surjection jn, : En, — En can be assumed to have
matrix representations

id ]y OR
INp = 9?\7 ¢T]<7 and an = (%G
LR id

The maps 0% : By, — F, and (% : Z°N — Z are injective, and % (ZY) C Z'~ @
{0}b»=P~ " Furthermore, 0% : T — Fx and k% : T — TN are surjective. Also, the
kernel of k% contains T~*N ¢ {0}°~¥. The morphisms ¢, : Zb» — F,, and ¢ : Fy —
T~ could be 0.

As ¢, and @7} in general are non-zero, the finite parts may intertwine in a non-trivial
way. This causes technical problems in the rest of this paper.

3.2. The dual system. This paragraph contains definitions.

From standard topological group theory, Z%" & F% @ TN ~ H?\/Kn ~ K1 /Hz. The
sequence {K*+} /7 G consists of open subgroups while the elements of {Hx} \, {0} are
compact subgroups. So, the (non—Ezlique) sequences { Hy} and {K,} single out a special

decomposition for the dual group G*.
Fix a duality (-,-) between G' and G'. Let + € Hy and v € K. Then

(6) <:L'—|—Kn,’y—|—H]f,>Nn = (z,7)
(well) defines the duality (-, -)n, between Hy /K, and ['E\/Kn = K} /H3.
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Define the standard duality (-,-); between Ey, = T* @& Fy & Z° and E];l =7, &
T*~ (dual basis) as follows: Let = = (¢, f,2) = ((t:), ([;), (2)) € Enn, and v = (u,g,5) =

((ui), (g5), (sk)) € EN\n Then

w QWiI-Lg-]— P
(7) <:L',")/>5 = <t7u>T““<fag>F§‘v<Zas>Zbﬂ = Htiz He " Hskka
i j k
Fy = @jZn] from the structure theorem of finite abelian groups.
In the previous section we found an isomorphism Hy /K, ~ En, giving Proposition 3.7.
Let

(8) r+ K, € Hy/K, — xn, € En,, in particular z, := z,,
denote this isomorphism. There is an isomorphism between K= /Hz and E];L,
(9) Y+ Hy € KX/ Hyx — ynn € E}V\n, in particular 7, := Yun,
such that for x € x + K,,, and v € v + H]#,

(10) <$77> = <$ —I_ I(nafy —I_ H]J\_I>Nn - <$Nn7'7Nn>s-

This is because there is only one dual pairing modulo automorphisms (for any isomor-

phism Kt /Hz: ~ m, (10) defines some dual pairing, compose this isomorphism with the
appropriate automorphism).

Assume N < n. Then iy, (under the standard dual pairing) is the surjection induced
from the natural map K}X/H} — K} /Hy, and ]/]\; is the injection induced from the
inclusion Kx/Hyx C KX/Hx: Let x € Hy, v € Kx. Then (z + Kn,v + Hy)nvy =
(x + K.,y + Hx)nn = (z + K., + H}),, from (6). Thus, the dual of the inclusion
Hy/K, C H,/K, is the natural map K}/Hx +— K /HZ} and the other way around for
the original natural map. As the standard dual pairing in particular is of the form (4), we

have in the dual basis,

id oy

n
—~ —~ —
~ _ » —~
INn = O | and gne= | gk 0%
o .
o Uy id

The meaning of 5}7\, etc. 1s clear from the definition of the standard dual pairing.

The dual map of k7R, /2];\,, is an injection Z*V N, Zan, The form of the standard dual
pairing shows that k3 (Z*~) C Z*~ & {0}*~*~. The maps {¢}} and {&} } are used in the
definitions of the next section.

3.3. The inclusion L*(Hy/K,) — L*(G"). Later, we apply the structure theory on the
level of functions. Let us still work with G'. As Hy /K, is needed to describe the relation
between H,/K, and Hy/Ky, we incorporate Hy /K, in the analysis of this situation.
Define for any positive integers N, n the linear map
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bz + K,) ifee Hy

0 otherwise

L2(Hy/Ky) =% L2H(GY) by (5;@@)(:5):{

The norm of S{® is finite as Hy is an open subgroup and K, is a compact subgroup
(explained in Paragraph 3.3.1).

