
2. THE CONCEPT OF A SUPERMANIFOLD

2.1. Geometry of physical space.

2.2. The mathematical evolution of the concept of space as a geometrical ob-
ject.

2.3. Geometry and algebra.

2.4. Supermanifolds and their supersymmetries.

2.1. Geometry of physical space. Someone who is already familiar with the
theory of differentiable manifolds or algebraic varieties can be very quickly intro-
duced to the notion of a supermanifold and the concept of supersymmetry. Just as
the manifolds and varieties are defined by first starting with local pieces on which
the coordinate functions are defined, and then gluing these local pieces together,
a supermanifold may be defined as a space on which locally one has coordinates
x1, . . . , xn, θ1, . . . θr where the xi are the usual commuting coordinates and the θj ,
the anticommuting (fermionic) coordinates, with the various sets of local chats be-
ing related by transformations of the appropriate smoothness type. Everything is
then done exactly as in the classical theory. Supersymmetries are diffeomorphisms
of such spaces and these form super Lie groups. One can construct a theory of
differentiation and integration on such spaces and write down equations of motions
of particles and fields starting from suitable Lagrangians. If one starts with a super-
symmetric Lagrangian then one obtains an action of the supersymmetric group on
the solutions of the field equations thus defined. The stage on which supersymmetic
quantum field theory lives is then a super spacetime, either flat or curved. How-
ever, such a treatment, in spite of being very practical and having the advantage of
getting into the heart of matters very quickly, does not do full justice either to the
understanding of the concepts at a deeper level or to comprehending the boldness
of the generalization of conventional geometry that is involved here. In this chapter
we shall take a more leisurely and foundational approach. We shall try to look
more closely at the evolution of the concept of space as a geometrical object start-
ing from euclid and his plane (and space) and ending with the superspacetimes of
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the phycisists. This is however a very complicated story with multiple themes and
replete with many twists and turns and really too complex to be discussed briefly.
Nevertheless the attempt to unravel it will provide (I hope) at least some insight
into super geometry at a fundamental level.

We begin with the evolution of geometry. Geometry is perhaps the most ancient
part of mathematics. Euclid is its most celebrated expositor and his Elements are
still the object of great admiration. Euclid’s geometry is an idealized distillation
of our experience of the world around us. To his successors all of Euclid’s axioms
except one appeared to be entirely natural. The exception was the famous axiom
of parallels. Indeed Euclid himself recognized the special nature of lines in a plane
which do not meet; this is clear from the fact that he went as far as he could
without the parallel axiom and started using it only when it became absolutely
indispensable. One of the crucial places where it is necessary to invoke this axiom
is in the proof that the sum of the angles of a triangle is equal to two right angles.
One may therefore say that starting from Euclid himself the axiom of parallels was
the source of a lot of discomfort and hence the object of intense scrutiny. Already
Proclus in the fifth century A. D. was quite sceptical of this axiom and so he might
be regarded as one of the earliest figures who thought that an alternative system
of geometry was a possibility, or at least that the axiom of parallels should be
looked into more closely. One of the first people who started a systematic study
of geometry where no assumptions were made about parallel lines was the Italian
Jesuit priest Saccheri. Later Legendre made an intense study of the parallel axiom
and at one point even thought that he had proved it to be a consequence of the
remaining axioms. Eventually he settled for the weaker statement that the sum
of the angles of a triangle is always less than or equal to two right angles, and
that the parallel axiom is equivalent to saying that the sum is equal to two right
angles; and further, that if this is valid just for one triangle, then it is valid for all
triangles. In retrospect, as we shall see later, this result of Legendre would appear
as the definitive formulation of the axiom of parallels that characterizes euclidean
geometry, in as much as it describes the fact that euclidean geometry is flat .

Eventually this line of thought led to the discovery of noneuclidean geometry
by Bolyai and Lobachevsky, although Gauss, as it became clear from his unpub-
lished manuscripts which were discovered after his death, had anticipated them.
The discovery of noneuclidean geometry did not end speculations on this subject
because it was not at first clear whether the new axioms were self-consistent. How-
ever Klein and Beltrami constructed models for noneuclidean geometry entirely
within the framework of euclidean geometry, from which it followed that noneu-
clidean geometry was as self-consistent as euclidean geometry. The question of the
consistency of euclidean geometry was however not clarified properly till Hilbert
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came to the scene. He gave the first rigorous presentation of a complete set of ax-
ioms of euclidean geometry (using some crucial ideas of Pasch), and proved that its
consistency was equivalent to the consistency of arithmetic. What happened after
this-the revolution in logic-is quite well-known and is not of concern for us here.

One reason why the discovery of noneuclidean geometry took so long might have
been the fact that there was universal belief that euclidean geometry was special
because it described the space we live in. Stemming from this uncritical acceptance
of the view that the geometry of space is euclidean was the conviction that there was
no other geometry. Philosophers like Kant argued that the euclidean nature of space
was a fact of nature and the weight of their authority was very powerful. From our
perspective we know of course that the question of the geometry of space is of course
entirely different from the question of the existence of geometries which are not
euclidean. Gauss was the first person who clearly understood the difference between
these two questions. In Gauss’s Nächlass one can find his computations of the sums
of angles of each of the triangles that occured in his triangulation of the Hanover
region; and his conclusion was that the sum was always two right angles within the
limits of observational errors. Nevertheless, quite early in his scientific career Gauss
became convinced of the possibility of constructing noneuclidean geometries, and
in fact constructed the theory of parallels, but because of the fact that the general
belief in euclidean geometry was deeply ingrained, Gauss decided not to publish his
researches in the theory of parallels and the construction of noneuclidean geometries
for fear that there would be criticisms of such investigations by people who did not
understand these things (“the outcry of the Boeotians”).

Riemann took this entire circle of ideas to a completely different level. In his
famous inaugural lecture of 1854 he touched on all of the aspects we have mentioned
above. He pointed out to start with that a space does not have any structure except
that it is a continuum in which points are specified by the values of n coordinates,
n being the dimension of the space; on such a space one can then impose many
geometrical structures. His great insight was that a geometry should be built from
the infinitesimal parts. He treated in depth geometries where the distance between
pairs of infinitely near points is pythagorean, formulated the central questions about
such geometries, and discovered the set of functions, the sectional curvatures, whose
vanishing characterized the geometries which are euclidean, namely those whose
distance function is pythagorean not only for infinitely near points but even for
points which are a finite but small distance apart. If the space is the one we live
in, he stated the principle that its geometrical structure could only be determined
empirically . In fact he stated explicitly that the question of the geometry of physical
space does not make sense independently of physical phenomena, i.e., that space has
no geometrical structure until we take into account the physical properties of matter
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in it, and that this structure can be determined only by measurement. Indeed, he
went so far as to say that the physical matter determined the geometrical structure
of space.

