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1.1. Introductory remarks on supersymmetry. The subject of supersymme-
try (SUSY) is a part of the theory of elementary particles and their interactions
and the still unfinished quest of obtaining a unified view of all the elementary forces
in a manner compatible with quantum theory and general relativity. Supersymme-
try was discovered in the early 1970’s, and in the intervening years has become a
major component of theoretical physics. Its novel mathematical features have led
to a deeper understanding of the geometrical structure of spacetime, a theme to
which great thinkers like Riemann, Poincaré, Einstein, Weyl, and many others have
contributed.

Symmetry has always played a fundamental role in quantum theory: rotational
symmetry in the theory of spin, Poincaré symmetry in the classification of elemen-
tary particles, and permutation symmetry in the treatment of systems of identical
particles. Supersymmetry is a new kind of symmetry which was discovered by the
physicists in the early 1970’s. However, it is different from all other discoveries in
physics in the sense that there has been no experimental evidence supporting it
so far. Nevertheless an enormous effort has been expended by many physicists in
developing it because of its many unique features and also because of its beauty
and coherence1. Here are some of its salient features2:
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• It gives rise to symmetries between bosons and fermions at a fundamental
level.

• Supersymmetric quantum field theories have “softer” divergences.

• Supersymmetric string theory (superstrings) offers the best context known
so far for constructing unified field theories.

The development of supersymmetry has led to a number of remarkable pre-
dictions. One of the most striking of these is that every elementary particle has a
SUSY partner of opposite spin parity, i.e., if the particle is a boson (resp. fermion),
its partner is a fermion (resp. boson). The partners of electrons, neutrinos, and
quarks are called selectrons, sneutrinos, and squarks, the partner of the photon is a
fermion named photino, and so on. However the masses of these partner particles
are in the TeV range and so are beyond the reach of currently functioning acceler-
ators (the Fermilab has energies in the 1 TeV range). The new LHC being built at
CERN and expected to be operational by 2005 or so, will have energies > 10 TeV
and it is expected that perhaps some of these SUSY partners may be found among
the collisions that will be created there. Also SUSY predicts a mass for the Higgs
particle in the range of about several hundred times the mass of the proton whereas
there are no such bounds for it in the usual standard model.

For the mathematician the attraction of supersymmetry lies above all in the
fact that it has provided a new look at geometry, both differential and algebraic,
beyond its conventional limits. In fact, supersymmetry has provided a surprising
continuation of the long evolution of ideas regarding the concept of space and more
generally of what a geometric object should be like, an evolution that started with
Riemann and was believed to have ended with the creation of the theory of schemes
by Grothendieck. If we mean by a geometrical object something that is built out of
local pieces, and which in some sense reflects our most fundamental ideas about the
structure of space or spacetime, then the most general such object is a superscheme,
and the symmetries of such an object are supesymmetries which are described by
super group schemes.

1.2. Classical mechanics, the electromagnetic, and gravitational fields.
The temporal evolution of a deterministic system is generally described by starting
with a set S whose elements are the “states” of the system, and giving a one-
parameter group

D : t 7−→ Dt (t ∈ R)

of bijections of S. D is called the dynamical group and its physical meaning is
that if s is the state at time 0, then Dt[s] is the state at time t. Usually S has
some additional structure and the Dt would preserve this structure, and so the Dt
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would be “automorphisms” of S. If thermodynamic considerations are important,
then D will be only a semigroup, defined for t > 0; the Dt would then typically
be only endomorphisms of S, i.e., not invertible, so that the dynamics will not be
reversible in time. Irreversibility of the dynamics is a consequence of the second
law of thermodynamics which says that the entropy of a system increases with time
and so furnishes a direction to the arrow of time. But at the microscopic level all
dynamics are time reversible, and so we will always have a dynamical group. If the
system is relativistic, then the reference to time in the above remarks is to the time
in the frame of an (inertial) observer. In this case one requires additional data that
describe the fact that the description of the system is the same for all observers.
This is usually achieved by requiring that the set of states should be the same for
all observers, and that there is a “dictionary” that specifies how to go from the
description of one observer to the description of another. The dictionary is given
by an action of the Poincaré group P on S. If

P × S −→ S, g, s 7−→ g[s]

is the group action, and O,O′ are two observers whose coordinate systems are
related by g ∈ P , and if s ∈ S is the state of the system as described by O, then
s′ = g[s] is the state of the system as described by O′. We shall see examples of
this later.

Finally, physical observables are represented by real-valued functions on the
set of states and form a real commutative algebra.

Classical mechanics. In this case S is a smooth manifold and the dynamical
group comes from a smooth action of R on S. If

Xs := XD,S =
(
d

dt

)
t=0

(Dt[s]) (s ∈ S)

then X(s 7−→ Xs) is a vector field on S, the dynamical vector field . In practice
only X is given in physical theories and the construction of the Dt is only implicit.
Strictly speaking, for a given X, the Dt are not defined for all t without some further
restriction on X (compact support will do, in particular if S is compact). The Dt

are however defined uniquely for small time starting from points of S, i.e., we have a
local flow generated by X. A key property of this local flow is that for any compact
set K ⊂ S there is ε > 0 such that for all points s ∈ K the flow starting from s at
time 0 is defined for all t ∈ (−ε,+ε).

