
6. SUPER SPACETIMES AND SUPER POINCARÉ GROUPS

6.1. Super Lie groups and their super Lie algebras.
6.2. The Poincaré-Birkhoff-Witt theorem.
6.3. The classical series of super Lie algebras and groups.
6.4. Super spacetimes.
6.5. Super Poincaré groups.

6.1. Super Lie groups and their super Lie algebras. The definition of a
super Lie group within the category of supermanifolds imitates the definition of Lie
groups within the category of classical manifolds. A real super Lie group G is a real
supermanifold with morphisms

m : G×G −→ G, i : G −→ G

which are multiplication and inverse, and

1 : R0|0 −→ G

defining the unit element, such that the usual group axioms are satisfied. However
in formulating the axioms we must take care to express then entirely in terms of the
maps m, i, 1. To formulate the associativity law in a group, namely, a(bc) = (ab)c,
we observe that a, b, c 7−→ (ab)c may be viewed as the map I×m : a, (b, c) 7−→ a, bc
of G× (G×G) −→ G×G (I is the identity map), followed by the map m : x, y 7−→
xy. Similarly one can view a, b, c 7−→ (ab)c as m × I followed by m. Thus the
associativity law becomes the relation

m ◦ (I ×m) = m ◦ (m× I)

between the two maps from G×G×G to G. We leave it to the reader to formulate
the properties of the inverse and the identity. The identity of G is a point of Gred.
It follows almost immediately from this that if G is a super Lie group, then Gred
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is a Lie group in the classical sense. Also we have defined real super Lie groups
above without specifying the smoothness type. One can define smooth or analytic
Lie groups by simply taking the objects and maps to be those in the category of
analytic super manifolds. Similarly for complex super Lie groups.

The functor of points associated to a super Lie group reveals the true character
of a super Lie group. Let G be a super Lie group. For any supermanifold S let
G(S) be the set of morphisms from S to G. The maps m, i, 1 then give rise to maps

mS : G(S)×G(S) −→ G(S), iS : G(S) −→ G(S), 1S : 1S −→ G(S)

such that the group axioms are satisfied. This means that the functor

S 7−→ G(S)

takes values in groups. Moreover, if T is another supermanifold and we have a map
S −→ T , the corresponding map G(T ) −→ G(S) is a homomorphism of groups.
Thus S 7−→ G(S) is a group-valued functor. One can also therefore define a super
Lie group as a functor

S 7−→ G(S)

from the category of supermanifolds to the category of groups which is representable
by a supermanifold G. The maps mS : G(S)×G(S) −→ G(S), iS : G(S) −→ G(S),
and 1S then define, by Yoneda’s lemma, maps m, i, 1 that convert G into a super
Lie group and S 7−→ G(S) is the functor of points corresponding to G. A morphism
of super Lie groups G −→ H is now one that commutes with m, i, 1. It corresponds
to homomorphisms

G(S) −→ H(S)

that are functorial in S. If G and H are already defined, Yoneda’s lemma assures us
that morphisms G −→ H correspond one-one to homomorphisms G(S) −→ H(S)
that are functorial in S.

The actions of super Lie groups on supermanifolds are defined exactly in the
same way. Thus if G is a super Lie group and M is a supermanifold, actions are
defined either as morphisms G ×M −→ M with appropriate axioms or as actions
G(S)×M(S) −→M(S) that are functorial in S; again Yoneda’s lemma makes such
actions functorial in S to be in canonical bijection with actions G×M −→M .

Sub super Lie groups are defined exactly as in the classical theory. A super Lie
group H is a subgroup of a super Lie group if Hred is a Lie subgroup of Gred and
the inclusion map of H into G is a morphism which is an immersion everywhere.
One of the most usual ways of encountering sub super Lie groups is as stabilizers of
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points in actions. Suppose that G acts on M and m is a point of Mred. Then, for
any supermanifold S, we have the stabilizer H(S) of the action of G(S) on M(S)
at the point mS of M(S). The assignment S 7−→ H(S) is clearly functorial in S. It
can the be shown that this functor is representable, and that the super Lie group
it defines is a closed sub super Lie group of G.

As in the classical case products of super Lie groups are super Lie groups. The
opposite of a super Lie group is also one.

The super Lie algebra of a super Lie group. In the classical theory the Lie
algebra of a Lie group is defined as the Lie algebra of left (or right) invariant vector
fields on the group manifold with the bracket as the usual bracket of vector fields.
The left invariance guarantees that the vector field is uniquely determined by the
tangent vector at the identity; one starts with a given tangent vector at the identity
and then translates it to each point to obtain the vector field. In the case of a super
Lie group we follow the same procedure, but much more care is required because
we have to consider not only the topological points but others also. The main point
is that if M is a supermanifold and v is a vector field on M - for instance defined
in local coordinates as

∑
i ai∂/∂x

i +
∑
j bj∂/∂θ

j where ai, bj are sections of the
structure sheaf locally, then v is not determined by the tangent vectors it defines
at each point.

For a super Lie group it is now a question of making precise what is a left
invariant vector field. If we are dealing with a classical Lie group G, the left invari-
ance of a vector field X is the relation `x ◦X = X ◦ `x for all x ∈ G where `x is left
translation by x, i.e.,

Xyf(xy) = (Xf)(xy)

for all x, y ∈ G where Xy means that X acts only on the second variable y. This
can also be written as

(I ⊗X) ◦m∗ = m∗ ◦X (1)

where m∗ is the sheaf morphism from OG to OG×G corresponding to the multipli-
cation m : G × G −→ G. Now this definition can be taken over to the super case
without change. The following is the basic theorem.

Theorem 6.1.1. The Lie algebra g of a super Lie group G is the set of all vector
fields X on G satisfying (1). It is a super Lie algebra of the same dimension as G.
The map X 7−→ X1 that sends X ∈ g to the tangent vector at the identity point 1
is a linear isomorphism of super vector spaces. If τ is a tangent vector to G at 1,
the vector field X ∈ g such that X1 = τ is the unique one such that

Xf = (I ⊗ τ)(m∗(f)) (2)
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for all (local) sections of OG. Finally, the even part of g is the Lie algebra of the
classical Lie group underlying G, i.e.,

g0 = Lie(Gred).