Riemann’s ideas constituted a profound departure from the perceptions that
had prevailed until that time. In fact no less an authority than Newton had asserted
that space by itself is an absolute entity endowed with euclidean geometric structure,
and built his entire theory of motion and celestial gravitation on that premise.
Riemann went completely away from this point of view. Thus, for Riemann, space
derived its properties from the matter that occupied it, and that the only question
that can be studied is whether the physics of the world made its geometry euclidean.
It followed from this that only a mixture of geometry and physics could be tested
against experience. For instance measurements of the distance between remote
points clearly depend on the assumption that a light ray would travel along shortest
paths. This merging of geometry and physics, which is a central and dominating
theme of modern physics, may be thus traced back to Riemann’s inaugural lecture.

Riemann’s lecture was very concise; in fact, as it was addressed to a mostly
general audience, there was only one formula in the whole paper. This circumstance,
together with the fact that the paper was only published some years after his death,
had the consequence that it took a long time for his successors to understand what
he had discovered and to find proofs and variants for the results he had stated.
The elucidation and development of the purely mathematical part of his themes
was the achievement of the Italian school of differential geometers. On the other
hand, his ideas and speculations on the structure of space were forgotten completely
except for a “solitary echo” in the writings of Clifford1. This was entirely natural
because most mathematicians and physicists were not concerned with philosophical
speculations about the structure of space and Riemann’s ideas were unbelievably
ahead of his time.

However the whole situation changed abruptly and fantastically in the early
decades of the twentieth century when Einstein discovered the theory of relativity.
Einstein showed that physical phenomena already required that one should aban-
don the concept of space and time as objects existing independently by themselves,
and that one must take the view that they are rather phenomenological objects, i.e.,
dependent on phenomena. This is just the Riemannian view except that Einstein
arrived at it in a completely independent manner and space and time were both in-
cluded in the picture. It followed from Einstein’s analysis that the splitting of space
and time was not absolute but depends on the way an observer perceives things
around oneself. In particular, only spacetime, the totality of physical events tak-
ing place, had an intrinsic significance, and that only phenomena could determine
what its structure was. Einstein’s work showed that spacetime was a differential
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geometric object of great subtlety, indeed a pseudo Riemannian manifold of signa-
ture (+,−,−,−), and its geometry was noneuclidean. The central fact of Einstein’s
theory was that gravitation is just a manifestation of the Riemannian curvature of
spacetime. Thus there was a complete fusion of geometry and physics as well as a
convincing vindication of the Riemannian view.

Einstein’s work, which was completed by 1917, introduced curved spacetime
only for discussing gravitation. The questions about the curvature of spacetime did
not really have any bearing on the other great area of physics that developed in the
twentieth century, namely quantum theory . This was because gravitational effects
were not important in atomic physics due to the smallness of the masses involved,
and so the merging of quantum theory and relativity could be done over flat , i.e.,
Minkowskian spacetime. However this situation has gradually changed in recent
years. The reason for this change lies in the belief that from a fundamental point
of view, the world, whether in the small or in the large, is quantum mechanical,
and so one should not have one model of spacetime for gravitation and another for
atomic phenomena. Now gravitational phenomena become important for particles
of atomic dimensions only in distances of the order of 10−33 cm, the so-called Planck
length, and at such distances the principles of general relativity impose great obsta-
cles to even the measurement of coordinates. Indeed, the calculations that reveal
this may be thought of as the real explanations for Riemann’s cryptic speculations
on the geometry of space in the infinitely small. These ideas led slowly to the re-
alization that radically new models of spacetime were perhaps needed to organize
and predict fundamental quantum phenomena at extremely small distances and to
unify quantum theory and gravitation. Starting from the 1970’s a series of bold hy-
potheses have been advanced by physicists to the effect that spacetime at extremely
small distances is a geometrical object of a type hitherto not investigated. One of
these is what is called superspace. Together with the idea that the fundamental
objects to be investigated are not point particles but extended objects like strings,
the physicists have built a new theory, the theory of superstrings, that appears to
offer the best chance of unification of all the fundamental forces. In the remaining
sections of this chapter I shall look more closely into the first of the ideas mentioned
above, that of superspace.

Superspace is just what we call a supermanifold. As I mentioned at the begin-
ning of Chapter 1, there has been no experimental evidence that spacetime has the
structure of a supermanifold. Of course we are not speaking of direct evidence but
verifications, in collision experiments, of some of the consequences of a super geo-
metric theory of elementary particles (for instance, the finding of the superpartners
of known particles). There are reasons to expect however that in the next gen-
eration of collision experiments to be conducted by the new LHC (Large Hadron
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Collider), being built by CERN and expected to be operational by about 2005, some
of these predictions will be verified. However, no matter what happens with these
experiments, the idea of superspace has changed story of the structure of space
completely, and a return to the older point of view appears unlikely.

I must also mention that an even more radical generalization of space as a
geometrical object has been emerging in recent years, namely what people call
noncommutative geometry. Unlike super geometry, noncommutative geometry is
not localizable and so one does not have the picture of space as being built out of
its smallest pieces. People have studied the structure of physical theories on such
spaces but these are even more remote from the physical world than super geometric
theories2.

Riemann’s inaugural talk. On June 10, 1854, Riemann gave a talk before the
Göttingen Faculty that included Gauss, Dedekind, and Weber in the audience.
It was the lecture that he had to give in order to regularize his position in the
university. It has since become one of the most famous mathematical talks ever
given3. The title of Riemann’s talk was Über die Hypothesen, welche der geometrie
zu Grunde liegen (On the hypotheses which lie at the foundations of geometry). The
circumstances surrounding the topic of his lecture were themselves very peculiar.
Following accepted convention Riemann submitted a list of three topics from which
the Faculty were supposed to choose the one which he would elaborate in his lecture.
The topics were listed in decreasing order of preference which was also conventional,
and he expected that the Faculty would select the first on his list. But Gauss,
who had the decisive voice in such matters choose the last one which was on the
foundations of geometry. So, undoubtedly intrigued by what Riemann was going to
say on a topic about which he, Gauss, had spent many years thinking, and flouting
all tradition, Gauss selected it as the topic of Riemann’s lecture. It appears that
Riemann was surprised by this turn of events and had to work intensely for a few
weeks before his talk was ready. Dedekind has noted that Gauss sat in complete
amazement during the lecture, and that when Dedekind, Gauss, and Weber were
walking back to the department after the talk, Gauss spoke about his admiration
and astonishment of Riemann’s work in terms that Dedekind said he had never
observed Gauss to use in talking about the work of any mathematician, past or
present4. If we remember that this talk contained the sketch of the entire theory of
what we now call Riemannian geometry, and that this was brought to an essentially
finished form in the few weeks prior to his lecture, then we would have no hesitation
in regarding this work of Riemann as one of the greatest intellectual feats of all time
in mathematics.