In most cases we have a manifold M , the so called “configuration space” of the
system. For instance, for a system consisting of N point masses moving on some
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manifold U , UN is the configuration space. There are then two ways of formulating
classical mechanics.

Hamiltonian mechanics. Here S = T ∗M , the cotangent bundle of M . S has
a canonical 1-form ω which in local coordinates qi, pi(1 ≤ i ≤ n) is p1dq1 + . . . +
pndqn. In coordinate-free terms the description of ω is well-known. If s ∈ T ∗M
is a cotangent vector at m ∈ M and π is the projection T ∗M −→ M , and if ξ is
a tangent vector to T ∗M at s, then ω(ξ) = 〈dπm(ξ), s〉. Since dω =

∑
dpi ∧ dqi

locally, dω is nondegenerate, i.e., S is symplectic. At each point of S we thus have
a nondegenerate bilinear form on the tangent space to S at that point, giving rise
to an isomorphism of the tangent and cotangent spaces at that point. Hence there
is a natural map from the space of 1-forms on S to the space of vector fields on
S, λ 7−→ λ∼. In local coordinates we have dp∼i = ∂/∂qi, dq

∼
i = −∂/∂pi. If H is

a real function on S then we have the vector field XH := (dH)∼ which generates
a dynamical group (at least for small time locally). Vector fields of this type are
called Hamiltonian, and H is called the Hamiltonian of the dynamical system. In
local coordinates (q, p) the equations of motion for a path x(t 7−→ x(t)) are given
by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(1 ≤ i ≤ n).

Notice that the map
H 7−→ XH

has only the space of constants as its kernel. Thus the dynamics determines the
Hamiltonian function up to an additive constant. The function H is constant on
the dynamical trajectories and so is a preserved quantity ; it is the energy of the
system. More generally, physical observables are real functions, generally smooth,
on T ∗M , and form a real commutative algebra. If U is a vector field on M , then one
can view U as a function on T ∗M which is linear on each cotangent space. These
are the so-called momentum observables. If (ut) is the (local) one-parameter group
of diffeomorphisms of M generated by U , then U , viewed as a function on T ∗M ,
is the momentum corresponding to this group of symmetries of M . For M = RN

we thus have linear and angular momenta, corresponding to the translation and
rotation subgroups of diffeomorphisms of M .

More generally S can be any symplectic manifold and the Dt symplectic diffeo-
morphisms. Locally the symplectic form can be written as

∑
dpi ∧ dqi in suitable

local coordinates (Darboux’s theorem). For a good introduction see the book of
Arnold4.

Lagrangian Mechanics. Here S = TM , the tangent bundle of M . Physical
observables are the smooth real-valued functions on S and form a real commutative
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algebra. The dynamical equations are generated once again by functions L on S,
called Lagrangians. Let L be a Lagrangian, assumed to be smooth. For any path x
defined on [t0, t1] with values in S, its action is defined as

A[x] =
∫ t1

t0

L(x(t), ẋ(t))dt.

The dynamical equations are obtained by equating to 0 the variational derivative
of this functional for variations of x for which the values at the end points t0, t1 are
fixed. The equations thus obtained are the well-known Euler–Lagrange equations.
In local coordinates they are

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
(1 ≤ i ≤ n).

Heuristically one thinks of the actual path as the one for which the action is a mini-
mum, but the equations express only the fact that that the path is an extremum, i.e.,
a stationary point in the space of paths for the action functional. The variational
interpretation of these equations implies at once that the dynamical equations are
coordinate independent. Under suitable conditions on L one can get a diffeomor-
phism of TM with T ∗M preserving fibers (but in general not linear on them), and
a function HL on T ∗M , such that the dynamics on TM generated by L goes over
to the dynamics on T ∗M generated by HL under this diffeomorphism (Legendre
transformation).

Most dynamical systems with finitely many degrees of freedom are subsumed
under one of these two models or some variations thereof (holonomic systems); this
includes celestial mechanics. The fundamental discoveries go back to Galilei and
Newton, but the general coordinate independent treatment was the achievement of
Lagrange. The actual solutions of specific problems is another matter; there are
still major unsolved problems in this framework.

Electromagnetic field. Maxwell’s equations. This is a dynamical system with
an infinite number of degrees of freedom. In general such systems are difficult to
treat because the differential geometry of infinite dimensional manifolds is not yet
in definitive form, except in special cases. The theory of electromagnetic fields is
one such special case because the theory is linear . Its description was the great
achievement of Maxwell who built on the work of Farady. The fundamental objects
are the electric field E = (E1, E2, E3) and the magnetic field B = (B1, B2, B3)
which are functions on space depending on time and so may be viewed as functions
on spacetime R4. In vacuum, i.e., in regions where there are no sources present,
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these are governed by Maxwell’s equations (in units where c, the velocity of light in
vacuum, is 1):

dB
dt

= −∇×E, ∇·B = 0 (1)

and
dE
dt

= ∇×B, ∇·E = 0. (2)

Here the operators ∇ refer only to the space variables. Notice that the equations
(1) become the equations (2) under the duality transformation

(E,B) 7−→ (−B,E).

