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To Dr. C. R. Rao, with affection and admiration

There have been some recent speculations on connections between quantum theory and

modern number theory. At the boldest level these suggest that there are two ways of viewing

the quantum world, the usual and the arithmetic, which are in some sense complementary. At

a more conservative level they suggest that there is much mathematical interest in examining

structures which are important in quantum theory and analyze to what extent they make

sense when the real and complex fields are replaced by the more unconventional fields and

rings, like finite or nonarchimedean fields and adele rings, that arise in number theory. This

paper explores some aspects of these questions.

0. Dedication

It was over 40 years ago, in 1956 to be exact, that I traveled from my home
town of Madras in Southern India to Calcutta, almost a thousand miles away,
to join the Indian Statistical Institute as a research scholar. I was a young lad
of nineteen, eager to do research in probability theory. Dr. C. R. Rao was
the central figure in the Institute at that time, and his dedication to work and

* This paper is an expanded version of a talk given at the Lie Theory Workshop at the

University of Riverside on October 24, 1998, organized by Professor Ivan Penkov. I wish to

thank Professor Penkov for inviting me and for ensuring that the workshop took place in a

very pleasant atmosphere.
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concern for young workers made a deep impression on me. From then on his
example has been a constant source of inspiration for me, as I am sure, it has
been for his countless number of students and colleagues.

I remember especially vividly an occasion during the early 1980’s, when I
had been struggling in vain for a number of months to solve certain problems
of reduction theory of matrices depending on parameters. I went to visit Dr.
Rao in Pittsburgh for a few days and I saw how he was working literally all the
time. Inspired by his example, I returned to Los Angeles and stepped up the
intensity of my efforts. This led to a breakthrough in the problem and resulted
in one of the best things I have ever done in my whole scientific career. Even
today the memory of that visit and the subsequent happenings give me great
pleasure.

It is therefore with great happiness and affection that I dedicate this small
contribution to him, while wishing him many more years of good health and
scientific activity.

1. Introduction.

Arithmetic physics, or better, arithmetic quantum theory, is a term refer-
ring to a collection of ideas and partial results, loosely held together, suggesting
that there are deep connections between the worlds of quantum physics and
number theory, and that one should try to discover and develop these connec-
tions. At one extreme is the modest idea that one should try to see if some of
the mathematical structures arising in quantum theory make sense over fields
and rings other than R, such as the field of p–adic numbers Qp, or the ring
A(Q) of adeles over the rationals Q. The point here is not to try to develop
the alternative theories as substitute models for the actual physical world, but
rather to search for results that would extend what we already know over R
or C and present them under a unified scheme.

One basis for this suggestion is the simple fact that all experimental calcu-
lations are essentially discrete and so can be modeled by mathematical struc-
tures that are over Q. The theories over R are thus idealizations that are more
convenient than essential and reflect the fact that the field of real numbers is
a completion of the field of rational numbers. But there are other completions
of the reals, namely the fields Qp, and it is clear that under suitable circum-
stances a large finite quantum system may be thought of as an approximation
to a system defined over Qp. If we continue this line of thought further and
want to make sure that no single Qp is given a privileged role, it becomes nec-
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essary to consider all the completions of Q on the same footing, which means
working over the ring of adeles A(Q).

At the other extreme are bold speculations that push forward the hypoth-
esis that the exploration of the structure of quantum theories by replacing R
by Qp and A(Q) is not just a pleasant exercise but is essential. I quote the
following remarks of Manin from his beautiful and inspiring paper1.

On the fundamental level our world is neither real nor p–adic; it is adelic.
For some reasons, reflecting the physical nature of our kind of living matter
(e.g. the fact that we are built of massive particles), we tend to project the
adelic picture onto its real side. We can equally well spiritually project
it upon its non–Archimedean side and calculate most important things
arithmetically.
The relation between “real” and “arithmetical” pictures of the world is
that of complementarity, like the relation between conjugate observables in
quantum mechanics.

In the following sections I shall briefly expand on these themes and try to
describe some of the results that have been obtained from this perspective.

2. Quantum systems over finite fields and rings: a brief overview.

The idea of considering quantum systems over fields and rings other than
R has a long history and goes back to the origins of quantum theory itself. I
shall make some brief remarks about the evolution of these ideas. My aim is
not to be complete but to show that there has been considerable interest in
this theme for a long time.