Let G' have some fixed Haar measure. Then there is a unique Haar measure on Hy /K,
such that S% is an isometry. It turns out that we do not need to know more about these
measures for the main approximation result, Section 6. Nevertheless, the next paragraph
gives an explicit description of these measures, and for convenience we will use these
measures in the rest of this paper. To simplify the notation we set S5, := S7.

3.3.1. Measures. If B is a subgroup of the abelian group A, we say that (A, B, A/B) is
a Weil triple if A, B, and A/B have Haar measures satisfying Weil formula, symbolically
written dy/p - dp = d4. If K is a compact group, by normalized measure, we mean the
Haar measure on K such that total measure of K is one.

We make the following choice: Hy has restricted measure as an open subgroup of G, K,
has normalized measure, and (Hy, K, Hy/K,) is a Weil triple. This defines the correct
measure on Hy/K,:

[ ssn@ras = [ Sen@Pi= [ 1+ K+ K- meask, (1)

Hy/Kn
_ / (2 + ) [2d(z + K).
Hy/Kn

We omit the proof of the next lemma as this description is not strictly necessary for
Theorem 6.1. By counting measure, we mean counting measure with point weight one.

Lemma 3.8. Let G* be a G'-group with structure {(Hy, K,)}, Hv/K, ~ En, = T* &
F% @ZbN, and F? =:F,.

i) There is a Haar measure on G' such that the map Sy is isomelric when F, has
the product measure where Z has counting measure, and both T*, and F, have
normalized measures.

i) If G' has the measure of i), for any positive integer n, S, is isometric when E, has the
product measure where Z' has counting measure, and T has normalized measure.
The measure on I, has the same point weight as the poinl weight on F; when F} has
normalized measure.

Part ii) of this lemma is illustrated in the examples of Section 7.

4. SETUP

Let G = R*® G', where G is a second countable G'-group. Recall Definition 2.1. The
purpose of this section is to define finite approximands for (U, V) on G. Because G is
a finite direct sum, we use the construction in Proposition 2.3. We first introduce some
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notation which will be explained below. Here, n is an odd positive integer throughout this
section, and for any such odd positive integer we define n° through n = 2n° + 1:

Finite abelian group G, = Z% & G},
[sometry [, = R:® I},
Group element y" = (r",z") € G,,,
Dual group element g" = (d",3") € G, = AR C/?EL

For an odd positive integer j, Z; = {—5°,—j° + 1,...,—1,0,1,...,5°}, considered as a
finite cyclic group. The e-th power of Z; is denoted by Z§. Moreover, self-duality is set up
with (k,1) = *™*i for k,1 € 7,

4.1. Schwinger embedding. The real part R is handled by the groups and scalings ¢,
of Schwinger [9]. We follow Schwinger as we use (z,y) = ¥ for z,y € R. Then we get
the same scalings €, as he used. The finite group has already been taken as Z¢.

4.1.1. The maps R%. Let RS : [*(Z) — L*(R¢) be the e times tensor map of the operator
R, : ZQ(Zn) — LQ(R), where for k& € Zn, ]I{k} — (€n)_1/2]]:[(k_1/2)6n7(k+1/2)6n) = (én)_l/Q]Ilﬁ,
where ¢, = /27 /n. Characteristic function for the Borel set £ is denoted by Ig.

4.1.2. Group element r™ and dual group element d*. Let |- |, denote the sup-norm |r|. =
max;=1,.. ;|ri| for r = (r;). For r = (r;) € R®, we approximate by r” € Z¢ in the following
way: If |r| < (n° + 1/2)¢,, then define r* = (ry,... ,r?) € Z¢, where r? is the unique
integer such that r; € [(r? — 1/2)€,, (r? + 1/2)¢,). Otherwise, r” is by definition 0. We
identify R® and its dual group, and the approximation of d € R® is given by the same
procedure as that for r.

We turn to the G'-group part of the set up. Here, the idea is to use the structure theory
of the previous section to get hold of finite abelian groups G. This set up will relate to
the standard duality (7).