To describe these equations concisely t is customary to introduce the electromagnetic
tensor on spacetime given by the 4× 4 skewsymmetrix matrix

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 .

It is actually better to work with the exterior 2-form

F = E1dt ∧ dx+ . . .−B1dy ∧ dz − . . .

where . . . means cyclic summation in x, y, z. Then it is easily verified that the
system of equations (1) is equivalent to dF = 0.

To describe the duality that takes (1) to (2) we need some preparation. For
any vector space V of dimension n over the reals equipped with a nondegenerate
scalar product (·, ·) of arbitrary signature, we have nondegenerate scalar products
defined on all the exterior powers Λr(V ) = Λr by

(v1 ∧ . . . ∧ vr, w1 ∧ . . . ∧ wr) = det((vi, wj))1≤i,j≤r.

We choose an orientation for V and define τ ∈ Λn by

τ = v1 ∧ . . . ∧ vn

where (vi) is an oriented orthogonal basis for V with (vi, vi) = ±1 for all i; τ is
independent of the choice of such a basis. Then the Hodge duality ∗ is a linear
isomorphism of Λr with Λn−r defined by

a ∧ ∗b = (a, b)τ (a, b ∈ Λr).
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If M is a pseudo Riemannian manifold which is oriented, the above definition gives
rise to a ∗-operator smooth with respect to the points of M that maps r-forms to
n− r-forms and is linear over C∞(M). In our case we take V to be the dual to R4

with the quadratic form (x0)2− (x1)2− (x2)2− (x3)2 where we write the dual basis
as dxµ. Then for τ = dx0 ∧ dx1 ∧ dx2 ∧ dx3 we have

∗dxµ ∧ dxν = εµενdx
ρ ∧ dxσ

with (µνρσ) an even permutation of (0123), the εµ being the metric coefficients,
being 1 for µ = 0 and −1 for µ = 1, 2, 3. Now we regard R4 as a pseudo Riemannian
manifold with metric dt2−dx2−dy2−dz2, and extend the ∗-operator defined above
to a ∗–operator, linear over C∞(R4) and taking 2-forms to 2-forms. In particular

∗dt ∧ dx = −dy ∧ dz, ∗dy ∧ dz = dt ∧ dx

with similar formulae obtained by cyclically permuting x, y, z. Then ∗F is obtained
from F by the duality map (E,B) 7−→ (−B,E). So the two sets of Maxwell equa-
tions are equivalent to

dF = 0, d ∗ F = 0.

In this coordinate independent form they make sense on any pseudo Riemannian
manifold of dimension 4. F is the electromagnetic field.

The Maxwell equations on R4, or more generally, on any convex open set
Ω ⊂ R4, can be written in a simpler form. First, all closed forms on Ω are exact
and so we can write F = dA where A is a 1-form. It is called the four vector
potential. It is not unique and can be replaced by A + dα where α is a scalar
function. The classical viewpoint is that only F is physically significant and the
introduction of A is to be thought of merely as a mathematical device. A functional
dependent on A will define a physical quantity only if it is unchanged under the
map A 7−→ A + dα. This is the principle of gauge invariance. The field equations
are the Euler–Lagrange equations for the action

A[A] = −1
2

∫
(dA ∧ ∗dA) d4x =

1
2

∫ (
E2 −B2

)
dtdxdydz.

The Maxwell equations on Ω can now be written in terms of A. Let us take the
coordinates as (xµ)(µ = 0, 1, 2, 3) where x0 denotes the time and the xi(i = 1, 2, 3)
the space coordinates. Then

A =
∑
µ

Aµdx
µ, F =

∑
µ<ν

Fµνdx
µ ∧ dxν Fµν = Aν, µ −Aµ, ν
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with the usual convention that f, µ = ∂f/∂xµ. Then, writing Fµν = εµενFµν with
the εµ as above, the equation d ∗ F = 0 can be checked to be the same as

∑
ν

Fµν, ν =
∑
ν

∂Fµν

∂xν
= 0 (µ = 0, 1, 2, 3).

Let us now introduce the Lorentz divergence of f = (fµ) given by

divLf =
∑
µ

εµ
∂fµ
∂xµ

.

Then, writing

D = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 , ∂µ =
∂

∂xµ
,

the Maxwell equations become

DAµ = (divLA), µ (µ = 0, 1, 2, 3).

Now from general theorems of PDE one knows that on any convex open set Ω,
any constant coefficient differential operator P (D) has the property that the map
u 7−→ P (D)u is surjective on C∞(Ω). Hence we can find α such that Dα = −divLA.
Changing A to A+dα and writing A in place of A+dα, the Maxwell equations are
equivalent to

DAµ = 0, divLA = 0, (µ = 0, 1, 2, 3).

The condition
divLA = 0

is called the Lorentz gauge. Notice however that A is still not unique; one can
change A to A+ dα where Dα = 0 without changing F while still remaining in the
Lorentz gauge.