Weyl (1928). The idea of considering quantum systems in which the
configuration space is replaced by a finite abelian group first appears in the
famous book2 of Hermann Weyl. Recall that quantum theory prescribes that
the mathematical quantities representing the position and momentum of a
particle in one dimension should be operators q and p on the Hilbert space of
states of the system satisfying the Heisenberg commutation rules (with h̄ = 1)

[p, q] = −iI

The structure of this remarkable relation is such that the Hilbert space on
which the operators p and q act has to be infinite dimensional and further that
q and p have to be unbounded. Weyl, who preferred to work with bounded
rather than unbounded operators, replaced q and p by the unitary groups they
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generate, and introduced the commutation rules between these unitary groups
that are formally equivalent to the Heisenberg commutation rules. Let

U(x) = eixq, V (ξ) = eiξp (x, ξ ∈ R)

so that U and V are unitary representations of the additive group R. Then
we get the commutation rule of Weyl which is formally equivalent to that of
Heisenberg, namely,

U(x)V (ξ) = e−ixξV (ξ)U(x) (x, ξ ∈ R)

In the standard Schrödinger model for quantum mechanics the Hilbert space
is L2(R) and U, V are defined by

(U(x)f)(τ) = eiτxf(τ), (V (ξ)f)(τ) = f(τ + ξ)

It is easy to check that the pair (U, V ) acts irreducibly on L2(R).

If I am not mistaken, it was Weyl who formulated the uniqueness question
associated to the pair of unitary representations satisfying the Weyl commuta-
tion rule in the following manner: is it true that such a pair (U, V ) of unitary
representations, under the further assumption of irreducibility, is equivalent
to the pair defined by the standard model? Weyl’s discussion did not lead to
a rigorous proof of the uniqueness; the first proofs were given by Stone and
Von Neumann (independently)3 very soon after Weyl’s formulation. But in
the course of his attempts to understand this question Weyl had a very re-
markable idea. He realized that his commutation rules could be formulated in
much greater generality, in fact for any pair of abelian groups in duality. To
make precise Weyl’s idea let us introduce a definition.

Definition. Let A and B be abelian groups in duality through a bicharacter
(· , ·). Then a Weyl system for (A,B) is a pair of unitary representations U
(of A) and V (of B) such that

U(x)V (ξ) = (x, ξ)−1V (ξ)U(x) ((x, ξ) ∈ A×B)

We recall that a bicharacter for (A,B) is a map of A × B into the mul-
tiplicative group of complex numbers of absolute value 1 which is a character
in each argument. A and B are said to be in duality with respect to (·, ·) if
the map of A into the character group B̂ of B induced by the bicharacter is
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an isomorphism. If we are dealing with topological groups, everything has to
be modified with the addition of appropriate continuity conditions in the ob-
vious manner. In particular the unitary representations are to be continuous.
A very general situation arises when A and B are separable locally compact
(abelian) groups; then one can construct a standard irreducible Weyl system
in complete analogy with the case of R. However the case when A and B are
infinite dimensional is also of great interest in quantum field theory. In fact,
already in Dirac’s theory of the interaction of matter with the electromagnetic
field, the classical electromagnetic field was expanded as a Fourier series, and
the Fourier coefficients, which are infinitely many, were regarded as the posi-
tion coordinates of the field with their time derivatives as the momenta; their
quantization followed Heisenberg’s prescription but now for infinitely many q’s
and p’s.

For an arbitrary but not necessarily locally compact pair (A,B) neither
the existence nor the uniqueness of irreducible Weyl systems is obvious. But
Weyl considered the case when

A = B = ZN := Z/NZ, (a, b) = e2iπab/N (a, b ∈ Z)

and proved in this case the uniqueness of the irreducible Weyl systems. He
then discussed in a heuristic fashion how one can identify ZN with a grid in
R in such a manner that when N goes to ∞ the mesh of the grid goes to 0
and the operators of the Weyl system for (ZN ,ZN ) converge to the operators
of the Weyl system for (R,R).