Remark. We shall not prove this here. Notice that equation (2) can be interpreted
formally as

(Xf)(x) = (τy)(f(xy)). (3)

Thus the elements of the Lie algebra of G can be obtained by differentiating the
group law exactly as we do classically. This will become clear in the examples
we consider below. However as a simple example consider G = R1|1 with global
coordinates x, θ. We introduce the group law

(x, θ)(x′, θ′) = (x+ x′ + θθ′, θ + θ′)

with the inverse
(x, θ)−1 = (−x,−θ).

The Lie algebra is of dimension 1|1. If Dx, Dθ are the left invariant vector fields
that define the tangent vectors ∂x = ∂/∂x, ∂θ = ∂/∂θ at the identity element 0,
and Dr

x, D
r
θ are the corresponding right invariant vector fields, then the above recipe

yields
Dx = ∂x, Dr

x = ∂x

Dθ = θ∂x + ∂θ, Dr
θ = −θ∂x + ∂θ.

It is now an easy check that
[Dx, Dθ] = 2Dx

(all other commutators are zero) giving the structure of the Lie algebra. A similar
method yields the Lie algebras of GL(p|q) and SL(p|q); they are respectively gl(p|q)
and sl(p|q).

Theorem 6.1.2. For morphism f : G −→ G′ of super Lie groups G,G′ we have its
differential Df which is a morphism of the corresponding super Lie algebras, i.e.,
Df : g −→ g′. It is uniquely determined by the relation Df(X)1′ = df1(X1) where
1, 1′ are the identity elements of G,G′ and df1 is the tangent map T1(G) −→ T1′(G′).
Moreover fred is a morphism Gred −→ G′red of classical Lie groups.

The fundamental theorems of Lie go over to the super category without change.
All topological aspects are confined to the classical Lie groups underlying the super
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Lie groups. Thus, a morphism α : g −→ g′ comes from a morphism G −→ G′ if
and only if α0 : g0 −→ g′0 comes from a morphism Gred −→ G′red. The story is the
same for the construction of a super Lie group corresponding to a given super Lie
algebra: given a classical Lie group H with Lie algebra g0, there is a unique super
Lie group G with g as its super Lie algebra such that Gred = H. The classification
of super Lie algebras over R and C and their representation theory thus acquires a
geometric significance that plays a vital role in supersymmetric physics.

Super affine algebraic groups. There is another way to discuss Lie theory in
the supersymmetric context, namely as algebraic groups. In the classical theory
algebraic groups are defined as groups of matrices satisfying polynomial equations.
Examples are GL(n), SL(n), SO(n), Sp(2n) and so on. They are affine algebraic va-
rieties which carry a group structure such that the group operations are morphisms.
If R is a commutative k-algebra with unit element, G(S) is the set of solutions to
the defining equations; thus we have GL(n,R), SL(n,R), SO(n,R), Sp(2n,R). In
general an affine algebraic group scheme defined over k is a functor R 7−→ G(R)
from the category of commutative k-algebras with units to the category of groups
which is representable. Representability means that there is a commutative algebra
with unit, k[G] say, such that

G(R) = Hom (k[G], R)

for all R. By Yoneda’s lemma the algebra k[G] acquires a coalgebra structure, an
antipode, and a co unit, converting it into a Hopf algebra. The generalization to
the super context is almost immediate: a super affine algebraic groups defined over
k is a functor

R 7−→ G(R)

from the category of supercommutative k-algebras to the category of groups which
is representable, i.e., there is a supercommutative k-algebra with unit, k[G] say,
such that

G(R) = Hom (k[G], R)

for all R. The algebra k[G] then acquires a super Hopf structure. The theory can be
developed in parallel with the transcendental theory. Of course in order to go deeper
into the theory we need to work with general super schemes, for instance when we
deal with homogeneous spaces which are very often not affine but projective. The
Borel subgroups and the super flag varieties are examples of these.

6.2. The Poincaré-Birkhoff-Witt theorem. The analog for super Lie algebras
of the Poincaré-Birkhoff-Witt (PBW) theorem is straightforward to formulate. Let
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g be a super Lie algebra and T the tensor algebra over g. We denote by I the
two-sided ideal generated by

x⊗ y − (−1)p(x)p(y)y ⊗ x− [x, y]1 (x, y ∈ g)

and define
U = U(g) = T/I.

Then U is a super algebra, as I is homogeneous in the Z2-grading of T inherited
from that on g, and we have a natural map p : g −→ U . The pair (U , p) has
the following universal property: if A is a super algebra with associated super Lie
algebra AL([x, y] = xy − (−1)p(x)p(y)yx) and f : g −→ AL is a morphism of super
Lie algebras, there is a unique morphism f∼ : U −→ A such that f∼(p(X)) = f(X)
for all X ∈ g. It is clear that (U , p) is uniquely determined by this universality
requirement. (U , p) is called the universal enveloping algebra of g. The PBW
theorem below will imply that p is injective. So it is usual to identify g with its
image by p inside uu and refer to U itself as the universal enveloping algebra of g.
For simplicity we restrict ourselves to the case when g is of countable dimension.
Thus bases can be indexed either by the set of integers from 1 to some integer N
or by the set of all integers.

Theorem 6.2.1(PBW). Let k be a commutative ring with unit in which 2 and 3
are invertible. Let g be a super Lie algebra over k which is a free k-module with a
countable homogeneous basis. Let notation be as above. then the map p of g into U
is an imbedding. If (Xa), (Xα) are bases for g0, g1 respectively, then the standard
monomials

Xa1
1 . . . Xir

r Xα1 . . . Xαs (a1 ≤ . . . ≤ ar, α1 < . . . < αs)

form a basis for U . In particular,

U ' U(g0)⊗ Λ(g1)

as super vector spaces.

Remark. In recent times, as the notion of the Lie algebra has been generalized to
include Lie super algebras and quantum groups, the PBW theorem has also been
generalized to these contexts. It seems useful to point out that one can formulate
and prove a single result from which the PBW theorems in the various contexts
follow quite simply. The following treatment is nothing more than a synopsis of a
paper by George M. Bergman1. See also2.
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We work over a commutative ring k with unit. We wish to construct a basis
for an associative k-algebra A given by a set of generators with relations of a special
type. Let T be the tensor algebra over k determined by the generators and I the
two-sided ideal generated by the relations. In the special contexts mentioned above
there is a natural k–module of tensors spanned by the so called standard monomials
and denoted by S. The problem is to find conditions such that T = S⊕ I; then the
images of a basis of S in A = T/I will furnish a basis for A. Following Bergman we
speak of words instead of monomial tensors.