In his work on complex function theory he had already discovered that it is
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necessary to proceed in stages: first one has to start with a space which has just
a topological structure on it, and then impose complex structures on this bare
framework. For example, on a torus one can have many inequivalent complex
structures; this is just a restatement of the fact that there are many inequivalent
fields of elliptic functions, parametrized by the quotient of the upper half plane
by the modular group. In his talk Riemann started with the concept of what we
now call an n-dimensional manifold and posed the problem of studying the various
geometries that can be defined on them. Riemann was thus aware that on a given
manifold there are many possible metric structures, so that the problem of which
structure is the one appropriate for physical space required empirical methods for its
solution. Now both euclidean and noneuclidean geometry were defined in completely
global terms. Riemann initiated the profound new idea that geometry should be built
from the infinitesimal to the global . He showed that one should start from the form
of the function that gave the distance between infinitesimally near points, and then
to determine distances between finitely separated points by computing the lengths
of paths connecting these points and taking the shortest paths. As a special case
one has those geometries in which the distance ds2 (called the metric) between
the points (x1, . . . , xn) and (x1 + dx1, . . . , xn + dxn), is given by the pythagorean
expression

ds2 =
∑
i,j

gij(x1, . . . , xn)dxidxj ,

where the gij are functions, not necessarily constant , on the underlying space with
the property the matrix (gij) is positive definite. Euclidean geometry is character-
ized by the choice

ds2 = dx2
1 + dx2

2 + . . .+ dx2
n.

Riemann also discussed briefly the case

ds4 = F (x1, . . . , xn, dx1, . . . , dxn)

where F is a homogeneous polynomial of degree 4. For general not necessarily
quadratic F the geometry that one obtains was treated by Finsler and such geome-
tries are nowadays called Finslerian5.

Returning to the case when ds2 is a quadratic differential form Riemann em-
phasized that the structure of the metric depends on the choice of coordinates. For
example, euclidean metric takes an entirely different form in polar coordinates. It
is natural to call two metrics equivalent if one can be obtained from the other by
a change of coordinates. Riemann raised the problem of determining invariants of
a metric so that two given metrics could be asserted to be equivalent if both of
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them have the same invariants. For a given metric Riemann introduced its curva-
ture which was a quantity depending on n(n− 1)/2 variables, and asserted that its
vanishing is the necessary and sufficient condition for the metric to be euclidean,
i.e., to be equivalent to the euclidean one. The curvature at a point depended on
the n(n− 1)/2 planar directions π at that point, and given any such π, it was the
Gaussian curvature of the infinitesimal slice of the manifold cut out by π. Obvi-
ously, for the euclidean metric, the Gaussian curvature is 0 in all planar directions
at all points. Thus Riemann connected his ideas to those of Gauss but at the same
generalized Gauss’s work to all dimensions; moreover he discovered the central fact
in all of geometry that the euclidean geometries are precisely those that are flat ,
namely, their curvature is 0 in all planar directions at all points. The case when
this curvature is a constant α 6= 0 in all directions at all points was for him the next
important case. In this case he found that for each α there was only one geometry
whose ds2 can be brought to the form

ds2 =
∑
dx2

i[
1 + α

4

∑
x2
i

]2
in suitable coordinates. The cases α >,=, < 0 lead to elliptic, euclidean and hyper-
bolic geometries, the hyperbolic case being the noneuclidean geometry of Bolyai–
Lobachevsky. People have since discovered other models for the spaces of constant
curvature. For instance the noneuclidean plane can be modeled by the upper half
plane with the metric

ds2 =
1
y2

(dx2 + dy2) (y > 0).

This is often called the Poincaré upper half plane.

In the last part of his lecture Riemann discussed the problem of physical space,
namely the problem of determining the actual geometry of physical space. He enun-
ciated two bold principles which went completely against the prevailing opinions:

R1. Space does not exist independently of phenomena and its structure de-
pends on the extent to which we can observe and predict what happens in
the physical world.

R2. In its infinitely small parts space may not be accurately described even by
the geometrical notions he had developed.

It is highly interesting to read the exact remarks of Riemann and see how prophetic
his vision was:
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“Now it seems that the empirical notions on which the metric determinations
of Space are based, the concept of a solid body and a light ray, lose their validity
in the infinitely small; it is therefore quite definitely conceivable that the metric
relations of Space in the infinitely small do not conform to the hypotheses of
geometry; and in fact, one ought to assume this as soon as it permits a simpler
way of explaining phenomena . . .”

An answer to these questions can be found only by starting from that concep-
tion of phenomena which has hitherto been approved by experience, for which
Newton laid the foundation, and gradually modifying it under the compulsion
of facts which cannot be explained by it. Investigations like the one just made,
which begin from general concepts, can serve only to ensure that this work is
not hindered by too restricted concepts, and that the progress in comprehending
the connection of things is not obstructed by traditional prejudices.

Einstein and the geometry of spacetime. It took mathematicians over 50 years
to comprehend and develop the ideas of Riemann. The Italian school of geometers,
notably Ricci, Bianchi, Levi-Civita, and their collaborators, discovered the tensor
calculus and covariant differential calculus in terms of which Riemann’s work could
be most naturally understood and developed further. The curvature became a
covariant tensor of rank 4 and its vanishing was equivalent to the metric being
euclidean. The efforts of classical mathematicians (Saccheri, Legendre etc) who tried
to understand the parallel axiom, could now be seen as efforts to describe flatness
and curvature in terms of the basic constructs of euclid’s axioms. In particular, as
the deviation from two right angles of the sum of angles of a triangle is proportional
to the curvature, its vanishing is the flatness characteristic of euclidean geometry.

Riemann’s vision in R1 became a reality when Einstein discovered the theory
of general relativity. However it turned out that spacetime, not space, was the
fundamental intrinsic object and that its structure was to be determined by physical
phenomena. Thus this was an affirmation of the Riemannian point of view with
the proviso that space was to be replaced by spacetime. Einstein’s main discoveries
were as follows.

E1. Spacetime is a pseudo Riemannian manifold, i.e., its metric ds2 is not
euclidean but has the signature (+, −, ;−, −) at each point.

E2. Gravitation is just the physical manifestation of the curvature of spacetime.

E3. Light travels along geodesics.