Schwinger (1960). Weyl’s ideas were revisited by Julian Schwinger when
he examined the foundations of quantum kinematics in a series of beautiful
papers in the late 1950’s and early 1960’s and then expanded on them in a
book4. Schwinger’s work went beyond Weyl’s and brought out new aspects
of the situation. First he emphasized the fact that the finite systems were of
interest in their own way, and not merely as approximations to the continuum
systems. Indeed, it was for the finite systems that he introduced his famous al-
gebra of measurements which is a complex ∗–algebra whose hermitian elements
represent the physical quantities of the system4a. They are nowadays known
as Schwinger algebras and have been studied intensively4b. Second, he made
the approximation process involving Weyl systems much more transparent (al-
though he refrained from giving a general definition). Finally, he suggested,
implicitly if not explicitly, that for large N the approximation will be close not
merely in the kinematic sense but also dynamically . I shall now explain briefly
these contributions of Schwinger.
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Classification of finite Weyl systems. Schwinger had already undertaken
in4 a detailed treatment of the kinematics of finite quantum systems and from
his point of view the Weyl systems associated to finite abelian groups furnish
the most important examples of finite systems. The spectra of the represen-
tations U and V define maximal observables and the Weyl commutation rules
imply that these are conjugate observables–when one of them is measured with
complete accuracy, all values of the other are equally likely. He then noticed
that the classification of finite abelian groups gives a classification of finite
Weyl systems. In this way he arrived at the principle that the Weyl systems
associated to A = B = Zp where p runs over all the primes are the building
blocks. Curiously this enumeration is incomplete and one has to include the
cases5 where A = B = Zpr where p is as before a prime but r is any integer
≥ 1.

Approximation of the Weyl system for A = B = R by that for A = B =
ZN . The idea is to identify ZN with a grid in R. This can be done also for
Rd with ZdN as the approximating abelian group for any d ≥ 1 but we shall
treat here only the case d = 1. This approximation is also at the basis of the
very useful theory of fast Fourier transforms. Let

LN =
{
rε
∣∣r = 0,±1,±2, . . . ,±(N − 1)/2

}
ε =

(
2π
N

)1/2

where N is an odd integer. The map that sends the equivalence class [r] of
r mod N to rε is an identification of ZN with the grid LN . The Hilbert
space L2(ZN ) is imbedded in L2(R) by sending the delta function at [r] to the
function which is the characteristic function of the interval [(r − 1/2)ε, (r +
1/2)ε] multiplied by ε−1/2. Now one can introduce the position operator qN
as the operator of multiplication by the function [r] 7→ rε. For the momentum
operator pN Schwinger had the real insight and originality to define it as the
Fourier transform (on the finite group ZN ) of qN ; actually the approach via
Weyl systems shows that this is the only way to define pN . Notice that pN
is now not a local difference operator on the grid but a global operator, more
like a pseudo difference operator if I may use that expression in analogy with
a pseudo differential operator.

Schwinger gave a treatment of the behavior of this approximation which
was more detailed than that of Weyl and even suggested that the states of the
continuum system be restricted to those for which this approximation proce-
dure is uniform in some sense. His work raised the question whether the above
approximation was good dynamically also. Thus, if we take a reasonably simple
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Hamiltonian such as the oscillator,

H = (1/2)(p2 + q2)

then one should ask if the corresponding dynamical group could be approxi-
mated closely by the dynamical group generated by the finite Hamiltonian

HN = (1/2)(p2
N + q2

N )

for large N . Numerical calculations6 showed that this is correct and that the
approximation is unexpectedly good even for relatively small values of N . In
fact, a very strong dynamical limit theorem7 can be proved for Hamiltonians

H = (1/2)(p2 + V (q))

where the potential V goes to∞ when |q| → ∞. The condition on V guarantees
that the energy spectrum is discrete. The generalization of these results to the
case of mixed spectrum remains open.

Beltrametti (1971), Nambu (1987). In the Weyl–Schwinger theory
the structures are still over R. Now in a general theory the fields enter in at
least two places–once when we decide to build space time as a vector space over
this field, and second when we introduce the carrier space of all the values of
physical fields and functions. In view of the well known divergences that occur
in the conventional models of space time it is an attractive idea to examine what
the possibilities for a quantum field theory are when finite fields, rings, and
other algebraic structures are allowed to replace the field of real and complex
numbers. One of the earlier treatments of this question of the microstructure
of space time goes back to Beltrametti 8; there are later treatments of similar
questions9. Nambu10 has examined this question more recently but so far
there has been no systematic effort to develop a quantum field theory in such
a context, for instance a quantum field theory over a Riemann surface over a
finite field.