Let X be a set whose elements are called letters and let W be the set of words
formed from the letters, i.e., the elements of X, including the null word 1; W is a
semigroup with 1 as unit, the product ww′ of the words w,w′ being the word in
which w is followed by w′. T is the free k-module spanned by W whose elements
will be called tensors. We are given a family (wσ)σ∈Σ of words and for each b ∈ B
a tensor fb ∈ T ; we assume that for bσ 6= bσ′, wσ 6= wσ′ . Our interest is in the
algebra generated by the elements of X with relations

wσ = fσ (σ ∈ Σ).

A word is called standard if it does not contain any of the words wσ(σ ∈ Σ) as
a subword. Let S be the free k-module spanned by the standard words. Elements
of S will be called the standard tensors. We write I for the two-sided ideal in T
generated by the elements wσ − fσ, namely, the k-span of all tensors of the form

u(wbσ − fσ)v (σ ∈ Σ, u, v ∈W ).

The theorem sought for is the statement that

T = S ⊕ I.

We shall refer to this as the basic theorem. To see how this formulation includes
the classical PBW theorem, let X = (xi) be a basis of a Lie algebra over k where
the indices i are linearly ordered. Then B is the set of pairs i, j with i > j. The
words wσ are xixj (i > j) and fσ is xjxi + [xi, xj ] so that the relations defining the
universal enveloping algebra are

xixj = xjxi + [xi, xj ] (i > j).

A word is then standard if it is of the form xi1i2...ir where i1 ≤ i2 ≤ . . . ≤ ir and S
is the usual k-span of standard monomials in the basis elements (xi).

311



The natural way to prove the basic theorem is to show that every word is
congruent to a standard tensor mod I and that this standard tensor is uniquely
determined. We shall say that the standard tensor is a reduced expression of the
original word and the process of going from the given word to its reduced expression
a reduction procedure. The procedure of reduction is quite simple. We check if the
given word is already standard, and if it is not, then it must contain a subword
wσ(σ ∈ Σ) which we replace by fσ; we call this an elementary reduction. We
repeat this process for the words in the tensor thus obtained. We hope that this
process ends in a finite number of steps, necessarily in a standard tensor, and that
the standard tensor thus obtained is independent of the reduction algorithm. The
ambiguity of the reduction process stems from the fact that a given word may
contain several words wσ(σ ∈ Σ) as subwords and any one of them can be replaced
by fσ in the next step. If the reduction process exists and is unambiguous, we have
an operator R from T to S which is a projection on S. We shall see below that
the existence and uniqueness of the reduction to standard form is equivalent to the
basic theorem.

Before going ahead let us look at an example where X has three elements
xi(i = 1, 2, 3) and we start with the relations

[xi − xj ] := xixj − xjxi = xk (ijk) is an even permutation of (123).

These are the commutation rules of the rotation Lie algebra and we know that
the PBW theorem is valid where the standard words are the ones xr11 x

r2
2 x

r3
3 . But

suppose we change these relations slightly so that the Jacobi identity is not valid,
for instance let

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x3

Let us consider two ways of reducing the nonstandard word x3x2x1. We have

x3x2x1 ≡ x2x3x1 − x2
1 ≡ x2x1x3 + x2x3 − x2

1 ≡ x1x2x3 − x2
1 + x2x3 − x1 − x2

3

where we start by an elementary reduction of x3x2. If we start with x2x1 we get

x3x2x1 ≡ x3x1x2 − x2
3 ≡ x1x3x2 + x3x2 − x2

3 ≡ x1x2x3 − x2
1 + x2x3 − x1 − x2

3.

Hence we have x1 ∈ I. The PBW theorem has already failed. From the commuta-
tion rules we get that x3 ∈ I so that I ⊃ I ′ where I ′ is the two-sided ideal generated
by x1, x3. On the other hand, all the relations are in I ′ so that I ⊂ I ′. Hence I = I ′,
showing that T = k[x2]⊕ I. Thus A ' k[x2].
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We shall now make a few definitions. Words containing a wσ(σ ∈ Σ) as a
subword are of the form uwσv where u, v ∈W ; for any such we define the elementary
reduction operator Ruwσv as the linear operator T −→ T that fixes any word 6= uwσv
and sends uwσv to ufσv. If wσ 6= fσ, then this operator fixes a tensor if and only if
it is a linear combination of words different from uwσv. We shall assume from now
on that wσ 6= fσ for all σ ∈ Σ. A finite product of elementary reduction operators is
called simply a reduction operator. A tensor t is reduction finite if for any sequence
Ri of elementary reduction operators the sequence R1t, R2R1t, . . . , RkRk−1 . . . R1t
stabilizes, i.e., for some n, Rk . . . R1t = Rn . . . R1t for all k > n. Clearly the set
Tf of reduction finite tensors is a k-module which is stable under all elementary
reduction operators. The set of tensors which is the k-span of words different from
any word of the form uwσv(u, v ∈ W,σ ∈ Σ) is denoted by S and its elements are
called standard. These are the tensors which are fixed by all the reduction operators.
If t ∈ Tf it is easy to see that there is a reduction operator R such that Rt = s ∈ S;
s is said to be a reduced form of t. If all standard reduced forms of t are the same,
t is called reduction unique and the set of all such tensors is denoted by Tu. Tu is
also a k-module, S ⊂ Tu ⊂ Tf , Tu is stable under all reduction operators, and the
map that sends t ∈ Tu to its unique reduced standard form is a well defined linear
operator that is a projection from Tu to S. We shall denote it by R. Clearly if
t ∈ Tu and L is a reduction operator, R(Lt) = Rt. To see that Tu is closed under
addition, let t, t′ ∈ Tu and let t0, t′0 be their reduced forms. Then t+ t′ ∈ Tf ; if M is
a reduction operator such that M(t+ t′) = u0 ∈ S, we can find reduction operators
L,L′ such that LMt = t0, L

′LMt′ = t′0, so that u0 = L′LM(t + t′) = t0 + t′0,
showing that t+ t′ ∈ Tu and R(t+ t′) = Rt+Rt′.