The metric of spacetime was not euclidean but has the form

ds2 = dx2
0 − dx2

1 − dx2
2 − dx2

3
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at each point. This is what is nowadays called a Lorentzian structure. Even in
the absence of matter the geometry of spacetime could not be asserted to be flat
but only Ricci flat , i.e., that its Ricci tensor (which can be calculated from the
Riemann curvature tensor) is 0. Einstein also suggested ways to put his ideas to
test. One of the most famous predictions of his theory was that light rays, traveling
along geodesics of the noneuclidean geometry of spacetime, would appear to be
bent by the gravitational fields near a star such as the sun. Everyone knows that
this was verified during an annular solar eclipse in Sobral off the coast of Brazil
in 1919. Subsequently even more precise verifications have been made using radio
astronomy. As far as I know however, the data are not accurate enough to decide
between Einstein’s theory and some alternative ones.

The second of Riemann’s themes, which is hinted at in R2, lay dormant till the
search for a unified field theory at the quantum level forced the physicists to recon-
sider the structure of spacetime at extremely small distances. One of the ideas to
which their efforts led them was that the geometry of spacetime was supersymmet-
ric with the usual coordinates supplemented by several anticommuting (fermionic)
ones. This is a model that reflects the highly volatile structure of spacetime in
small regions where one can pass back and forth between bosonic and fermionic
particles. Modern string theory takes Riemann’s vision even further, and replaces
the points of spacetime by strings, thereby making the geometry even more non-
commutative. However string theory is still very incomplete; no one knows the
mathematical structure of a geometry that is string-like at very small distances and
approximates Riemannian geometry in the large.

2.2. The mathematical evolution of the concept of space and its symme-
tries. Parallel to the above development of the concept of the geometry of physical
space, and in counterpoint to it, was the evolution of the notion of a manifold from
the mathematical side. We shall now give a very brief survey of how the concepts
of a manifold or space and its symmetries evolved from the mathematical point of
view.

Riemann surfaces. The first truly global types of spaces to emerge were the Rie-
mann surfaces. Riemann’s work made it clear that the local complex variable z on
such spaces did not have any intrinsic significance and that the really interesting
questions were global. However, in Riemann’s exposition, the Riemann surfaces
generally appeared as a device to make multivalued functions on the complex plane
singlevalued. Thus they were viewed as (ramified) coverings of the (extended) com-
plex plane. This obscured to some extent the intrinsic nature of the theory of
functions on Riemann surfaces. It was Felix Klein who understood this clearly and
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emphasized that Riemann surfaces are independent objects and offer the correct
context to study complex function theory6.

The first rigorous description of the concept of Riemann surface is due to
Weyl. He formulated for the first time, in his famous book6 published in 1911, the
rigorous notion of a Riemann surface as a complex manifold of dimension 1 with
local coordinates which are related on overlapping local domains by biholomorphic
transformations. Even today, this is the way we think of not only Riemann surfaces
but all manifolds.

Weyl’s work was the starting point of the view that space is characterized by
starting with a topological structure and selecting classes of local coordinates at
its points. The nature of the space is then determined by the transformations in
the usual affine spaces that connect the various local coordinates. If the connecting
transformations are holomorphic (resp. real analytic, smooth, Ck), we obtain a holo-
morphic (resp. real analytic, smooth, Ck) manifold. Starting with this axiomatic
view it is natural to ask if such abstract spaces could be realized as subspaces of
conventional affine or projective spaces. This leads to imbedding theorems. Depend-
ing on which class of spaces one is interested in, these theorems are associated with
Whitney (smooth), Morrey (real analytic), Nash (Riemannian), Kodaira (Kähler),
and so on.

Riemannian and affinely connected manifolds. In the years following Rie-
mann’s epoch-making work the comprehension and dissemination of Riemann’s
ideas were carried out by Ricci, Levi-Civita, Bianchi, Weyl, and many others. In
19177 Weyl introduced a new theme. He noticed that the geometry of a Riemannian
manifold is controlled by the notion of parallel transport introduced by Levi-Civita,
and realized that this notion could be taken as a basis for geometry without assum-
ing that it arose from a metric. This was the way that the notion of a Riemannian
manifold was generalized to an affinely connected manifold, i.e., a manifold equipped
with a connection. Weyl also introduced another notion, namely that of conformal-
ity , and discovered that there is a tensor, the so-called Weyl tensor, whose vanishing
was equivalent to the space being conformally euclidean.

Groups of symmetries of space. Already in euclidean geometry one can see
the appearance of transformation groups although only implicitly. For instance,
the proof of congruence of two triangles involves moving one triangle so that it
falls exactly on the second triangle. This is an example of a congruent transforma-
tion. In the analytical model of euclidean geometry the congruent transformations
are precisely the elements of the group of rigid motions of the euclidean plane,
generated by the translations, rotations, and reflections. In the Klein model for
noneuclidean geometry the group of congruent transformations is the subgroup of
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the linear transformations of the projective plane which preserve a circle. It was
Klein who put the group theoretic framework in the foreground in his famous Er-
langen Programme and established the principle that the structure of a geometry
was completely determined by the group of congruent transformations belonging to
it.

In the decades following Riemann’s work a new theme entered this picture
when Sophus Lie began the study of transformations groups which were completely
general and acted on arbitrary manifolds, even when there was no geometrical
structure on the manifolds. Roughly speaking this was a non-linear version of the
group of affine transformations on an affine space. What was original with Lie was
that the transformations depended on a finite set of continuous parameters and so
one could, by differentiating with respect to these parameters, study their action
infinitesimally. In modern terminology, Lie considered Lie groups (what else) acting
on smooth manifolds. The action of the group thus gave rise to a vector space of
vector fields on the manifold which formed an algebraic structure, namely a Lie
algebra, that completely determined the action of the Lie group. Thus Lie did to
group actions what Riemann had done for geometry, i.e., made them infinitesimal.
No geometrical structure was involved and Lie’s researches were based on the theory
of differential equations.

Originally Lie wanted to classify all actions of Lie groups on manifolds. But
this turned out to be too ambitious and he had to settle for the study of low
dimensional cases. But he was more successful with the groups themselves which
were viewed as acting on themselves by translations. His work led eventually to the
basic theorems of the subject, the so-called fundamental theorems of Lie: namely,
that the Lie algebra is an invariant of the group, that it determined the group in a
neighborhood of the identity, and that to any Lie algebra one can associate at least
a piece of a Lie group near the identity, namely a local Lie group, whose associated
Lie algebra is the given one. As for the classification problem the first big step
was taken by Killing when he classified the simple Lie groups, or rather, following
Lie’s idea, the simple Lie algebras, over the complex numbers. However the true
elucidation of this new theme had to wait for the work of Elie Cartan.