4.2. The groups G!. Let Fy,.,, k,m,n odd positive integers, be given by Fy,., = Z" &
F, & ZZ“. The numbers b,,, a,, and the groups F,, come from the elementary group structure
of G*, Proposition 3.2; H, /K, ~ E, = T* & T, & Z* for some choice of {H,} and {K,,}.
For 5 odd, let F]b consist of those k € Z for which |k|., < j°, the j-cube in Z® centered in
origo. Recall that we in Section 3 found 7 : Z% — Z"» for 1+ < n. Let k, be the smallest
odd integer such that . (F%) C F,f: for all : < n. Equivalently, k,, is the smallest odd integer
such that |k|s, < n° implies |7(k)|o < k° for any i < n. Likewise, as k7 : Z% —s Z for
t < n, let m,, be the smallest odd integer such that @(Fﬁ“) C Fy» for all ¢ < n. For n odd
define G :=TFy .. = Zy dF, @ ZZ’;
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4.3. The embeddings I'!. We start by constructing lpmn : [*(Femn) — L*(G'). These
maps are defined through

P(Frnn) = (Z57) @ P(Fy) © P(Z3)
an o bn
PEESETE [2(T™) @ P(F,) @ 1A(ZP) = L (Hy ) Ky) =2 LA(GY).
Here we identify Iy,,, with S, (Tﬁl“ ®1d ®Z£"), Sy, is the lift of Paragraph 3.3. Finally, let
[}L = [knmnn
The measures on Z’», T**, and F, are those of Lemma 3.8. The maps Z,z“ and 72" are

defined below in order to be isometric when Z2* has the usual counting measure, while Z%
has normalized measure.

4.3.1. The maps Z,*. The embeddings Z2" : [*(Z}*) —s 1*(Z") are defined in the obvious
way by sending L(;y to Iy;y in [*(Z*) for i € 7t

4.3.2. The maps To. Let T = F"Z% (Fpn)~', where F, : 3(Z27) — [>(Z%) and
Fm : 1*(Z*) — L*(T*") are Fourier transforms. This is a variation of the approach in
Proposition 2.2.

4.4. Approximate group element in G'. Given z € GG, we associate to it 2¥™" € Fy,,,,.
As G' = UH,,, © € Hy, for some smallest integer W,.. For n > W, surject (recall Equation
8) x — x + K,, = 2, = (Lo, fn,2n) € E,. Then let z*™" = (¢™" f,, 2*") if n > W,, and
0 otherwise, where the elements 2" & ZZ" and t"™" € Z2» are defined below. Finally, let

n knmnn 3n ._ pmnn knn
'nn’t_tn nh

"=z and z" = 2

4.4.1. The integer part 2. 1If z, € FIS”, let z, =: 2" ¢ ZZ”. Otherwise, put z*" to 0.

4.4.2. The circle part t™". Here we apply root functions. Parametrize the circle T by
z=¢e" 0 ¢ [-1/2,1/2). For our t,, = (t,;) € T, let ™" = (t7") € ZL, where 17" is

m

the unique element in Z,, such that 6, ; € [(t7"—1/2)/m, (t7"+1/2)/m) for t, ; = >,

4.5. Approximate character in G1. Recall the dual construction and definitions of
Paragraph 3.2. Therefore, for v € (/J\l, yhmn ¢ Zan B F, @ ZZ" (dual basis) is chosen
by the same procedure as for the group element case. Let us fix some notation: For
n > WW (WW chosen analogous to W), v, = (tn, gn, Sn) € E\n (recall Equation 9). Then
yEmn = (um" g, s¥) if n > WW, and 0 otherwise. Here the circle part s** € Zz" and the
integer part u”" € Z!» are defined by the procedures in the last paragraph (with reverse

notation). Finally, we set 4" := yfnmnn yn 1= ¢mn" and s" 1= sknn,

5. THE SPACE OF SCHWARTZ-BRUHAT FUNCTIONS

Let GG be a l.c.a. group. Recall from Section 3 the existence of pairs (H, K'), where H/K
is elementary, H is an open subgroup, and K C H is a compact subgroup.