In classical electrodynamics it is usually not emphasized that the vector poten-
tial A may not always exist on an open set Ω unless the second De Rham cohomology
of Ω vanishes, i.e., H2,DR(Ω) = 0. If this condition is not satisfied, the study of
the Maxwell equations have to take into account the global topology of Ω. Dirac
was the first to treat such situations when he constructed the electrodynamics of
a stationary magnetic monopole in a famous paper1. Then in 1959 Aharanov and
Bohm suggested that there may be quantum electrodynamic effects in a nonsimply
connected region even though the electromagnetic field is 0. They suggested that
this is due to the fact that although the vector potential is locally zero, because of
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its multiple-valued nature, the topology of the region is responsible for the physi-
cal effects and hence that the vector potential must be regarded as having physical
significance. Their suggestion was verified in a beautiful experiment done by Cham-
bers in 19603. This link between electrodynamics and global topology has proved
to be a very fertile one in recent years.

Returning to the convex open Ω above, the invariance of the Maxwell equations
under the Poincaré group is manifest. However we can see this also in the original
form involving F :

dF = 0, d ∗ F = 0.

The first equation is invariant under all diffeomorphisms. The second is invariant
under all diffeomorphisms that leave ∗ invariant, in particular under diffeomor-
phisms preserving the metric. So there is invariance under the Poincaré group. But
even more is true. It can be shown that diffeomorphisms that change the metric by
a positive scalar function also leave the Maxwell equations invariant. These are the
conformal transformations. Thus the Maxwell equations are invariant under the
conformal group. This was first noticed by Weyl and was the starting point of his
investigations that led to his discovery of gauge theories.

Conformal invariance of Maxwell’s equations. It may not be out of place
to give the simple calculation showing the conformal invariance of the Maxwell
equations. It is a question of showing that on a vector space V with a metric g of
even dimension 2n and of arbitrary signature, the ∗-operators for g and g′ = cg (c >
0), denoted by ∗ and ∗′, are related on k-forms by

∗′ = ck−n∗ (∗)

so that, when k = n we have
∗′ = ∗.

Thus if M,M ′ are oriented pseudo Riemannian manifolds of even dimension 2n and
f(M ' M ′) is a conformal isomorphmism, then for forms F, F ′ of degree n on M
and M ′ respectively with F = f∗(F ′), we have

f∗(∗F ′) = ∗F.

So
d ∗ F ′ = 0⇔ d ∗ F = 0

which is what we want to show. To prove (∗) let (vi) be an oriented orthogonal
basis of V for g with g(vi, vi) = ±1 and let τ = v1 ∧ . . . ∧ v2n. Let g′ = cg where
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c > 0. Then (v′i = c−1/2vi) is an orthogonal basis for g′ with g′(v′i, v
′
i) = ±1 and

τ ′ = v′1 ∧ . . . ∧ v′2n = c−nτ . Hence if a, b are elements of ΛkV , then

a ∧ ∗′b = g′(a, b)τ ′ = ck−ng(a, b)τ = ck−na ∧ ∗b

so that
a ∧ ∗′b = ck−na ∧ b.

This gives (∗) at once.

The fact that the Maxwell equations are not invariant under the Newtonian
(Galilean) transformations connecting inertial frames was one of the major aspects
of the crisis that erupted in fundamental classical physics towards the end of the
19th century. Despite many contributions from Lorentz, Poincaré, and others, the
situation remained murky till Einstein clarified the situation completely. His theory
of special relativity, special because only inertial frames were taken into account,
developed the kinematics of spacetime events on the sole hypothesis that the speed
of light does not depend on the motion of the light source. Then spacetime becomes
an affine space with a distinguished nondegenerate quadratic form of signature
(+,−,−,−). The automorphisms of spacetime are then the elements of the Poincaré
group and the Maxwell equations are invariant under these. We shall take a more
detailed look into these matters later on in this chapter.

Gravitational field. Einstein equations. Special relativity was discovered by
Einstein in 1905. Immediately afterward Einstein began his quest of freeing rela-
tivity from the restriction to inertial frames so that gravitation could be included.
The culmination of his efforts was the creation in 1917 of theory of general rel-
ativity . Spacetime became a smooth manifold with a pseudo Riemannian metric
ds2 =

∑
µν gµνdx

µdxν of signature (+,−,−,−). The most fantastic aspect of the
general theory is the fact that gravitation is now a purely geometric phenomenon,
a manifestation of the curvature of spacetime. Einstein interpreted the gµν as the
gravitational potentials and showed that in matter-free regions of spacetime they
satisfy

Rij = 0

where Rij are the components of the Ricci tensor. These are the Einstein equations.
Unlike the Maxwell equations they are non linear in the gµν . Physicists regard the
Einstein theory of gravitation as the most perfect physical theory ever invented.

1.3. Principles of quantum mechanics. The beginning of the 20th century
also witnessed the emergence of a second crisis in classical physics. This was in
the realm of atomic phenomena when refined spectroscopic measurements led to
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results that showed that the stability of atoms, and hence of all matter, could not
be explained on the basis of classical electrodynamics; indeed, according to classical
electrodynamics, a charged particle revolving around a nucleus will radiate and
hence continually lose energy, forcing it to revolve in a steadily diminishing radius,
so that it will ultimately fall into the nucleus. This crisis was resolved only in
1925 when Heisenberg created quantum mechanics. Shortly thereafter a number of
people including Heisenberg, Dirac, and Schrödinger established the fundamental
features of this entirely new mechanics, which was more general and more beautiful
than classical mechanics and gave a complete and convincing explanation of atomic
phenomena.