Cartan is universally regarded as the greatest differential geometer of his gen-
eration. He took differential geometry to an entirely new level using, among other
things, the revolutionary technique of “moving frames”. But for our purposes it is
his work on Lie groups and their associated homogeneous spaces that is of central
importance. Building on the earlier but very incomplete work of Killing, Cartan
obtained the rigorous classification of all simple Lie algebras over the complex num-
bers. He went beyond all of his predecessors by making it clear that one had to
work with spaces and group actions globally . For instance he established the global
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version of the so-called third fundamental theorem of Lie, namely the existence of
a global Lie group corresponding to a given Lie algebra. Moreover he discovered a
remarkable class of Riemannian manifolds on which the simple Lie groups over real
numbers acted transitively, the so-called Riemannian symmetric spaces. Most of
the known examples of homogeneous spaces were included in this scheme since they
are symmetric spaces. With Cartan’s work one could say that a fairly complete
idea of space and its symmetries was in place from the differential geometric point
of view. Cartan’s work provided the foundation on which the modern development
of general relativity and cosmology could be carried out.

It was during this epoch that De Rham obtained his fundamental results on the
cohomology of a differentiable manifold and its relation to the theory of integration
of closed exterior differential forms over submanifolds. Of course this was already
familiar in low dimensions where the theory of line and surface integrals, especially
the theorems of Green and Stokes, played an important role in classical continuum
physics. De Rham’s work took these ideas to their proper level of generality and
showed how the cohomology is completely determined by the algebra of closed
exterior differential forms modulo the exact differential forms. A few years later
Hodge went further and showed how, by choosing a Riemannian metric, one can
describe all the cohomology by looking at the harmonic forms. Hodge’s work led
to the deeper understanding of the Maxwell equations and was the precursor of
the modern theory of Yang-Mills equations. Hodge also pioneered the study of the
topology of algebraic varieties.

Algebraic geometry. So far we have been concerned with the evolution of the
notion of space and its symmetries from the point of differential geometry . But
there was, over the same period of time, a parallel development of geometry from
the algebraic point of view. Algebraic geometry of course is very ancient; since it
relies entirely on algebraic operations, it even predates calculus. It underwent a very
intensive development in the nineteenth century when first the theory of algebraic
curves, and then algebraic surfaces, were developed to a state of perfection. But it
was not till the early decades of the twentieth century that the algebraic foundations
were clarified and one could formulate the main questions of algebraic geometry with
full rigour. This foundational development was mainly due to Zariski and Weil.

One of Riemann’s fundamental theorems was that every compact Riemann
surface arose as the Riemann surface of some algebraic function. It followed from
this that there is no difference between the transcendental theory which stressed
topology and integration, and the algebraic theory, which used purely algebraic
and geometric methods and worked with algebraic curves. The fact that compact
Riemann surfaces and nonsingular algebraic curves were one and the same made
a great impression on mathematicians and led to the search for a purely algebraic
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foundation for Riemann’s results. The work of Dedekind and Weber started a more
algebraic approach to Riemann’s theory, one that was more general because it al-
lowed the possibility to study these objects in characteristic p > 0. This led to a
true revolution in algebraic geometry. A significant generalization of the idea of
an algebraic variety occured when Weil, as a basis for his proof of the Riemann
hypothesis for algebraic curves of arbitrary genus, developed the theory of abstract
algebraic varieties in any characteristic and intersection theory on them. The alge-
braic approach had greater scope however because it automatically included singular
objects also; this had an influence on the analytic theory and led to the development
of analytic spaces.

In the theory of general algebraic varieties started by Zariski and Weil and
continued by Chevalley, no attempt was made to supply any geometric intuition.
The effort to bring the geometric aspects of the theory of algebraic varieties more
to the foreground, and to make the theory of algebraic varieties resemble the theory
of differentiable manifolds more closely, was pioneered by Serre who showed in the
1950’s that the theory of algebraic varieties could be developed in a completely
geometric fashion imitating the theory of complex manifolds. Serre’s work revealed
the geometric intuition behind the basic theorems. In particular he showed that one
can study the algebraic varieties in any characteristic by the same sheaf theoretic
methods that were introduced by him and Henri Cartan in the theory of complex
manifolds where they had been phenomenally successful.

The foundations of classical algebraic geometry developed up to this time
turned out to be entirely adequate to develop the theory of groups that acted on the
algebraic varieties. This was done by Chevalley in the 1950’s. One of Chevalley’s
aims was to determine the projective varieties that admitted a transitive action
by an affine algebraic group, and classify both the spaces and groups that are re-
lated in this manner. This comes down to the classification of all simple algebraic
groups. Chevalley discovered that this was essentially the same as the Cartan-
Killing classification of simple Lie algebras over C, except that the classification
of simple algebraic groups could be carried out over an algebraically closed field
of arbitrary characteristic, directly working with the groups and not through their
Lie algebras. This meant that his proofs were new even for the complex case of
Cartan and Killing. The standard model of a projective variety with a transitive
affine group of automorphisms is the Grassmannian or a flag manifold, and the
corresponding group is SL(n). Chevalley’s work went even beyond the classifica-
tion. He discovered that a simple group is actually an object defined over Z, the
ring of integers; for instance, if we start with a complex simple Lie algebra g and
consider the group G of automorphisms of g, G is defined by polynomial equations
with integer coefficients as a subgroup of GL(g). So the classification yields simple
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groups over any finite field , the so-called finite groups of Lie type. It was by this
method that Chevalley constructed new simple finite groups. This development led
eventually to the classification of finite simple groups.

The theory of Serre was however not the end of the story. Dominating the land-
scape of algebraic geometry at that time (in the 1950’s) was a set of conjectures that
had been made by Weil in 1949. The conjectures related in an audacious manner
the generating function of the number of points of a smooth projective variety over
a finite fields and its extensions with the complex cohomology of the same variety
viewed as a smooth complex projective manifold (this is only a rough description).
For this purpose what was needed was a cohomology theory in characteristic zero
of varieties defined over fields of any characteristic. Serre’s theory furnished only
a cohomology over the same field as the one over which the varieties were defined,
and so was inadequate to attack the problem posed by the Weil conjectures. It was
Grothendieck who developed a new and more profound view of algebraic geometry
and developed a framework in which a cohomology in characteristic zero could be
constructed for varieties defined over any characteristic. The conjectures of Weil
were proved to be true by Deligne who combined the Grothendieck perspective with
some profound ideas of his own.