Bruhat [1] introduces the Schwartz-Bruhat space of functions on G, S((), as those
complex valued functions which have support in some H, and are locally constant on
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some corresponding K. Thus ® is naturally defined on the elementary group H/ K, here
® should look like an ordinary Schwartz function. This means: Let P be a polynomial
function on H/K, and D a translation invariant differential operator. Then ® € S(H/K)
if @ is smooth, and all the seminorms ||P - D f||., are finite. Alternatively, this can be
formulated by the tensor product of Grothendieck for locally convex spaces (Schwartz
spaces are nuclear). We use T to denote

O e LG) — Tyx® € LX(H/K), (Tyx®)(z+ K)=®(z), z€x+K € H/K.

Notice that Ty is the inverse of S}, (Paragraph 3.3) for H = Hy and K = K, on the range
of Sy. If H C H and K' C K, then ® Schwartz-Bruhat on (H, K') implies ® Schwartz-
Bruhat on (H’, K') as well. There are ’large’ enough pairs (H, K') for S(G) to be dense in
L*(@), and the Fourier transform leaves this space invariant; if ® is Schwartz-Bruhat on
(H, K), then & is Schwartz-Bruhat on (KL, HY).

As G by [11] is of the form R & G, where G is a G"-group, the definition of S(G') is
really what is new in this extension of Schwartz functions.

Let G' be a second countable G'-group. Use Proposition 3.2 to find {Hy}, {K,}. Tt
suffices to define S(G') on the pairs {(H,, K,)}:

Lemma 5.1. Let G*, {H,} and {K,} satisfy the conclusions of Proposition 3.2. If (H, K)
is some other pair in the definition of S(G"), then there is a non-negalive inleger n such

that H, DO H and K,, C K.

Proof. First, H/K ~ T*® F @ Z°, so, as the quotient is compactly generated and K is
compact, H itself is compactly generated (the pre-image of a compact set is compact as
K is compact). If C' is compact and generates H, then G' = UH,, covers C, and C' C Hy

for some integer N. Thus, H C Hy. Next, K+ C Gl s open while H+ C K+ C Gl

is compact. Moreover, K+ /H* ~ H/K, so K+ is compactly generated, and the same

reasoning as before gives K+ C Kj; and Ky C K. So the claim follows with n as the
larger of N and M. O

We use ® € S(n) to denote ® € S(G') supported in H,/K,. Notice that S(n) C S(r')
when n < n’. Also, put ®" := Ty i, ® for & € S(n). Let V™ and U” denote the standard
Weyl system on L*(H,/K,).

Lemma 5.2. Assume z € G, v € Gl and @ ¢ S(G"). Then we can find an n such
that ®, V(z)® and U(y)® are all contained in S(n), (V(z)®)" = V*(z + K,)®", and
(U()®)" = Ur(y + H;)om.

Proof. Assume ® € §(n’). Since H, ,/* G', z is contained in some H,, and by the group
property of any H, it follows that V(z)® € S(max{n’,n"}). Replacing = by = + k, for
k € K,, clearly makes no difference. That multiplication by character is locally constant is
a special case of Weil [16], Proposition 2. Here, the proof is straightforward: As UK} = é\l,
v € Kt for some n. Thus, multiplication by « is automatically locally constant on K.
Moreover, since @ is supported in H,, multiplication by v or v + 4/, for v/ € H>, gives
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the same result. The largest n from the two parts of the proof gives the desired result
as translation and multiplication by character is invariant for the Schwartz space of any
elementary group. a

Using I, = S,, it follows easily from this lemma that G! is a limit of the elementary
groups H, /K, in the sense of Weyl systems.

5.1. Exploring S(G"'). Assume that G' is a second countable G'-group. For n > N, if
® € S(N), then ® € S(n). We need more on the relationship between ®" and ®". Recall

from Section 3 the induced maps Fy P Enn M E,. From their construction,
d" — { q)N O]Nn © (an) ! on an(ENn)

0 otherwise.

We easily get this by passing through Hy/K,. Notice that scaling factors would enter
without the measure considerations of Paragraph 3.3.1. Let ® € S(N), where in addition
OV = o dN O is a simple tensor; & € S(T*¥), &Y € S(Fy), and &) € S(Z*~). Then
by Proposition 3.7, for (¢, f, z) € E =T @ F, ®Z" and n > N (primed coordinates are
n ENn);

OF (k% (1) + SN(f) if 2= 1%(2) and [ = R (2') + 0% ()
(L, f,2) = 0 otherwise
(11) . { GHORUN) = = (=) and [ = G (")+ O ()
{ N () if z=1%(2)
0 otherwise

This is a product of one function in all three coordinates, one function in F,, and Z’», and
one function in Z"» alone. We see the same by calculating jy, o z]_\,ln (on the image of ix,,).
This matrix is upper triangular.