The most basic feature of atomic physics is that when one makes a measure-
ment of some physical observable in an atomic system, the act of measurement
disturbs the system in a manner that is not predictable. This is because the mea-
suring instruments and the quantities to be measured are both of the same small
size. Consequently measurements under the same conditions will not yield the same
value. The most fundamental assumption in quantum theory is that we can at least
obtain a probability distribution for the values of the observable being measured.
Although in a completely arbitrary state this probability distribution will not have
zero (or at least a small dispersion), in principle one can make sure that the dis-
persion is zero (or at least arbitrarily small); this is called preparation of state.
However once this is done with respect to a particular observable, some other ob-
servables will have probability distributions whose dispersions are not small. This
is a great departure from classical mechanics where, once the state is determined
exactly (or nearly exactly), all observables take exact (or nearly exact) values. In
quantum theory there is no state in which all observables will have zero (or arbitrar-
ily small) dispersion. Nevertheless the mathematical model is such that the states
still evolve causally and deterministically as long as measurements are not made.
This mode of interpretation, called the Copenhagen interpretation because it was
first propounded by the Danish physicist Niels Bohr and the members of his school
such as Heisenberg, Pauli, and others, is now universally accepted. One of the
triumphs of quantum theory and the Copenhagen interpretation was a convincing
explanation of the wave-particle duality of light. We recall that in Newton’s original
treatise Optiks light was assumed to consist of particles; but later on, in the 18th

and 19th centuries, diffraction experiments pointed unmistakably to the wave na-
ture of light. Quantum theory resolves this difficulty beautifully. It says that light
has both particle and wave properties; it is the structure of the act of measurement
that determines which aspect will be revealed. In fact quantum theory goes much
further and says that all matter has both particle and wave properties. This is a
broadening of the famous Bohr principle of complementarity . In the remarks below
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we shall sketch rapidly the mathematical model in which these statements make
perfectly good sense. For discussions of much greater depth and scope one should
consult the beautiful books of Dirac, Von Neumann and Weyl4.

States, observables, and probabilities. In quantum theory states and observ-
ables are related in a manner entirely different from that of classical mechanics. The
mathematical description of any quantum system is in terms of a complex separable
Hilbert space H; the states of the system are then the points of the projective space
P(H) of H. Recall that if V is any vector space, the projective space P(V ) of V
is the set of one-dimensional subspaces (rays) of V . Any one dimensional subspace
of H has a basis vector ψ of norm 1, i.e., a unit vector , determined up to a scalar
factor of absolute value 1 (called a phase factor). So the states are described by
unit vectors with the proviso that unit vectors ψ,ψ′ describe the same state if and
only if ψ′ = cψ where c is a phase factor. The observables are described by self
adjoint operators of H; we use the same letter to denote both the observable and
the operator that represents it. If the observable (operator) A has a pure discrete
simple spectrum with eigenvalues a1, a2, . . . and corresponding (unit) eigenvectors
ψ1, ψ2, . . ., then a measurement of A in the state ψ will yield the value ai with
probability |(ψ,ψi)|2. Thus

Probψ(A = ai) = |(ψ,ψi)|2 (i = 1, 2, . . .).

The complex number (ψ,ψi) is called the probability amplitude, so that quantum
probabilities are computed as squares of absolute values of complex probability
amplitudes. Notice that as (ψi) is a ON basis of H we must have∑

i

|(ψ,ψi)|2 = 1

so that the act of measurement is certain to produce some ai as the value of A.
It follows from many experiments (see Von Neumann’s discussion of the Compton-
Simons scattering experiment3, pp. 211–215) that a measurement made immediately
after always leads to this value ai, so that we know that the state after the first
measurement is ψi. In other words, while the state was arbitrary and undetermined
before measurement, once we make the measurement and know that the value is ai,
we know that the state of the system has become ψi. This aspect of measurement,
called the collapse of the wave packet , is also the method of preparation of states.
We shall elucidate this remarkable aspect of measurement theory a little later, using
Schwinger’s analysis of Stern-Gerlach experiments. If the Hilbert space is infinite
dimensional, self adjoint operators can have continuous spectra and the probability
statements given above have to make use of the more sophisticated spectral theory of
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such operators. In the case of an arbitrary self adjoint operator A, one can associate
to it its spectral measure which is a projection valued measure that replaces the
notion of eigenspaces. The relationship between A and PA is given by

A =
∫ +∞

−∞
λdPA(λ).

In this case

Probψ(A ∈ E) = ||PAE ψ||2 = (PAE ψ,ψ) (E ⊂ R).

The operators representing position and momentum are of this type, i.e., have
continuous spectra. For the expectation value and dispersion (variance) of A in the
state ψ we have the following formulae:

Eψ(A) = (Aψ,ψ), Varψ(A) = ||(A−mI)ψ||2 (m = Eψ(A)).

As an extreme example of this principle, the quantity

|(ψ,ψ′)|2 (resp.(ψ,ψ′))

is the probability (resp. probability amplitude) that when the system is in the state
ψ and a measurement is made to determine if the state is ψ′, the state will be found
to be ψ′.