We shall now show that when T = Tf , the basic theorem, namely, the assertion
that T = S⊕I is equivalent to the statement that every word is reduction finite, i.e.,
Tu = T . Suppose first that T = S ⊕ I. If t ∈ T and R is an elementary reduction
operator, it is immediate that t ≡ Rt mod I. Hence this is true for R any reduction
operator, elementary or not, so that any reduced form s of t satisfies t ≡ s mod I.
But then s must be the projection of t on S mod I. Hence s is uniquely determined
by t, showing that t ∈ Tu. Conversely suppose that Tu = T . Then R is a projection
operator on S so that T = S ⊕K where K is the kernel of R. It is now a question
of showing that K = I. Suppose that t ∈ K. Since t ≡ Rt mod I for any reduction
operator R and 0 = Rt = Rt for some reduction operator R, it follows that t ∈ I,
showing that K ⊂ I. On the other hand, consider t = uwσv where σ ∈ Σ. If R is
the elementary reduction operator Ruwσv, we know that Rt = R(Rt) = R(ufσv).
Hence R(u(wσ − fσ)v) = 0, showing that R vanishes on I. Thus I ⊂ K. So K = I
and we are done.

We now have the following simple but important lemma.
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Lemma 6.2.2. Let u, v ∈ W and t ∈ T . Suppose that utv is reduction unique
and R is a reduction operator. Then u(Rt)v is also reduction unique and R(utv) =
R(u(Rt)v).

Proof. It is clearly sufficient to prove this when R is an elementary reduction
operator Rawσc where a, c ∈ W and σ ∈ Σ. Let R′ be the elementary reduction
operator Ruawσcv. Then R′(utv) = u(Rt)v. Since utv ∈ Tu, we have u(Rt)v =
R′(utv) ∈ Tu also and R(u(Rt)v) = R(R′(utv)) = R(utv).

The basic question is now clear: when can we assert that every tensor is re-
duction unique? Since the ambiguities in the reduction process are due to several
words wσ being present in a given word it is reasonable to expect that if we verify
that in the simplest possible situations where there are two such words present the
reduction is unambiguous, then it will be unambiguous in general. However it is
not obvious that the process of reduction of a tensor terminates in a finite number
of steps in a standard tensor. To ensure this we consider a partial order on the
words such that for any σ ∈ Σ, fσ is a linear combination of words strictly less than
wσ; it is then almost obvious that any tensor can be reduced to a standard form
in a finite number of steps. More precisely let < be a partial order on W with the
following properties (w′ > w means w < w′):

(i) 1 < w for all w 6= 1 in W .

(ii) w < w′ implies that uwv < uw′v for all u,w,w′, v ∈W .

(iii) < satisfies the descending chain condition: any sequence wn such that
w1 > w2 > . . . is finite.

(iv) For any σ ∈ Σ, fσ is a linear combination of words < wσ.

The descending chain condition implies that any subset of W has minimal elements.
From now on we shall assume that W has been equipped with such a partial order.
If w is a word and t is a tensor, we shall write t < w if t is a linear combination
of words < w. For any linear space L of tensors we write L<w the subspace of L
consisting of elements which are < w.

First of all we observe that under this assumption Tf = T . For, if some word
is not reduction finite, there is a minimal such word, say w. w cannot be standard;
if R is an elementary reduction operator with Rw 6= w, we must have w = uwσv
for some σ ∈ Σ and words u, v, and R = Ruwσv. But then Rw = ufσv < w so
that Rw is in Tf . This implies that w is in Tf . We now consider the ambiguities
in the reduction process. These, in their simplest form, are of two kinds. The
ambiguity of type O, the overlap ambiguity, is a word w1w2w3 where the wi are
words and there are σ, τ ∈ Σ such that w1w2 = wσ, w2w3 = wτ . In reducing such
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an element we may begin with w1w2 = wσ and replace it by fσ or we may begin
with w2w3 = wτ and replace it by fτ . The second type is type I, the inclusion
ambiguity, which is a word w1w2w3 where w2 = wσ, w1w2w3 = wτ . We shall say
that the ambiguities are resolvable if there are reduction operators R′, R′′ such that
R′(fσw3) = R′′(w1fτ ) ∈ S in the type O case and R′(w1fσw3) = R′′(fτ ) ∈ S in the
type I case. The basic result is the following.

Theorem 6.2.3(Bergman). Assume that W is equipped with an order as above.
Then the basic theorem is true if and only if all ambiguities are resolvable.

Proof. Let us assume that all ambiguities are resolvable and prove that the PBW
is valid. As we have already observed, every element of T is reduction finite and so
it comes to showing that every word is reduction unique. This is true for the null
word 1 and we shall establish the general case by induction. Let w be any word
and let us assume that all words < w are reduction unique; we shall prove that w
is also reduction unique.

Let R1, R2 be two elementary reduction operators such that R1w 6= w,R2w 6=
w. We shall prove that R − 1w and R2w are reduction unique and have the same
reduced form. We must have R1 = Ru1wσv1 , and R2 = u2wτv2 for some σ, τ ∈ Σ.
We may assume that in w the subword wσ begins earlier than the subword wτ .
Three cases arise. First we consider the case when wσ and wτ overlap. Then
w = uw1w2w3v where w1w2 = wσ and w2w3 = wτ . By assumption there are
reduction operators R′, R′′ such that R′(fσw3) = R′′(w1fτ ). On the other hand
for any elementary reduction operator R0 = Rawθb (θ ∈ Σ) we have the reduction
operator uR0v = Ruaθbv. So for any reduction operator R∼, elementary or not,
we have a reduction operator R∼uv such that for all t ∈ T , uR∼tv = R∼uvt. So if
R′1 = R′uv, R

′′
1 = R′′uv, we have R′1(ufσw3) = R′′1 (uw1fτv). But as fσ < wσ, fτ < wτ ,

we see that ufσw3v < uwσw3v = w, uw1fτv < uw1wτv = w so that ufσw3 and
uw1fτv are both in T<w. Since R<w is well-defined on T<w and the above two
elements can be reduced to the same element in S, they must have the same image
under any reduction operators that takes them to reduced form. In other words,
R1w and R2w have the same reduced form as we wanted to prove. The case when
wσ is a subword of wτ is similar. The third and remaining case is when wσ and wτ
do not overlap. This is the easiest of all cases. We can then write w = uwσxwτv.
Then R1w = ufσxwτv,R2w = uwσxfτv. We can reduce wτ in R1w and wσ in R2w
to get ufσxfτv in both cases. This element is in T<w and so has a unique reduced
form. So R1w and R2w have the same reduced forms under suitable reductions, and
as these are in T<w, this reduced form is their unique reduced expression. Hence we
again conclude that w is reduction unique. Finally, the converse assertion that for

315



PBW to be valid it is necessary that all ambiguities must be resolvable, is obvious.
This proves the theorem.