Recall the Fourier transform F* on Z%. lLet D, = Z* & F, & Zb. We also denote
F" @id @id acting on I*(D,) by F". We generally skip all @ and any id in the notation
for tensor product of operators. So, for instance, we use the same symbol for an operator
and its amplification by identity operators.

Lemma 5.3. Let UY = (FN)71®Y  n any integer larger than N, and U™ = (F")~1o" ¢
I*(D,). Then
Um =Un. A, - 07,
where Ui = W%o[@]_l (and 0 outside range of/;?\\,) is a function of Z*», ®% = &Y o [13]?
(and 0 outside range of 1%;) is a function of Z', while A, depends on all three coordinates.
Proof. From (11) only the first part in the product formula for ®", =" = O®N(x%(¢) +
M) it 2 = K2, f= () + 0%(f'), and 0 otherwise, depends on T, Let q =

(k,f,z) € D,. First, if f and/or z is outside the range of in,, =" is obviously 0. This
settles the ’otherwise’ case for the requirements for f and z. If not, we are left with
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Fourier transform in T¢-direction of the function ®Y (s (¢)+ F(z, f)), where Fi(z, f) :=
2(f') to show clearer that f’ also depends on z. Thus, we take the inverse Fourier
transform of a translated function that is locally constant on Ker(k%;). Then the Weil

formula shows that the Fourier transform is supported in the range of f;];\,, and translation
goes to multiplication:

(20 = [ R0+ B2k e

o WY+ BN D [ (e

t'eKer k%,

In the last line, k% also denotes the map (isomorphism) from the quotient T*"/ Ker x% to
T*~. From Paragraph 3.3.1, Ker(x’) has normalized measure as this compact group is
the circle part of Ky /K,. Then as T*" has normalized measure, also the quotient T*» has
normalized measure. The integral in ¢ is non-zero, and then it always has value 1, if and
only if k£ is in the annihilator of Ker(x% /), which means that k € Im(/;?\\,) That takes care
of rest of the ’otherwise’ claims, and gives for k = /;?\V(k/)

(F) =) (q) = / ON (w3 (1) + FR(f, o)y (k). Dydi

t

= [Nk (D) + B 7203 (D)l

t

B /ETGN OF (u)(k', uydu - (—K', FR(f, 2))
= Wi(k') - (=K, FR(f, 2)).

Combined with (11), the result follows. O
Without the measure considerations of Paragraph 3.3.1, again scaling factors enter (but
can be taken into A,,).

This lemma has the following important consequence: Let Supp denote the support of a
function, then Lemma 5.3 shows that Supp ¥" C &% (Supp U¥) & F, & % (Supp ). This
motivates the choice of the size parameters k, and m,, in Section 4.

6. MAIN APPROXIMATION RESULT

Theorem 6.1. The second countable locally compact abelian group G is a limit, in the
sense of Weyl systems (Definition 2.1), of the finite abelian groups {Gp}n oaa defined in
Section 4 .

Proof. Propositions 2.3, 3.2, and Propositions 6.3, 6.4 below. O
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6.1. The G'-case.

Proposition 6.2. Lel z € G', and v € GU. Then (", ") g — (z,7)e as n — oo (n
odd). Here, 2" € G} and v" € G, are as in Section 4.

Proof. For n > W, the larger of W, and T/i/7 (as in Section 4), by Equation 10, (z,v) =
(x + K,,v+ HnL>Hn/Kn = (ZTpn,Vn)s- Thus, for n > W

‘<'rn7 7n>G}L - <.iL', 7>G1 ‘ :|<(tn7 fn7 Zn)a (unagna Sn)>G}L - <(tn7 fn7 Zn)7 (un7gn7 Sn)>s|
(12) < 2"8") = (zns sn)zm|
(13) + (", u") = (b tin)en]
For the inequality, write out the characters as products, then use triangle inequalities, and
the fact that all numbers involved have absolute value one.