The most impressive aspect of the discussion above is that the states are the
points of a projective geometry. Physicists call this the principle of superposition of
states. If ψi (i = 1, 2, 3) are 3 states, ψ3 is a superposition of ψ1 and ψ2 if and only
if [ψ3] is on the line in the projective space P (H) joining [ψ1] and [ψ2] (here [ψi]
is the point of P(H) represented by the vector ψi). In terms of vectors this is the
same as saying that ψ3 is a linear combination of ψ1 and ψ2. One should contrast
this with the description of classical systems, where states are points of a set where
no superposition is possible; there one can say that the states are the points of a
Boolean algebra. The transition

Boolean algebra −→ projective geometry

is the mathematical essence of the change of description from classical to quantum
that allows a mathematically and physically consistent scheme rich enough to model
the unique features of quantum theory like the wave-particle duality of all matter,
and more generally, the principle of complementarity.
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In classical statistical mechanics the states are often probability measures on
the phase space. However this is due to the fact that the huge number of degrees
of freedom of the system makes it impossible to know the state exactly, and so
the probability measures are a reflection of the incomplete knowledge of the actual
state. The statistical nature of the description thus derives from parameters which
are “hidden”. By contrast, in quantum mechanics the states are already assumed
to be determined with maximal precision and the statistical character is entirely
intrinsic. The maximally precise states are often called pure states and these are the
ones we have called states. In quantum statistical mechanics we encounter states
with less than maximal precision, the so-called mixed states. These are described
by what are called density operators, namely, operators D which are bounded, self
adjoint, positive, and of trace 1. If A is an observable, its expectation value in the
state D is given by

ED(A) = Tr (DA) = Tr (D1/2AD1/2).

These mixed states form a convex set, whose extreme points are the pure states;
in this picture the pure states correspond to the density operators which are the
projection operators P[ψ] on the one-dimensional subspaces of the Hilbert space.
However it should be remembered that the representation of a mixed state as a
convex combination of pure states is not always unique, making the physical inter-
pretation of mixtures a very delicate matter.

For a long time after the discovery of quantum mechanics and the Copenhagen
interpretation, some people refused to accept them on the grounds that the sta-
tistical description in quantum theory is ultimately due to the incompleteness of
the quantum state, and that a fuller knowledge of the state will remove the proba-
bilities. This is called the hidden variables interpretation. Among the subscribers
to this view was Einstein who never reconciled himself to the new quantum the-
ory (“God does not play dice” ), although he was one of the central figures in the
quantum revolution because of his epoch-making work on the photon as a light
quantum. Among his most spectacular attempts to reveal the incomplete nature
of the quantum mechanical description of nature is the EPR paradox, first sug-
gested in a famous paper by Einstein, Padolsky, and Rosen. However his views
were refuted by Niels Bohr convincingly. Nowadays there is no paradox in the EPR
experiment; experiments conducted everyday in high energy physics laboratories
confirm convincingly that things happen as quantum theory predicts.

At the mathematical level one can ask the question whether the results of the
quantum theory can be explained by a hidden parameter model. The answer is a
resounding “no”. The first such theorem was proved by Von Neumann; since then a
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galaxy of people have examined this question under varying levels of assumptions:
Mackey, Gleason, Bell,. . .. However the question is not entirely mathematical. For
a discussion of these aspects see my book as well as the other references contained
in the monumental book of Wheeler and Zurek5 (which has reprints of most of the
fundamental articles on the theory of measurement, including a complete extract of
Von Neumann’s treatment of the thermodynamic aspects of measurement from his
book4.

Stern–Gerlach experiments. Finite models. The discussion above is very
brief and does not do full justice to the absolutely remarkable nature of the dif-
ference between classical and quantum physics. It is therefore reasonable to ask if
there is a way to comprehend better these remarkable features, for instance, by a
discussion that is closer to the experimental situations but somewhat simpler from
a mathematical standpoint. The Hilbert space H of quantum theory is usually in-
finite dimensional because many observables of importance (position coordinates,
momenta etc) have values which form a continuous range, and any discussion of the
features of quantum theory rapidly gets lost among technicalities of the mathemat-
ical theory. To illustrate the striking features of quantum theory most simply and
elegantly one should look at finite models where H is finite dimensional. Such mod-
els go back to Weyl6 in the 1930’s; they were revived in the 1950’s by Schwinger7,
and resurrected again8 in the 1990’s. For a beautiful treatment of the foundations
of quantum mechanics from this point of view see Schwinger’s book9, in particular
the prologue.

The simplest such situation is the measurement of spin or the magnetic moment
of an atom. The original experiments were done by Stern and Gerlach and so such
measurements are known as Stern-Gerlach measurements. In this experiment silver
pellets are heated in an oven to a very high temperature till they are vapourized,
and then they are drawn out through an aperture in the oven and refined by passing
through several slits. The beam is then passed through a magnetic field and then
stopped on a screen. Since the silver atoms have been heated to a high temperature
it is a natural assumption to make that their magnetic moments are distributed
randomly. So one should expect a continuous distribution of the magnetic moments
on the screen; instead one finds that the atoms are concentrated in two sharp piles
of moments +µ and −µ.