Proofs of the PBW theorem for Lie algebras and super Lie algebras. The
first application is to the classical PBW theorem for the case of Lie algebras. Let
g be a Lie algebra over a commutative ring k with unit as above which is free as
a k-module. Let (Xi)i∈B be a basis for g over k. We assume that B has a total
order (this is no restriction) so that for any two indices i, j ∈ B we have one and
only one of the following three possibilities: i < j, j < i, i = j; we write i > j for
j < i and i ≤ j if i is either < j or = j. W is the set of all words with the letters
Xi(i ∈ B). A word Xi1Xi2 . . . Xim is standard if i1 ≤ i2 ≤ . . . ≤ im. Let [ , ]
be the bracket in g, so that [Xi, Xj ] =

∑
m cijmXm, cijm ∈ k. We take Σ to be

the set of pairs (i, j) with i, j ∈ B, i > j; and for (i, j) ∈ Si, wi,j) = XiXj with
f(i,j) = XjXi +

∑
m cijmXm. To define the order in W we proceed as follows. For

any word w = Xi1Xi2 . . . Xim we define its rank rk(w) to be m and index i(w) to
be the number of pairs (a, b) with a < b but ia > ib. Then a word is standard in
our earlier sense if and only if it is standard in the present sense. The ordering
of words is by saying that w < w′ if either rk(w) < rk(w′) or if rk(w) = rk(w′)
but i(w) < i(w′). All the conditions discussed above are satisfied and so to prove
the PBW theorem we must check that all ambiguities are resolvable. Since all the
words in Σ have rank 2 there are only overlap ambiguities which are words of length
3 of the form XrXjXi where i < j < r. We must show that the tensors

XjXrXi + [Xr, Xj ]Xi, XrXiXj +Xr[Xj , Xi]

have identical reductions to standard forms under suitable reduction operators. The
first expression can be reduced to

XiXjXr +Xj [Xr, Xi] + [Xj , Xi]Xr + [Xr, Xj ]Xi

while the second reduces to

XiXjXr + [Xr, Xi]Xj +Xi[Xr, Xj ] +Xr[Xj , Xi].

The quadratic terms in these expressions admit further reduction. For a commu-
tator [X,Y ] with X,Y ∈ g and any index m ∈ B let us write [X,Y ]>m to be the
expression in terms of the basis containing only the Xa with a > m, and similarly
when > m is replaced by <,≤,≥. Notice now that the quadratic terms in the above
two expressions differ by the reversal of the multiplications. Now, for any index c
the reduction to standard form of [X,Y ]Xc and Xc[X,Y ] (X,Y ∈ g) is given by

[X,Y ]Xc = [X,Y ]≤cXc +Xc[X,Y ]>c + [[X,Y ]>c, Xc]
Xc[X,Y ] = Xc[X,Y ]>c + [X,Y ]≤cXc + [Xc, [X,Y ]≤c]

.
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Hence the difference between these two reduced forms is

[Xc, [X,Y ]].

It follows from this calculation that the two reduced expressions for the word
XrXjXi differ by

[Xr, [Xj , Xi]] + [Xj , [Xi, Xr]] + [Xi, [Xr, Xj ]]

which is 0 precisely because of the Jacobi identity.

The second application is when g is a Lie super algebra. Recall that g is
Z2-graded with a bracket [ , ] satisfying the skew symmetry condition

[X,Y ] = −(−1)p(X)p(Y )[Y,X]

and the Jacobi identity which encodes the fact that the adjoint map is a represen-
tation; writing as usual adX : Y 7−→ [X,Y ], the Jacobi identity is the statement
that ad[X,Y ] = adXadY − (−1)p(X)p(Y )adY adX, i.e., for all X,Y, Z ∈ g we have

[[X,Y ], Z] = [X, [Y,Z]]− (−1)p(x)p(y)[Y, [X,Z]].

In these as well as other formulae below p(X) is the parity of X which is 0 for
X even and 1 for X odd. If U is the universal enveloping algebra of g, the skew
symmetry becomes, when both X and Y are odd, the relation 2X2 = [X,X]. For
this to be an effective condition we assume that 2 is invertible in the ring k and
rewrite this relation as

X2 = (1/2)[X,X] (p(X) = 1).

Furthermore, when we take X = Y = Z all odd in the Jacobi identity we get
3[X,X] = 0 and so we shall assume 3 is invertible in the ring k and rewrite this as

[[X,X], X] = 0.

For the PBW theorem we choose the basis (Xi) to be homogeneous, i.e., the Xi are
either even or odd. Let p(i) be the parity of Xi. The set Σ is now the set of pairs
(i, j) with either i > j or (i, i) with i odd. The corresponding w(i,j) are

w(i,j) = XiXj (i > j), w(i,i) = X2
i (p(i) = −1)
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and the f(i,j) are given by

f(i,j) = (−1)p(i)p(j)XjXi + [Xj , Xi] (i > j)

f(i,i) = (1/2)[Xi, Xi] (p(i) = −1)
.

Once again the only ambiguities are of the overlap type. These are the words
XrXjXi where now we have to consider i ≤ j ≤ r. We have to consider various
case where there may be equalities. The first case is of course when i < j < r.

i < j < r: We want to show that the reduction to standard form of XrXjXi

is the same whether we start with XrXj or XjXi. Starting with XrXj we find the
expression, with q = p(i)p(j) + p(j)p(r) + p(r)p(i),

(−1)qXiXjXr + [Xr, Xj ]Xi + (−1)p(r)p(j)Xj [Xr, Xi]+

(−1)p(r)p(j)+p(r)p(i)[Xj , Xi]Xr

. (1)

For the expression starting from XjXi we find

(−1)qXiXjXr +Xr[Xj , Xi] + (−1)p(i)p(j)[Xr, Xi]Xj+

(−1)p(i)p(j)+p(r)p(i)Xi[Xr, Xj ]
. (2)

Apart from the cubic term which is standard these expressions contain only
quadratic terms and these need further reduction. For any three indices a, b, c
we have, writing t = p(c)p(a) + p(c)p(b),

[Xa, Xb]Xc = [Xa, Xb]≤cXc + (−1)tXc[Xa, Xb]>c + [[Xa, Xb]>c, Xc]
Xc[Xa, Xb] = Xc[Xa, Xb]>c + (−1)t[Xa, Xb]≤cXc + [Xc, [Xa, Xb]≤c]

.