Weil (1961). The most profound discussion of Weyl systems over general
locally compact abelian groups is due to Andre Weil. In a pair of epoch-making
papers11 he examined Weyl systems when A is any locally compact abelian
group and B = Â is its dual group. Weil considered the case when A is a finite
dimensional vector space over a local field (e.g., a p–adic field) or a free module
over the ring adeles over a global field such as a field of algebraic numbers. He
applied his theory to reinterpret the Siegel theory of quadratic forms over global
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fields and his work may be regarded as the quantum theory of the quadratic
form. Weil’s work has had a profound influence on modern number theory and
has provided a deep link between number theory and representation theory.

3. Convergence of Weyl systems.

The remarks made above on the approximation of Weyl systems over
R by those of ZN suggest that it is desirable to have a formal definition of
convergence of Weyl systems. This is not difficult to do5. If then A is any
separable locally compact abelian group, there is a sequence of finite abelian
groups AN such that the Weyl system associated to (A, Â) is the limit of
the Weyl systems associated to (AN , ÂN ).12 For instance the Weyl systems
associated to the field Qp of p–adic numbers is the limit of Weyl systems
associated to Zpr .

4. Quantization and Schrödinger theory over nonarchimedean fields.

Deformation of observable algebras.

The first question is whether we can view quantum theory over nonar-
chimedean fields from the point of view of deformation quantization. The sim-
plest situation is the following. Let K be a local field of characteristic different
from 2 and let X = K ×K. We write S(X) for the Schwartz–Bruhat space of
X, namely the space of compactly supported locally constant functions with
complex values on X. There is no structure of a Poisson algebra on S(X) but
at least there is the structure of an associative algebra on S(X), namely the
one coming from pointwise multiplication. One can ask at least whether this
algebra has nontrivial, for instance, nonabelian, deformations. The answer is
no, at least if one interprets deformations in the usual formal sense. However,
one may ask whether there is a topological space T and a point t0 ∈ T such
that there are associative algebra structures f, g 7→ f ·tg on S(X) for each t ∈ T
which are nonabelian, such that

(a) as t→ 0, f ·tg → fg

(b) f ·t0g = fg

Then the answer is yes. In fact, the Moyal–Weyl formula for ∗–product on
S(R2), the Schwartz space of R2, makes sense over S(X) and defines a fam-
ily of associative algebra structures parametrized by K having the properties
described above. It would be of interest to examine if such ∗–products can be
defined for the spaces S(X) for other manifolds X over K13.
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Path integrals and Schrödinger theory

Let D be a division ring which is finite dimensional and central over K.
Let V be a vector space of dimension n <∞ over D with a norm | · | which is
homogeneous and satisfies the ultrametric norm inequality

|u+ v| ≤ max(|u|, |v|) (u, v ∈ V )

Using a nontrivial additive character on D one can define a Fourier transform F
on the Schwartz–Bruhat space S(V ), which extends to a unitary isomorphism
of H = L2(V ). One can define a family of (pseudodifferential!) operators on
H by

∆b = −FM|x|bF−1 (b > 0)

where M|x|b is the operator of multiplication by |x|b. Notice that if D = R
and b = 2, then ∆ coincides with the usual Laplacian. The Hamiltonians on
H are then

H = −∆b + U

where U is a Borel function. The theory of Kato (Kato potentials) goes through
without difficulties and allows us to view H as an essentially self adjoint oper-
ator on the Schwartz–Bruhat space S(V ) of V under suitable conditions on U ,
for instance if U is locally L2 and bounded at infinity, or if, after an affine trans-
formation of V , U becomes a function of < n variables of the type described
just now. The adelic generalizations of these results also offer no difficulties14a.

It is now possible to prove that we can obtain a path integral representa-
tion for the propagator of the dynamical group generated by this Hamiltonian.
One has to go to imaginary time for getting a rigorous measure on path space.
We restrict ourselves to the local situation. The probability measure on the
path space is now not Wiener measure but an appropriate measure whose finite
dimensional densities can be explicitly described. They are not gaussian but
have Fourier transforms of the form

ϕt1,b ⊗ ϕt2−t1,b ⊗ . . .⊗ ϕtN−tN−1,b (0 < t1 < t2 < . . . < tN )

where
ϕt,b = e−t|u|

b

(One can verify directly that this is the characteristic function of a probability
density.) There is an additional departure from the theory over R in that the
measure is not defined on the space of continuous maps from [0,∞) to V but
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on the space of maps which are right continuous and have limits from the left
everywhere14b.