Grothendieck’s work started out in an unbelievably modest way as a series of
remarks on the paper of Serre that had pioneered the sheaf theoretic ideas in al-
gebraic geometry. Grothendieck had the audacious idea that the effectiveness of
Serre’s methods would be enormously enhanced if one associates to any commuta-
tive ring with unit a geometric object, called its spectrum, such that the elements of
the ring could be viewed as functions on it. A conspicuous feature of Grothendieck’s
approach was its emphasis on generality and the consequent use of the functorial
and categorical points of view. He invented the notion of a scheme in this pro-
cess as the most general algebraic geometric object that can be constructed, and
developed algebraic geometry in a setting in which all problems of classical geom-
etry could be formulated and solved. He did this in a monumental series of papers
called Elements, written in collaboration with Dieudonne, which changed the entire
landscape of algebraic geometry. The Grothendieck approach initiated a view of
algebraic geometry wherein the algebra and geometry were completely united. By
fusing geometry and algebra he brought number theory into the picture, thereby
making available for the first time a systematic geometric view of arithmetic prob-
lems. The Grothendieck perspective has played a fundamental role in all modern
developments since then: in Deligne’s solution of the Weil conjectures, in Faltings’s
solution of the Mordell conjecture, and so on.

One might therefore say that by the 1960’s the long evolution of the concept of
space had reached its final stage. Space was an object built by gluing local pieces,
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and depending on what one chooses as local models, one obtained a space which is
either smooth and differential geometric or analytic or algebraic8.

The physicists. However, in the 1970’s, the physicists added a new chapter to
this story which had seemed to have ended with the schemes of Grothendieck and
the analytic spaces. In their quest for a unified field theory of elementary particles
and the fundamental forces, the physicists discovered that the Fermi-Bose symme-
tries that were part of quantum field theory could actually be seen classically if one
worked with a suitable a generalization of classical manifolds. Their ideas created
spaces in which the coordinate functions depended not only on the usual coordinates
but also on a certain number of anticommuting variables, called the odd variables.
These odd coordinates would, on quantization, produce fermions obeying the Pauli
exclusion principle, so that they may be called fermionic coordinates. Physicists
like Salam and Strathdee, Wess and Zumino, Ferrara and many others played a
decisive role in these developments. They called these superspaces and developed a
complete theory including classical field theory on them together with their quan-
tizations. Inspired by these developments the mathematicians created the general
theory of these geometric objects, the supermanifolds, that had been constructed
informally by hand by the physicists. The most interesting aspect of supermanifolds
is that the local coordinate rings are generated over the usual commutative rings by
Grassmann variables, i.e., variables ξk such that ξk2 = 0 and ξkξ` = −ξ`ξk(k 6= `).
These have always zero numerical values but play a fundamental role in determin-
ing the geometry of the space. Thus the supermanifolds resemble the Grothendieck
schemes in the sense that the local rings contain nilpotent elements. They are how-
ever more general on the one hand, since the local rings are not commutative but
supercommutative, and more specialized than the schemes in the sense that they
are smooth.

The mathematical physicist Berezin was a pioneer in the creation of superal-
gebra and super geometry as distinct disciplines in mathematics. He emphasized
super algebraic methods and invented the notion of the superdeterminant , nowa-
days called the Berezenian. He made the first attempts in constructing the theory
of supermanifolds and super Lie groups and emphasized that this is a new branch of
geometry and analysis. Berezin’s ideas were further developed by Kostant, Leites,
Bernstein, and others who gave expositions of the theory of supermanifolds and
their symmetries, namely the super Lie groups. Kac classified the simple Lie super
algebras and their finite dimensional representations. Manin, in his book introduced
the general notion of a superscheme. A wide ranging perspective on super geometry
and its symmetries was given by Deligne and Morgan as a part of the volume on
Quantum Field theory and Strings9.
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2.3. Geometry and algebra. The idea that geometry can be described in al-
gebraic terms is very old and goes back to Descartes. In the nineteenth century it
was applied to projective geometry and led to the result that projective geometry,
initially described by undefined objects called points, line, planes, and so on, and
the incidence relations between them, is just the geometry of subspaces of a vector
space over some division ring. However for what we are discussing it is more appro-
priate to start with the work of Hilbert on algebraic geometry. Hilbert showed in
his famous theorem of zeros that an affine algebraic variety, i.e., a subset of complex
euclidean space Cn given as the set of zeros of a collection of polynomials, could be
recovered as the set of homomorphisms of the algebra A = C[X1, . . . , Xn]/I where
I is the ideal of polynomials that vanish on the set. In functional analysis this
theme of recovering the space from the algebra of functions on it was discovered by
Stone and Gel’fand in two different contexts. Stone showed that if B is a Boolean
algebra, the space of all maximal filters of B can be given a canonical topology in
which it becomes a totally disconnected compact Hausdorff space X(B), and the
Boolean algebra of subsets of X(B) which are both open and closed is canonically
isomorphic to B. Gel’fand showed that any compact Hausdorff space X can be
recovered from the algebra C(X) of complex valued continuous functions on it as
the space of homomorphisms of C(X) into C:

X ≈ Hom (C(X),C).

Inspired by the work of Norbert Wiener on Fourier transforms, Gel’fand introduced
the concept of a commutative Banach algebra (with unit) and showed that if we
associate to any such algebra A its spectrum, namely, the set

X(A) := Spec(A) = Hom(A,C)

then the evaluation map

a 7−→ â, â(ξ) = ξ(a) (a ∈ A, ξ ∈ X(A))

gives a representation of A as an algebra of continuous functions on X(A) where
X(A) is equipped with the compact Hausdorff weak topology. The map

a 7−→ â,

the so-called Gel’fand transform; it generalizes the Fourier transform. It is an iso-
morphism with C(X(A)) if and only if A has a star-structure defined by a conjugate
linear involutive automorphism a 7→ a∗ with the property that ||aa∗|| = ||a||2. We
can thus introduce the following general heuristic principle:
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• Hilbert–Gel’fand Principle

The geometric structure of a space can be recovered from the commutative algebra
of functions on it.

As examples of this correspondence between spaces and the algebras of functions
on it we mention the following:

Compact Hausdorff spaces ' commutative Banach ∗-algebras

Affine algebraic varieties over C ' finitely generated algebras over C with no
nonzero nilpotents

Compact Riemann surfaces ' finitely generated fields over C with transcen-
dence degree 1.