If c is even the two expressions on the right side above are already standard because
the term [Xa, Xb]≤cXc is standard as there is no need to reduce X2

c ; if c is odd we
have to replace X2

c by (1/2)[Xc, Xc] to reach the standard form. If E1, E2 are the
two standard reduced expressions, it follows by a simple calculation that

E1 − (−1)tE2 = [[Xa, Xb]>c, Xc]− (−1)t[Xc, [Xa, Xb]≤c].

Using the skew symmetry on the second term we get

E1 − (−1)p(c)p(a)+p(c)p(b)E2 = [[Xa, Xb], Xc]. (3)
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We now apply this result to the reductions of the two expressions in (1) and (2).
Let S1 and S2 be the corresponding standard reductions. Using (3), we find for
S1 − S2 the expression

[[Xr, Xj ], Xi]− (−1)p(i)p(j)[[Xr, Xi], Xj ] + (−1)p(r)p(j)+p(r)p(i)[[Xj , Xi], Xr].

Using skew symmetry this becomes

[[Xr, Xj ], Xi]− [Xr, [Xj , Xi]] + (−1)p(r)p(j)[Xj , [Xr, Xi]]

which is 0 by the Jacobi identity.

i = j < r, p(i) = −1 or i < j = r, p(j) = −1: These two cases are similar and
so we consider only the first of these two alternatives, namely, the reductions of
XjXiXi with i < j and i odd (we have changed r to j). The two ways of reducing
are to start with XjXi or XiXi. The first leads to

XiXiXj + (−1)p(j)Xi[Xj , Xi] + [Xj , Xi]Xi.

The second leads to
(1/2)Xj [Xi, Xi].

We proceed exactly as before. The reduction of the first expression is

1
2

{
[Xi, Xi]≤jXj +Xj [Xi, Xi]>j + [[Xi, Xi]>j , Xj ]

}
+ (−1)p(j)[Xi, [Xj , Xi]].

The second expression reduces to

(1/2)[Xi, Xi]≤jXj + (1/2)Xj [Xi, Xi]>j + (1/2)[Xj , [[Xi, Xi]≤j .

The difference between these two is

(1/2)[[Xi, Xi], Xj ] + (−1)p(j)[Xi, [Xj , Xi]]

which is 0 by the Jacobi identity.

i = j = r, i odd: We can start with either the first XiXi or the second one.
The difference between the two reduced expressions is

(1/2)[[Xi, Xi], Xi]

which is 0 by the Jacobi identity.
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If we order the indices such that all even induced come before the odd ones and
we use Latin for the even and Greek for the odd indices, we have a basis (Xi, Xα)
and the PBW theorem asserts that the monomials

Xi1Xi2 . . . XirXα1Xα2 . . . Xαs (i1 ≤ i2 ≤ . . . ≤ ir, α1 < α2 < . . . < αs)

form a basis for the universal enveloping algebra of the super Lie algebra g. We
have thus finished the proof of Theorem 6.2.1.

We note that the ring k has been assumed to have the property that 2 and 3
are invertible in it. In particular this is true if k is a Q-algebra, for instance if k is
a field of characteristic 0, or even if its characteristic is different from 2 and 3.

6.3. The classical series of super Lie algebras and groups. Over an alge-
braically closed field k one can carry out a classification of simple super Lie algebras
similar to what is done in the classical theory. A super Lie algebra g is simple if it
has no proper nonzero ideals and g 6= k1|0. A super Lie algebra g is called classical
if it is simple and g0 acts completely reducibly on g1, i.e., g1 is a direct sum of irre-
ducible g0-modules. Then one can obtain a complete list of these. Let us introduce,
for any field k the following super Lie algebras.

gl(p|q): This is the super Lie algebra Mp|q
L .

sl(p|q): This is given by

sl(p|q) = {X ∈ gl(p|q) | str(X) = 0}.

We write

A(p|q) =
{

sl(p+ 1|q + 1) if p 6= q, p, q ≥ 0
sl(p+ 1|q + 1)/kI where p ≥ 1 .

For A(p|q) the even parts and the odd modules or as follows.

g = A(p|q) : g0 = A(p)⊕A(q)⊕ k, g1 = fp ⊗ f ′q ⊗ k
g = A(p|p) : g0 = A(p)⊕A(p), g1 = fp ⊗ f ′p

where the f ’s are the defining representations and the primes denote duals.

osp(Φ): Let V = V0 ⊕ V1 be a super vector space and let Φ be a symmetric
nondegenerate even bilinear form V ×V −→ k. Then Φ is symmetric nondegenerate
on V0 × V0, symplectic on V1 × V1, and is zero on Vi ⊗ Vj where i 6= j. Then

osp(Φ) = {L ∈ End(V ) | Φ(Lx, y) + (−1)p(L)p(x)Φ(x, Ly) = 0 for all x, y ∈ V }.
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This is called the orthosymplectic super Lie algebra associated with Φ. It is an
easy check that this is a super Lie algebra. If k is algebraically closed Φ has a
unique standard form and then the corresponding super Lie algebra takes a standard
appearance. The series osp(Φ) splits into several subseries.

B(m,n) = osp(2m+ 1|2n) (m ≥ 0, n ≥ 1)
D(m,n) = osp(2m|2n) (m ≥ 2, n ≥ 1)

C(n) = osp(2|2n− 2) (n ≥ 2).

The even parts of these and the corresponding odd parts as modules for the even
parts are given as follows.

g = B(m,n) : g0 = B(m)⊕ C(n), g1 = f2m+1 ⊗ f ′2n
g = D(m,n) : g1 = f2m ⊗ f ′2n

g = C(n) : g1 = k ⊗ f2n−2.

P (n)(n ≥ 2): This is the super Lie algebra defined by

P (n) =

{(
a b
c −at

) ∣∣∣∣∣tr(a) = 0, b symmetric , c skew symmetric

}
.

The Q-series is a little more involved in its definition. Let us consider the super Lie
algebra gl(n+ 1|n+ 1) of all matrices

g =
(
a b
c d

)
and let us define the odd trace otr(g) = tr(b). Let

Q∼(n) =

{(
a b
b a

) ∣∣∣∣∣tr(b) = 0

}

and let
Q(n) = Q∼(n)/kI2n+2.