Let us estimate (12). Here, z, = ¢, (2w ) by semi-alignment Proposition 3.7. Observe
that k2 > |2,]e for all n larger than some L: Let L be such that |zw|. < n° for n > L.
Then by construction in Section 4, |y (2w )]0 < k2. Consequently, for n larger than L
(taken > W), 2" = 2z, = % (2w). Again by Proposition 3.7, /3j,(Z"") is contained in the
first by factors of Z%. Thus (z,,s,) = H?Wl e2midy (zw)ifnt where s, = (Sp1)y Sng = €2™0n1,

b
w2y (2wl where s = (1) 81/kn = 05

Likewise, for this large n, (2",s") = [[,¥]

Then we calculate

12 < Z |1 27ruW (2w )18, |

as 07 | = 0,1 + 6., where |5}| < 1/(2kn). Moreover, (12) tends to 0 because
|63 (2w )18, ] < bwlzw |ook /(n°2hn) < by |ew oo/ (20°).

The estimate on tjy (2w ); comes from the fact that (fy is a Z-module map between two
free Z-modules. In the standard bases, ¢jj; has integer coefficient matrix representation
(aé). By the construction of k,, this is easily seen to imply |a§.| < k2 /n°. Consequently,
|f (za)1] < bw max; |zw,; |k /n° follows from this matrix representation.

Finally, (13) is estimated as (12) because m,, is constructed similar to k. O

Let us settle some matters of notation for the projections of Section 4: P, : L*(G') —

L(P(GY), PT e LA(T™) — Ton (1F(Z57)), and P2 LHZP) — 7,7 (P(Z3))-

Proposition 6.3. The second countable G'-group G' is a limit, in the sense of Weyl
systems, of the finite abelian groups {G}}, .44 of Section / .

Proof. Let ® € S(N), N some positive integer, where ® = @Y ®F ®% is a simple tensor
as in Paragraph 5.1. Moreover, ®7 is taken with finite support, and CI) is a trigonometric
polynomial.

The linear span of the chosen ® is dense in L?(G'): Through ® — ®" the linear
span of all the L?(Ey) is dense in L*(G"). Moreover, it is easy to see that the linear span
of simple tensors with finite support are dense in the discrete space [*(Dy). Applying
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FN gives the desired density in L?(Ey) as the Fourier transform F~ on Z*~ takes finite
support functions to trigonometric polynomials, and the other way around. Finally, the
resulting functions are in S(Ey). Thus, we really work in a smaller space than S(G").

Convergence of projections. As P,® € S(n), (P,®)" = PTPZ®" from the definition of
P, (the linear map S, is the inverse of Ty, K, ), and

1P.® = @l = [| P Pyo" — @"||p,

forn > N. Let C" = F» & F, © F,f: By the construction in Section 4 (U™ is as in
Paragraph 5.1), PTPZ®" = F IonW¥™. As &) and WY have finite support, there is a Q
(taken larger than N) such that for n > Q, Supp(®2) C F’¥ and Supp(¥Y) C F2~. Then,
by definition of k,, and m,,, and Lemma 5.3, Supp(¥”) C C". Thus, P,® = ® for n > Q,
and strong convergence of projection has been proven.

Convergence of the V'’s. Let x € G' as in Proposition 6.2. Because of Lemma 5.2, for

n > M, which is the larger of N and W (W as in Proposition 6.2), V(z)® € S(n),
and (V(z)®)* = V"*(x,)®". Here (Equation 8) z, = (t,, fa,2n) € FE.. We agree
on a notation where V' (V) denotes translation (finite embedded translation), and the
argument tells us what group is involved. Then (V(z)®)" = V(t,)V(f,)V(z,)®" for
n > M. Moreover, by construction of the isometry S,, V/(z")® € S(n) for n > N, and
(VI(z™)®)* = V(" )V (fu)Vi(z")®", where for instance V/(1") is the embedding of V,,(1")
through the map 7T)%». Thus, as V/(f,) is unitary, for n > M,