However two important aspects of this correspondence would have to be pointed
out before we can use it systematically. First, the representation of the elements
of the algebra as functions on the spectrum in the general case is not one-to-one.
There may be elements which are nonzero and yet go to 0 in the representation.
Thus, already in both the Hilbert and Gel’fand settings, any element a such that
ar = 0 for some integer r > 1, i.e., a nilpotent element, necessarily goes to 0
under any homomorphism into any field or even any ring with no zero divisors, and
so its representing function is 0. For instance, C[X,Y ]/(X) is the ring C[Y ] of
(polynomial) functions on the line X = 0 in the XY -plane, but the map

C[X,Y ]/(X2) −→ C[X,Y ]/(X) −→ C[Y ]

gives the representation of elements of C[X,Y ]/(X2) as functions on the line X = 0
in which the element X, which is nonzero but whose square is 0, goes to 0. In
the Grothendieck theory this phenomenon is not ignored because it contains the
mechanism to treat certain fundamental aspects (for instance infinitesimal) of the
representing space. In the example above, C[X,Y ]/(X2) is the ring of functions on
the double line X2 = 0 in the XY -plane. The double line is a distinctive geometric
object; indeed, when we try to describe the various degenerate forms of a conic,
one of the possibilities is a double line. In the Hilbert theory this idea leads to the
principle that all algebras of the form A = C[X1, . . . , Xn]/I where I is any ideal,
describe geometric objects; if I is not equal to its own radical, there will be elements
p such that p /∈ I but pn ∈ I for some integer n ≥ 2, so that such p define nilpotent
elements of A. Grothendieck’s great insight was to realize that the full force of
this correspondence between affine algebraic varieties and commutative rings can
be realized only if the notions of an affine variety and functions on it are enlarged
so as to make the correspondence between affine varieties and commutative rings
with unit bijective, so that the following principle can be relentlessly enforced:
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• Grothendieck Principle

Any commutative ring A is essentially the ring of functions on some space X. The
ring is allowed to have nilpotents whose numerical values are 0 but which play an
essential role in determining the geometric structure. The functions on X may have
to take their values in fields which differ from point to point.

This space, called the spectrum of A and denoted by X(A) = Spec (A), is a much
more bizarre object than in the Hilbert or Gel’fand theories, and we shall not
elaborate on it any further at this time. It is simply the set of all prime ideals of A,
given the Zariski topology. The ring A can be localized and so one has a sheaf of
rings on X(A). Thus X(A) come with a structure which allows one to consider them
as objects in a category, the category of affine schemes, and although the objects
themselves are very far from intuition, the entire category has very nice properties.
This is one of the reasons why the Grothendieck schemes work so well10.

The second aspect of the concept of a manifold or scheme that one has to
keep in mind is that it can be localized. This is the idea that space should be
built up from its smallest parts, and is done, as mentioned above, by investing
space with a sheaf of rings on it. Thus space acquires its characteristic features
from the sheaf of rings we put on it, appropriately called the structure sheaf. The
small parts of space are then described by local models. In differential geometry
the local models are Rn or Cn, while in algebraic geometry they are affine schemes
which are spectra of commutative rings. The general manifold is then obtained by
gluing these local models. The gluing data come from the requirement that when
we glue two models, we should establish a correspondence between the structure
sheafs on the parts which are to be identified. The end result is then a premanifold
or a prescheme; the notions of smooth manifolds or schemes are then obtained by
adding a suitable separation condition. In the case of manifolds this is just the
condition that the underlying topological space is Hausdorff; for a prescheme X
this is the condition that X is closed in X ×X. The gluing process is indispensable
because some of the most important geometrical objects are projective or compact
and so cannot be described by a single set of coordinates. The geometrical objects
thus defined together with the maps between them for a category. One of the most
important properties of this category is that products exist.

Clearly the Grothendieck scheme (or prescheme) is an object very far from
the classical notion of an algebraic variety over the complex numbers, or even the
notion of an algebraic variety in the sense of Serre. It is an index of the genius
of Grothendieck that he saw the profound advantages of using the schemes even
though at first sight they are rather unappetizing.

To conclude this brief discussion and as a simple illustration let us consider the
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case of affine varieties over an algebraically closed field K and ignore the compli-
cations coming from nilpotent elements of the structure sheaf. The correspondence
here is between Zariski closed subsets of affine space kn and finitely generated alge-
bras over k which are reduced in the sense that they have no nonzero nilpotents. In
this category products exist. Because of this one can define algebraic groups G over
k in the usual manner. In terms of the coordinate rings the maps of multiplication,
inverse, and the unit element have to be interpreted in terms of the corresponding
k-algebra. Thus the k-algebra A = A(G) has a comultiplication which is a morphism

∆ : A −→ A⊗A,

a coinverse
Σ : A −→ A,

and a counit ,
Ω : A −→ k,

all of which are related by diagrams that dualize the associative law and the prop-
erties of the inverse and the unit element. The result is that A is a commutative
Hopf algebra. Thus the category of algebraic groups over k corresponds to the cat-
egory of commutative Hopf algebras. For instance the Hopf algebra corresponding
to GL(n, k) is

A = k[aij ,det−1]

with
∆ : aij 7−→

∑
r

air ⊗ arj

Σ : aij 7−→ aij

Ω : aij 7−→ δij .

The theory of Serre varieties provides a fully adequate framework for the theory of
algebraic groups and their homogeneous spaces.

2.4. A brief look ahead. To go over to the super category one has to replace
systematically all the algebras that occur on the classical theory by algebras that
have a Z2-grading, namely super algebras. To study supervarieties one then replaces
sheaves of commutative algebras by sheaves of supercommutative algebras. Here
the supercommutative algebras are those for which any two elements either commute
or anticommute according as one of them is even or both of them are odd. Just as
commutative rings determine geometric objects supercommutative rings determine
super geometric objects. We give a brief run over the themes that will occupy us
in the remaining chapters.
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Super linear algebra. A super vector space V , is nothing but a vector space over
the field k which is graded by Z2 := Z/2Z, namely,

V = V0 ⊕ V1.

The elements of V0 (resp. V1) are called even (resp. odd). Morphisms between super
vector spaces are linear maps that preserve the parity, where the parity function
p is 1 on V1 and 0 on V0. A super algebra is an algebra A with unit (which is
necessarily even) such that the multiplication map A⊗A −→ A is a morphism, i.e.,
p(ab) = p(a) + p(b) for all a, b ∈ A. Here and everywhere else any relation between
linear objects in which the parity function appears the elements are assumed to
be homogeneous (that is, either even or odd) and the validity for nonhomogeneous
elements is extended by linearity. As an example we mention the definition of
supercommutative algebras: a super algebra A is supercommutative if

ab = (−1)p(a)p(b)ba (a, b ∈ A).

This differs from the definition of a commutative algebra in the sign factor which
appears. This is a special case of what is called the rule of signs in super algebra:
whenever two elements are interchanged in a classical relation a minus sign appears
if both elements are odd. The simplest example is the exterior algebra Λ(U) of an
ordinary vector space U . It is graded by Z (degree) but becomes a super algebra if
we introduce the coarser Z2-grading where an element is even or odd if its degree
is even or odd. Λ(U) is a supercommutative algebra. Linear super algebra can
be developed in almost complete analogy with linear algebra but there are a few
interesting differences. Among the most important are the notions of supertrace
and superdeterminant. The superdeterminant is nowadays called the Berezenian,
named after Berezin who discovered it. If A is a supercommutative k-algebra and

R =
(
L M
N P

)
(L,P even, M,N odd)

where the entries of the matrices are from A, then

str(R) = tr(L)− tr(P )

Ber(R) = det(L) det(I −MP−1N) det(P )−1

where Ber(R) is the Berezinian of R. Unlike the classical determinant, the
Berezinian is defined only when R is invertible, which is equivalent to the invert-
ibility of L and P as matrices from the commutative k-algebra A0, but has the
important property that

Ber(RR′) = Ber(R)Ber(R′)
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while for the supertrace we have

str(RR′) = str(R′R).