For the even parts and the odd modules we have

g = P (n) : g0 = sl(n+ 1|n+ 1), g1 = Symm2(n+ 1)⊕ Λ2(n+ 1)
g = Q(n) : g0 = A(n), g1 = adA(n).
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Theorem 6.3.1(Kac). Let k be algebraically closed. Then the simple and classical
super Lie algebras are precisely

A(m|n), B(m|n), D(m|n), C(n), P (n), Q(n)

and the following exceptional series:

F (4), G(3), D(2|1, α) (α ∈ k \ (0,±1).

Remark. For all of this see3. Here is some additional information regarding the
exceptional series:

g = F (4) : g0 = B(3)⊕A(1), g1 = spin(7)⊗ f2,dim = 24|16
g = G(3) : g0 = G(2)⊕A(1), g1 = 7⊗ 2,dim = 17|14

g = D(2|1, α) : g1 = A(1)⊕A(1)⊕A(1), g1 = 2⊗ 2⊗ 2,dim = 9|8.

The interesting fact is that the D(2|1, α) depend on a continuous parameter.

The classical super Lie groups. We restrict ourselves only to the linear and
orthosymplectic series.

GL(p|q): The functor is S 7−→ GL(p|q)(S) where S is any supermani-

fold and GL(p|q)(S) consists of matrices
(
a b
c d

)
where a ∈ GL(p)(O(S)0), b ∈

GL(q)(O(S)0) while b, c are matrices with entries from O(S)1. The representing
supermanifold is the open submanifold of the affine space of dimension p2 + q2|2pq
defined by GL(p)×GL(q).

SL(p|q): The functor is S 7−→ SL(p|q)(S) where SL(p|q)(S) is the kernel of the
Berezinian. The representing supermanifold is the submanifold of GL(p|q) defined
by the condition that the Berezinian is 1. One can also view it as the kernel of the
morphism Ber from GL(p|q) to GL(1|0).

osp(m|2n): The functor is S 7−→ osp(m|2n)(S) where osp(m|2n)(S) is the
subgroup of GL(m|2n)(S) fixing the appropriate even symmetric bilinear form Φ.
The representability criterion mentioned earlier applies.

It is possible to describe the super Lie groups for the P and Q series also along
similar lines. See Deligne-Morgan.

6.4. Super spacetimes. Super spacetimes are supermanifolds M such that Mred

is a classical spacetime. They are constructed so that they are homogeneous spaces
for super Poincaré groups which are super Lie groups acting on them.
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Super Poincaré algebras. We have seen an example of this, namely the super Lie
algebra of Gol’fand-Likhtman. Here we shall construct them in arbitrary dimension
and Minkowski signature. Let V be a real quadratic vector space of signature
(1, D− 1). The usual case is when D = 4 but other values of D are also of interest.
For conformal theories V is taken to be of signature (2, D−2). We shall not discuss
the conformal theories here.

The Poincaré Lie algebra is the semidirect product

g0 = V ×′ so(V ).

We shall denote by S a real spinorial representation of Spin (V ). We know that
there is a symmetric nonzero map

Γ : S × S 7−→ V (1)

equivariant with respect to Spin (V ); Γ is projectively unique if S is irreducible.
Let

g = g0 ⊕ S.

We regard S as a g0-module by requiring that V act as 0 on S. Then if we define

[s1, s2] = Γ(s1, s2) (si ∈ S)

then with the g0-action on g1 we have a super Lie algebra, because the condition

[s, [s, s]] = −[Γ(s, s), s] = 0 (s ∈ S)

is automatically satisfied since Γ(s, s) ∈ V and V acts as 0 0n S. g is a super-
symmetric extension of the Poincaré algebra and is an example of a super Poincaré
algebra. The Gol’fand-Likhtman algebra is a special case when D = 3 and S is the
Majorana spinor. As another example we consider the case when D = 3. Then Spin
(V ) is SL(2,R) and SO(V ) is its adjoint representation. Let S be the representation
of SL(2,R) in dimension 2. We have an isomorphism

Γ : Symm2V ' V

and then
g = g0 ⊕ S

as before. In the physics literature one takes a basis (Qa) for S and a basis (Pµ)
(linear momenta) for V . Then

Γ(Qa, Qb) = −2ΓµabPµ (Γµab = Γµba).
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The existence of Γ in (1) and its uniqueness when S is irreducible are thus critical
for the construction of super Poincaré algebras.

The fact that Γ takes values in V means that

l = V ⊕ S

is also a super Lie algebra. It is a supersymmetric extension of the abelian spacetime
translation algebra V ; but l is not abelian as Γ 6= 0. However it is 2-step nilpotent,
namely,

[a, [b, c]] = 0 (a, b, c ∈ l).

The corresponding super Lie groups will be the superspacetimes.

The super Lie group L corresponding to l will be constructed by the exponential
map. We have not discussed this but we can proceed informally and reach a defi-
nition which can then be rigorously checked. Using the Baker-Campbell-Hausdorff
formula informally and remembering that triple brackets are zero in l, we have

expA expB = exp(A+B + (1/2)[A,B]) (A,B ∈ l).

This suggests that we identify L with l and define the group law by

A ◦B = A+B + (1/2)[A,B] (A,B ∈ l).

More precisely let us view the super vector space l first as a supermanifold. If
(Bµ), (Fa) are bases for V and S respectively, then Hom (S, l) can be identified with
(βµ, τa) where βµ, τa are elements of O(S) which are even and odd respectively. In
a basis independent form we can identify this with

l(S) := (l⊗O(S))0 = V ⊗O(S)0 ⊕ S ⊗O(S)1.

It is clear that l(S) is a Lie algebra. Indeed, all brackets are zero except for pairs
of elements of S ⊗O1, and for these the bracket is defined by

[s1 ⊗ τ1, s2 ⊗ τ2] = −Γ(s1, s2)τ1τ2 (τ1, τ2 ∈ O(S)1).

Notice that the sign rule has been used since the sj and τj are odd; the super Lie
algebra structure of l is necessary to conclude that this definition converts l(S) into
a Lie algebra. (This is an example of the even rules principle which we have not
discussed here.) We now take

L(S) = l(S)
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and define a binary operation on L(S) by

A ◦B = A+B + (1/2)[A,B] (A,B ∈ l(S)).

The Lie algebra structure on l(S) implies that this is a group law. In the bases
(Bµ), (Fa) defined above,

(βµ, τa) ◦ (β′µ, τ ′a) = (β′′µ, τ
′′a)

where
β′′µ = βµ + β′µ − (1/2)Γµabτaτ

′
b, τ ′′

a = τ ′
µ + τ ′

µ
.