5. The Segal–Shale–Weil representation.

In the remainder of this note I shall discuss one of the deeper aspects of
Weyl systems over locally compact abelian groups, namely the construction
of the so called metaplectic representation due to Segal, Shale, and Weil. To
begin with, let A be a separable locally compact abelian group, let B = Â,
and let (U, V ) be a Weyl system for the pair (A, Â). Write

G = A× Â

and suppose for simplicity that A (hence also Â) has no 2–torsion. This means
that x 7→ 2x is an automorphism of A; we write x 7→ 2−1x for the inverse
automorphism. Let

W (a, b) = (a, b)1/2U(a)V (b) ((a, b) ∈ G)

where the square root is defined by

(a, b)1/2 = (2−1a, 2−1b)2

Then W satisfies the relations

W (a, b)W (a′, b′) = m((a, b), (a′, b′))W (a+ a′, b+ b′)

where

m((a, b), (a′, b′)) =
(a′, b)1/2

(a, b′)1/2

This means that W is a projective unitary representation with multiplier m.
The uniqueness theorem for Weyl systems is then the statement that up to
unitary equivalence there is only one irreducible projective unitary representa-
tion of G with multiplier m. As we mentioned earlier it was proved by Stone
and Von Neumann3 for A = B = Rd with the usual duality

(a, b) = e2πi(a·b)

This was later extended to all separable locally compact abelian A with B = Â
by Mackey; for a detailed discussion of this result see15.
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Let H be the Hilbert space on which W acts. Let s be an automorphism of
A×Â which leaves m invariant; we shall call such an automorphism symplectic.
Then the map

W s : (a, b) 7−→W (s(a, b))

is again an irreducible projective unitary representation of G with the same
multiplier, and so, by the uniqueness, there is a unitary operator Us, unique
up to a phase factor, such that

W (s(a, b)) = UsW (a, b)U−1
s

It is then immediate that
s 7−→ Us

induces a homomorphism (say u) of S(G) into the projective unitary group of
H, such that for each s ∈ S(G), Us intertwines W and W s.

Let us suppose that A is of local type, i.e., a vector space a over local
field, or of adelic type, i.e., a free module over an adele ring. Then S(G) is a
separable locally compact group and one can show that u is continuous, so that
we may choose the Us to depend in a Borel manner on s. U is thus a projective
unitary representation of S(G) (notice the analogy with the construction of the
spin representation of the orthogonal group). This is the famous metaplectic
representation, first introduced by Weil, nowadays called the Weil represen-
tation or the oscillator representation. The metaplectic representation is not
equivalent to an ordinary representation of the group S(G). But Weil proved
that it lifts to an ordinary unitary representation of a two–fold covering group
M(G) of S(G), which he called the metaplectic group. It played a crucial role
in Weil’s work .

Although it does not seem to have arithmetic implications, it would be
appropriate if I make some remarks on the work of Shale16. Inspired by Segal’s
work on quantum field theory, Shale considered Weyl systems for (A,A) where
A is the additive group of an infinite dimensional Hilbert space in duality with
itself by

(a, b) = e
i
2=(a,b)

In this case it turns out that the uniqueness fails. One can start with a rea-
sonable generalization of the standard model in the finite dimensional case but
the failure of the uniqueness theorem makes it necessary to restrict sharply
the symplectic automorphisms in order that they may preserve the generalized
standard model. Shale discovered what these restrictions should be and proved

11



that the projective representation lifts to an ordinary representation of a 2–fold
covering group of the restricted symplectic group.

It turns out that the Weil representation has a remarkable relation to
the quantum harmonic oscillator. Let me restrict myself to the case when
A = R = Â. Then S(G) is just SL(2,R) and M(G) is the unique 2–fold
covering group of SL(2,R). The subgroup of rotations in SL(2,R) is the
dynamical group of the classical harmonic oscillator. Its preimageB inM(G) is
again isomorphic to the circle group and so can be regarded as a homomorphic
image of R. The restriction to B of the Weil representation thus gives rise
to a unitary representation of R. The remarkable fact is that it is just the
dynamical group of the one dimensional quantum harmonic oscillator.

If we now replace R by Qp, we see that the restrictions of the Weil rep-
resentation to the preimages of the subgroups in SL(2,Qp) may be viewed as
furnishing the quantizations of these subgroups regarded as classical dynami-
cal systems over Qp. However this view makes time p–adic. The systematic
exploration of these ideas will be postponed to a later occasion17.
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