By an exterior algebra over a commutative k-algebra A (k a field of characteristic
0) we mean the algebra A[θ1, . . . , θq] generated over A by elements

θ1, . . . , θq

with the relations
θ2
j = 0, θiθj = −θjθi (i 6= j).

Exterior algebras are supercommutative. It must be remembered however that when
we view an exterior algebra as a super algebra, its Z-grading is to be forgotten and
only the coarser grading by Z2 into even and odd elements should be retained. In
particular they admit automorphisms which do not preserve the original Z-degree.
Thus for

A = k[θ1, . . . , θr] (θiθj + θjθi = 0),

the map
θ1 7→ θ1 + θ1θ2, θi 7→ θi(i > 1)

extends to an automorphism of A that does not preserve the original Z-grading.
The existence of such automorphisms is the factor that invests super geometry with
its distinctive flavour.

Supermanifolds. The concept of a smooth supermanifold, say over R, is now
easy to define. A supermanifold X is just an ordinary manifold such that on suf-
ficiently small open subsets U of it the super coordinate ring R(U) is isomorphic
to a supercommutative exterior algebra of the form C∞(U)[θ1, . . . , θq]. The integer
q is independent of U and if p is the usual dimension of X, its dimension as a
supermanifold is p|q. However this is not the same as an exterior bundle over the
ordinary manifold X; for instance, the supermanifold R1|2 has the coordinate rings
C∞(U)[θ1, θ2] but the map

t, θ1, θ2 7−→ t+ θ1θ2, θ1, θ2

defines a superdiffeomorphism of the supermanifold but not of an exterior bundle
over R. If U is an open set in Rp, then Up|q is the supermanifold whose coordinate
rings are C∞(U)[θ1, . . . , θq]. Replacing the smooth functions by real analytic or
complex analytic manifolds we have the concept of a real analytic or a complex
analytic supermanifold. Unfortunately it is not possible to define supermanifolds of
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class Ck for finite k because one needs the full Taylor expansion to make sense of
morphisms like the one defined above. If we replace these special exterior algebras
by more general supercommuting rings we obtain the concept of a superscheme
which generalizes the concept of a scheme.

A brief comparison between manifolds and supermanifolds is useful. The coor-
dinate rings on manifolds are commutative, those on a supermanifold are supercom-
mutative. However as the odd elements of any exterior algebra are always nilpotent ,
the concept of a supermanifold is closer to that of a scheme than that of a manifold.
So the techniques of studying supermanifolds are variants of those used in the study
of schemes, and so more sophisticated than the corresponding ones in the theory of
manifolds.

Super Lie groups. A super Lie group is a group object in the category of su-
permanifolds. An affine super algebraic group is a group object in the category of
affine supervarieties. In analogy with the classical case these are the supervarieties
whose coordinate algebras are super Hopf algebras. Here are some examples:

R1|1 : The group law is given (symbolically) by

(t1, θ1)·(t2, θ2) = (t1 + t2 + θ1θ2, θ1 + θ2).

GL(p|q) : Symbolically this is the group of block matrices(
A B
C D

)
where the entries are treated as coordinates, those of A and D being even and those
of B and C odd. The group law is just matrix multiplication.

It may be puzzling that the group law is given so informally in the above
examples. The simplest way to interpret them is to stay in the algebraic rather
than the smooth category and view the formulae as defining the automorphisms
of the corresponding exterior algebras. Actually one can use the same symbolic
description in all cases by utilizing the notion of functors of points. The idea is
that any object M in the category under discussion is determined completely by
the functor that associates to any object N the set Hom(N,M); the elements of
Hom(N,M) are called the N -points of M . Viewed in this manner one can say that
affine supergroups are functors from the category of supercommutative rings to the
category of groups, which are representable by a supercommutative Hopf algebra.
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Thus R1|1 corresponds to the functor which associates to any supercommuting ring
R the group of all elements (t1, θ1) where t1 ∈ R0 and θ1 ∈ R1, the multiplication
being exactly the one given above. Similarly, the functor corresponding to GL(p|q)
associates to any supercommuting ring R the group of all block matrices(

A B
C D

)
where the entries of A and D are even elements of R and those of B and C are
odd elements of R; the group law is just matrix multiplication. This group is
denoted by GL(p|q)(R). If one wants to view these as super Lie groups in the
smooth category, the functors go from the category of smooth supermanifolds to
the category of groups. For instance, the functor defining the super Lie group R1|1

takes any supermanifold T to the group of all (t, θ1, θ2) where t, θ1, θ2 are global
sections of OT with t even and θi odd. Similarly GL(p|q) is defined by the functor
that takes T to the group GL(p|q)(R(T )) where R(T ) is the supercommutative ring
of global sections of T . The concept of the functor of points shows why we can
manipulate the odd variables as if they are numerical coordinates. This is exactly
what is done by the physicists and so the language of functor of points is precisely
the one that is closest to the intuitive way of working with these objects that one
finds in the physics literature.

Super spacetimes. Minkowski spacetime is the manifold R4 equipped with the
action of the Poincaré group. To obtain super spacetimes one extends the abelian
Lie algebra of translations by a Lie super algebra whose odd part is what is called
the Majorana spinor module, a module for the Lorentz group which is spinorial,
real, and irreducible. This is denoted by M4|4. The super Poincaré group is the
super Lie group of automorphisms of this supermanifold. Physicists call this rigid
supersymmetry because the affine character of spacetime is preserved in this model.
For supergravity one needs to construct local supersymmetries. Since the group
involved is the group of diffeomorphisms which is infinite dimensional, this is a
much deeper affair.

Once super spacetimes are introduced one can begin the study of Lagrangian
field theories on super spaces and their quantized versions. Following the classical
picture this leads to supersymmetric Lagrangian field theories. They will lead to
superfield equations which can be interpreted as the equations for corresponding
superparticles. A superfield equation gives rise to several ordinary field equations
which define a multiplet of particles. These developments of super field theory lead
to the predictions of susy quantum field theory.
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J. Dieudonne, Cours de Géométrie Algébrique, Vol. 1, Apercu historique sur
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