Symbolically this is the same as saying that L has coordinates (xµ), (θa) with the
group law

(x, θ)(x′, θ′) = (x′′, θ′′)

where
x′′

µ = xµ + x′
µ − (1/2)Γµabθ

aθ′
b
, θ′′

a = θa + θ′
a (2)

(with summation convention). The supermanifold L thus defined by the data V, S,Γ
has dimension dim(V )|dim(S). It is the underlying manifold of a super Lie group
L with Lred = V .

Because L is a super Lie group, one can introduce the left and right invariant
differential operators on L that make differential calculus on L very elegant, just
as in the classical case. Recall that the left invariant vector fields are obtained by
differentiating the group law at x′µ = θ′

a = 0 and for the right invariant vector
fields we differentiate the group law with respect to the unprimed variables at 0.
Let Dµ, Da (Dr

µ, D
r
a) be the left (right) invariant vector fields with tangent vector

∂/∂xµ, ∂/∂θa at the identity element. Let ∂µ, ∂a be the global vector fields on L
(the invariant vector fields on the abelian group obtained by identifying L with l).
Then

Dµ = Dr
µ = ∂µ

Da = (1/2)Γµabθ
b∂µ + ∂a

Dr
a = −(1/2)Γµabθ

b∂µ + ∂a.

It is an easy verification that
[Da, Db] = Γµab

as it should be.
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When D = 3 we get the super spacetime M3|2. Let (Fa)a=1,2 be the standard
basis for S = R2 and let Bab = FaFb (symmetric product) so that (Bab) is a basis
for V . The super space coordinates are (yab, θa). We have

∂aθ
b = δba

∂aby
a′b′ = (1/2)(δa

′

a δ
b′

b + δb
′

a δ
a′

b )

∂ay
bc = ∂abθ

c = 0.

Also
Γ(Fa, Fb) = Bab = Bba.

The left invariant vector fields are

Dab = ∂ab, Da = ∂a + (1/2)θb∂ab, Dr
a = ∂a − (1/2)θb∂ab.

Complex and chiral superspacetimes. The super spacetime constructed when
D = 4 with S as the Majorana spinor is denoted by M4|4. We shall now discuss a
variant of the construction above that yields what are called chiral superspacetimes.

We take (Fa) and (F ȧ) as bases for S+ and S− so that if g =
(
α β
γ δ

)
, then

g acts on S± by

g+ ∼
(
α β
γ δ

)
, g− ∼

(
α β
γ δ

)
.

If v =
∑
uaFa, v =

∑
ȧ u

ȧF ȧ, then

g+v = g−v.

On S = S+ ⊕ S− we define the conjugation σ by

σ(u, v) = (v, u).

Let

VC = S+ ⊗ S−, Baḃ = FaFḃ, Bȧb = FȧFb tensor multiplication).

The symmetric nonzero map

Γ : (S+ ⊕ S−)⊗ (S+ ⊕ S−) −→ VC
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is nonzero only on S± ⊗ S∓ and is uniquely determined by this and the relations
Γ(Fa, Fḃ) = Baḃ. So

lC = VC ⊕ (S+ ⊕ S−)

is a complex super Lie algebra and defines a complex Lie group LC exactly as before;
the group law defined earlier extends to LC. But now, because we are operating over
C, the subspaces

l±C = VC ⊕ S±

are super Lie algebras over C and determine corresponding complex super Lie groups
L±C. Moreover, as Γ vanishes on S± ⊗ S±, these are abelian and the super Lie al-
gebras l±C are actually abelian ideals of lC. The L±C are the chiral superspacetimes;
actually we define L+

C as the chiral and L−C as the antichiral superspacetime. More-
over

LC = L+
C ×VC

L−C

where the suffix denotes the fiber product.

We have conjugations on VC and on S+⊕S−. On VC the conjugation is given
by

σ : u⊗ v 7−→ v ⊗ u

while the one on S+ ⊕ S−, also denoted by σ, is

(u, v) 7−→ (v, u).

The map Γ is compatible with these two conjugations. Hence we have a conjugation
σ on lC and hence on LC. We have

L = LσC.

In other words, L may be viewed as the real supermanifold defined inside LC as
the fixed point manifold of σ. If

yaḃ, θa, θ
ḃ

are the coordinates on LC, then L is defined by the reality constraint

yaḃ = ybȧ, θ
ȧ

= θa.

The left invariant vector fields on LC are the complex derivations ∂µ and the Da, Dȧ

with
Da = ∂a + (1/2)θ

ḃ
∂aḃ, Dȧ = ∂ȧ + (1/2)θb∂bȧ
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where repeated indices are summed over.

Let us now go over to new coordinates

zaḃ, ϕa, ϕḃ

defined by
yaḃ = zaḃ − (1/2)ϕbϕȧ, θa = ϕa, θ

ȧ
= ϕȧ.

Chiral (antichiral) superfields are those sections of the structure sheaf of LC that
depend only on z, ϕ (z, ϕ). A simple calculation shows that

Da = ∂/∂ϕȧ, Dȧ = ∂/∂ϕȧ.

So it is convenient to use these coordinates which we can rename y, θ, θ.

6.5. Super Poincaré groups. The super Poincaré algebra is g = g0 ⊕ S where
g0 = V ⊕ h; here h is the Lie algebra so(V ). The Lie algebra of super spacetime is
l = V ⊕ S. Let H = Spin(V ). Then H acts on l as a group of super Lie algebra
automorphisms of l. This action lifts to an action of L on the supermanifold L by
automorphisms of the super Lie group L. The semidirect product

G = L×′ H

is the super Poincaré group. The corresponding functor is

S 7−→ G(S)

where
G(S) = L(S)×′ H(S).

This description also works for LC, L
±
C with H replaced by the complex spin group.

Super field equations. Once super spacetimes are defined one can ask for the
analogue of the Poincaré invariant field equations in the super context. This is a
special case of the following more general problem: if M is a supermanifold and G is
a super Lie group acting on M , find the invariant super differential operators D and
the spaces of the solutions of the equations DΨ = 0 where Ψ is a global section of
the structure sheaf. In the case of super spacetimes this means the construction of
the differential operators that extend the Klein-Gordon and Dirac operators. The
superfields are the sections of the structure sheaf and it is clear that in terms of
the components of the superfield we will obtain several ordinary field equations.
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This leads to the notion of a multiplet and the idea that a super particle defines a
multiplet of ordinary particles. We do not go into this aspect at this time.
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