(14) IV (2)® = Vi(2")®[ar = [[V(2a)V(Ln)®" = VI (z")V,(17)®" ||,
= |V (z) U)W = V(")) 87|,
From the definition in Section 4, V!(t*) = f”f];(t”)(}—”)_l, where Un(t”) = U,(t") as we

identify I*(Zg» ) with itself under the finite Fourier transform. Moreover, U(tn) operates
through multiplication by (-,¢,) on [*(Z*"). Let L (now taken > M) be so large that
zp C FﬁM for n > L. Then from Section 4, z, = },(zm) C F,f:, and z" = z,. So, for
n > L, the operator V/(z") acts as V(z,) on U’ (t")¥™ if both U/ (1)U and its translate
by z, is in the range of the nth projection PZ. As the support of (A]T’L(t”)\ll” in Z’-direction
is restricted by the support of ®7, we can find .J (taken > L and > @) such that for n > .J,
Supp(V (21,)®%) C Fbr, consequently Supp(V(z,)®3) C Fy". So, for n > J,
(14) = [|U (L) 0" = U, (1")¥"||p,
as V(z,) is unitary. For n > J and g = (k,u,v) € D,, [U(tn) — (A]T’L(t”)]\ll%/\n(q) =0 for k&
not in F}", and otherwise
[U(tn) = Up ()5 (q) = UgAn(q) [(k, 1) — (K, La)] -

For the last expression to be non-zero, by Lemma 5.3, we must in particular have & =
/;?\V(kN) for some kx € Z¥. As WY has finite support, the pointwise convergence of (13) in
the proof of Proposition 6.2 can be made uniform on the Z*~-support of U} consequently

also on the Z“-support of W% (these two sets have the same number of elements). Thus,
for € > 0 there is an R, such that for n > R, |(k,t") — (k,t,)| < € for all k in the support
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of the Z* direction of W%. Thus, by Fourier transforming back again, for n > R. (and
n>.J),

(14) < e [|9*[|p, = €-|[®"]|z, = € [|®]]a:-
Convergence of the U’s. The arguments are essentially as for translation, only the order
of the steps is altered. Let v € G as in Proposition 6.2. Again by Lemma 5.2, for n > M,

(U(y)®)" = U™(7,)®" where v, = (tp, gn,5n) € E\n By preliminaries similar to those for
translation, for n > M,

(15)  |[U()® = UL (v)®||at = [|U(52) @2V (un) WA, — UL(s™) B2V (u™) WA, p,,.

With arguments as in the first part of the previous paragraph, there is L (taken > M and
> @) such that V/(u™)U%ZA, = V(u,)WiA, for n > L, and

(15) = [[U(sn)@" — U, (s")®"|| .-

Let ¢ = (v,u,l) € E,. Then, for n > L,and [ € F,f: (otherwise the expression below in 0),
[U(sn) — UL(s™)]®™(q) = [(l, sn) — (I, 5")]®"(G). Now, we follow the procedure of the last
part of the proof for translation. Again, (15) will be bounded by ¢ - ||®||g for sufficiently
large n. O

6.2. Real numbers. The set up is as in Section 4. For f € C(R), fi,(ken), k € Zy, is
defined by fu.(ke,) = €* fkk+11/22 " f(x)dr, €, = /27 /n.

Proposition 6.4. The group R is a limit, in the sense of Weyl systems, for the finile
cyclic groups Z,,, where n runs through the odd positive integers.

Proof. Let f € C.(R) be a continuous function with compact support inside [—B, B],
B > 0. We consider the isometries R, : [*(Z,) — L*(R) defined in Section 4.1 with
associated projections P, as in Definition 2.1.

The fact that P, — id strongly is probably well-known. Nevertheless, we give a proof
based on uniform convergence. If ¢, < 1, then f, := P, f = E|k|<n° Jav(ken)-Ipx has support
in [-B —1,B + 1] := I(B). Furthermore, for any z in this interval and n°, > B + 1, z
lies in some %, thus f,(z) = fu(ke,). By the mean value theorem, f,,(ke,) = f(z) for
some z, also in I*. So, for any ¢ > 0, just make n large enough for |f(y) — f(z)| < € for
any pair z,y € IF, for all k such that I* N I(B) is non-empty. Then |f,(z) — f(z)| < € for
any z in I(B). Hence f, — f uniformly, which suffices for the L*-convergence.