This kind of experiment is a typical spin measurement with two values; the
measuring apparatus, in this case the magnetic field oriented in a specific direction,
measures the magnetic moment along that. Of course the direction of the magnetic
field is at one’s disposal so that we have an example of a system where all observables
have either one or two values. If we decide to stop only the − beam, the + beam
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will pass through undeflected through a second magnetic field parallel to the first.
Then one knows that the atoms in the + beam all have their spins aligned in
the given direction. This is an example of what we defined earlier as preparation
of state. Measurements in different directions will then lead to a more or less
complete enumeration of the observables of this system. Moreover, when repeated
measurements are made, we can see quite explicitly how the measurement changes
the state and destroys any previous information that one has accumulated about
the state. The fact that one cannot make the dispersions of all the observables
simultaneously small is very clearly seen here. This is the heart of the result that
the results of quantum theory do not have an interpretation by hidden variables.
Indeed, the experiments suggested by Bohm for elucidating the EPR paradox are
essentially spin or polarization measurements and use finite models. In fact one can
even show that all states that possess the features of the EPR phenomenon are of
the Bohm type or generalizations thereof10.

From the mathematical point of view, these spin systems are examples of sys-
tems where all observables have at most N values (N is a fixed integer) and generic
observables have exactly N values. The Hilbert space can then be taken to be
CN with the standard scalar product. The observables are then N ×N Hermitian
matrices whose spectra are the sets of values of these observables. The determi-
nation of states is made by measurements of observables with exactly N distinct
values. If A is a Hermitian matrix with distinct eigenvalues a1, . . . , aN and eigen-
vectors ψ1, . . . , ψN , and a measurement of A yields a value ai, then we can say with
certainty that the state is ψi immediately after measurement, and it will evolve
deterministically under the dynamics till another measurement is made. This is the
way states are determined in quantum theory, by specifying the values (= quantum
numbers) of one or more observables even in more complicated systems. Suppose
B is another Hermitian matrix with eigenvalues bi and eigenvectors ψ′i. If A is
measured and found to have the value ai, an immediately following measurement of
B will yield the values bj with probabilities |(ψi, ψ′j)|2. Suppose now (this is always
possible) we select B so that

|(ψi, ψ′j)|2 =
1
N

(1 ≤ i, j ≤ N),

then we see that in the state where A has a specific value, all values of B are equally
likely and so there is minimal information about B. Pairs of observables like A and
B with the above property may be called complementary. In the continuum limit of
this model A and B will (under appropriate conditions) go over to the position and
momentum of a particle moving on the real line, and one will obtain the Heisenberg
uncertainty principle, namely that there is no state in which the dispersions of the
position and momentum measurements of the particle are both arbitrarily small.
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In a classical setting, the model for a system all of whose observables have at
most N values (with generic ones having N values) is a set XN with N elements,
observables being real functions on XN . The observables thus form a real algebra
whose dimension is N . Not so in quantum theory for a similarly defined system:
the states are the points of the projective space P(CN ) and the observables are
N ×N Hermitian matrices which do not form an algebra. Rather, they are the real
elements of a complex algebra with an involution ∗ (adjoint), real being defined as
being fixed under ∗. The dimension of the space of observables has now become N2;
the extra dimensions are needed to accommodate complementary observables. The
complex algebra itself can be interpreted, as Schwinger discovered9, in terms of the
measurement process, so that it can be legitimately called, following Schwinger, the
measurement algebra. Finally, if A and B are two Hermitian matrices, then AB is
Hermitian if and only if AB = BA which is equivalent to the existence of an ON
basis for CN whose elements are simultaneous eigenvectors for both A and B; in
the corresponding states both A and B can be measured with zero dispersion. Thus
commutativity of observables is equivalent to simultaneous observability. In classical
mechanics all observables are simultaneously observable. This is spectacularly false
in quantum theory.

Although the quantum observables do not form an algebra they are the real
elements of a complex algebra. Thus one can say that the transition from classical
to quantum theory is achieved by replacing the commutative algebra of classical
observables by a complex algebra with involution whose real elements form the space
of observables of the quantum system11. By abuse of language we shall refer to this
complex algebra itself as the observable algebra.

The preceding discussion has captured only the barest essentials of the foun-
dations of quantum theory. However, in order to understand the relation between
this new mechanics and classical mechanics it is essential to encode into the new
theory the fact which is characteristic of quantum systems, namely, that they are
really microscopic; what this means is that the quantum of action, namely Planck’s
constant h̄ really defines the boundary between classical and quantum. In situations
where we can neglect h̄, quantum theory may be replaced by classical theory. For
instance, the commutation rule between position and momentum, namely

[p, q] = −ih̄

goes over to
[p, q] = 0

when h̄ is 0. Therefore a really deeper study of quantum foundations must bring in
h̄ in such a way that the noncommutative quantum observable algebra depending
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on h̄, now treated as a parameter, goes over in the limit h̄ → 0 to the commuta-
tive algebra of classical observables (complexified). Thus quantization, by which we
mean the transition from a classically described system to a “corresponding quan-
tum system”, is viewed as a deformation of the classical commutative algebra into
a noncommutative quantum algebra. However one has to go to infinite dimensional
algebras to truly exhibit this aspect of quantum theory12.