The result for V! — V follows very similarly.

As for Ul — U, it is easily seen that it is enough to check that U (d")f, gets close
to the compression (U(d)f),. Here d* € Z, approximates d € R as in Section 4.1.

i3 — k €n i 2ms n
So, |(Ud)f)a = Unld") ful = |Spgjene &' S (€0 = F40) f(a)da - Ly| < Ty
| f lleo €5° f k+1/2)€” ewd — gtenkend” |y [;x. Since (U(d)f)n, — U, (d")f, has support in

k— 1/2)en _
I(B) When ¢n < 1, consider the uniformly continuous function G(z,y) = €*¥ on the
compact strip ](B) x [d —1,d 4+ 1]. So, given any ¢ > 0, we can find a uniform n
such that |G(z,y) — G(2',y')| < ¢ for any pair of points in each I* x IY", for those
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k € Z, for which I* N I(B) is non-empty. Thus, for any z € I(B), there is a k giv-
ing |(U(d)/)a(2) = (UL ) ()] <IL T lloo () S o eda =|| £ [loo €. As this works

uniformly, the theorem is correct. O

7. APPLICATIONS: p-ADIC NUMBERS AND RATIONAL ADELES

Let p be a prime number. Varadarajan mentions in [12] that the Weyl system on Zn,
as n — oo, converges to the Weyl system associated to the field of p-adic numbers Q,.
We construct examples of H,, and K, in this case. These groups are interesting as they
lead to phase spaces for p-adic quantum theories. Also, Q, is the canonical example of a
non-compact, non-discrete G'-group.

7.1. The p-adic numbers. The field of p-adic numbers (see Gouvéa [6] for basic prop-
erties) is the completion of the rational numbers Q under the p-adic valuation |- |,. There
is a (continuous) field structure on @, when p is a prime. In a coordinate representation,
the p-adic numbers can be viewed as Laurent series z, * = >, z;p’, where n is an integer
and z; € {0,1,... ,p — 1}. Under the natural addition and multiplication, such that the
resulting series also has coefficients in this set, Q, is a field. Furthermore, under | - |,, de-
fined by |z|, = p~" where x,, is the first non-zero coefficient in the series of z, these series
are no longer just formal. In fact, Q, is a complete metric space. As an abelian topological
group w.r.t. addition, @Q, is self-dual. The compact open subgroup p" O, consists of those
z € Q, for which z; = 0 for all k£ smaller than the integer n. The p-adic integers O, form
the maximal subring of Q,.

Put H, = p7*0, and K,, = pb"(’)p, where a, + b, = n and the integers a,,,b, — o
as n — oo. Then H, / Q, while K, N\, {0}, and through multiplication by p®~,
H, /K, ~ Zy. Thus, by Theorem 6.1, Q, is a limit of

Gp=Zy (nodd)

in the sense of Weyl systems.

Notice that Schwartz-Bruhat functions on Q, are locally constant functions with compact
support.

The measure on Z,» from Paragraph 3.3.1, when @, has its usual Haar measure and
total measure of O, equals 1, is the following: Then measure(Z,») = measure(H,) = p*~,
so measure({0}) = p*»~" = p~’». It makes sense from the approximation point of view
that the measure of a point goes to zero, while the total measure goes to infinity. If n is
even and a,, = n/2, then Z,» has the self-dual Haar measure of our set up.

7.2. Rational adeles. The locally compact abelian ring A of adeles over Q (see Weil [17])
is defined as the product R x Ay, where Ay is the group of finite adeles; the sequences
r = (z,) € Hp orime @p such that z, € O, for all but finitely many places. These adeles
define a locally compact ring under restricted product topology and pointwise addition and
multiplication. Let

Hn =R @p prime <n p_nop @p prime >n Op and [/(n — {0} @p prime <n pnop @p prime >n Op-
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Then each H, is an open subgroup, and H, ,/ A while K,, C H; is compact, K, \, {0}
and H,/K, ~ R @, prime <n Zy2n. Consequently, A is a limit of

G, = Ly Dp prime <n Lpzn (1 odd)

in the sense of Weyl systems.
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