Remark. Occasionally there arise situations where the projective geometric model
given above has to be modified. Typically these are contexts where there are super-
selection observables. These are observables which are simultaneously measurable
with all observables. (In the usual model above only the constants are simulta-
neously measurable with every observable.) If all superselection observables have
specific values, the states are again points of a projective geometry; the choice of
the values for the superselection observables is referred to as a sector. The simplest
example of such a situation arises when the Hilbert space H has a decomposition

H =
⊕
j

Hj

and only those operators of H are considered as observables that commute with all
the orthogonal projections

Pj : H −→ Hj .

The center of the observable algebra is then generated by the Pj . Any real linear
combination of the Pj is then a superselection observable. The states are then rays
which lie in some Hj . So we can say that the states are points of the union⋃

j

P(Hj).

This situation can be generalized. Let us keep to the notation above but require
that for each j there is a ∗-algebra Aj of operators on Hj which is isomorphic
to a full finite dimensional matrix ∗-algebra such that the observables are those
operators that leave the Hj invariant and whose restrictions to Hj commute with
Aj . It is not difficult to see that we can write

Hj ' Vj ⊗Kj (dim(Vj) <∞)

where Aj acts on the first factor and observables act on the second factor, with Aj
isomorphic to the full ∗–algebra of operators on Vj , so that the observable algebra
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on Hj is isomorphic to the full operator algebra on Kj . In this case the states may
be identified with the elements of ⋃

j

P(Kj).

Notice that once again we have a union of projective geometries. Thus, between
states belonging to different P(Kj) there is no superposition. The points of P(Kj)
are the states in the Aj-sector.

The above remarks have dealt with only the simplest of situations and do not
even go into quantum mechanics. More complicated systems like quantum field
theory require vastly more mathematical preparation.

One final remark may be in order. The profound difference between classical
and quantum descriptions of states and observables makes it important to examine
whether there is a deeper way of looking at the foundations that will provide a more
natural link between these two pictures. This was done for the first time by Von
Neumann and then, after him, by a whole host of successors. Let O be a complex
algebra with involution ∗ whose real elements represent the bounded physical ob-
servables. Then for any state of the system we may write λ(a) for the expectation
value of the observable a in that state. Then λ(an) is the expectation value of the
observable an in the state. Since the moments of a probability distribution with
compact support determine it uniquely it is clear that we may identify the state
with the corresponding functional

λ : a 7−→ λ(a).

The natural assumptions about λ are that it be linear and positive in the sense
that λ(a2) ≥ 0 for any observable a. Both of these are satisfied by complex linear
functions λ on O with the property that λ(a∗a) ≥ 0. Such functionals on O are
then called states. To obtain states one starts with a ∗-representation ρ of O by
operators in a Hilbert space and then define, for some unit vector ψ in the Hilbert
space, the state by

λ(a) = (ρ(a)ψ,ψ).

It is a remarkable fact of ∗-representations of algebras with involution that under
general circumstances any state comes from a pair (ρ, ψ) as above, and that if we
require ψ to be cyclic, then the pair (ρ, ψ) is unique up to unitary equivalence.
Thus quantum the descriptions of states and observables are essentially inevitable;
the only extra assumption that is made, which is a natural simplifying one, is that
there is a single representation, or a single Hilbert space, whose vectors represent
the states. For more details see my book5.
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1.4. Symmetries and projective unitary representations. The notion of a
symmetry of a quantum system can be defined in complete generality.

Definition. A symmetry of a quantum system with H as its Hilbert space of states
is any bijection of P(H) that preserves |(ψ,ψ′)|2.

For any ψ ∈ H which is nonzero let [ψ] be the point of P(H) it defines and let

p([ψ], [ψ′]) = |(ψ,ψ′)|2.

Then a symmetry s is a bijection

s : P(H) −→ P(H)

such that
p(s[ψ], s[ψ′]) = p([ψ], [ψ′]) (ψ,ψ′ ∈ H).

Suppose U is a unitary (resp. antiunitary) operator of H; this means that U is a
linear (resp. antilinear) bijection of H such that

(Uψ,Uψ′) = (ψ,ψ′) ((Uψ,Uψ′) = (ψ′, ψ).

Then
[ψ] 7−→ [Uψ]

is a symmetry. We say that the symmetry is induced by U ; the symmetry is called
unitary or antiunitary according as U is unitary or antiunitary. The fundamental
theorem on which the entire theory of symmetries is based is the following13:

Theorem (Wigner) 1.4.1. Every symmetry is induced by a unitary or antiunitary
operator of H which moreover is determined uniquely upto multiplication by a phase
factor. The symmetries form a group and the unitary ones a normal subgroup of
index 2.

This theorem goes to the heart of the reason why quantum theory is linear .
The ultimate reason for this is the superposition principle or the fact that the
states form the points of a projective geometry, so that the automorphisms of the
set of states arise from linear or conjugate linear transformations. Recently people
have been exploring the possibility of nonlinear extensions of quantum mechanics.
Of course such extensions cannot be made arbitrarily and must pay attention to
the remarkable structure of quantum mechanics. Some of these attempts are very
interesting14.
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Let us return to Wigner’s theorem and some of its consequences. Clearly the
square of a symmetry is always unitary. The simplest and most typical example of
an antiunitary symmetry is the map

f 7−→ f conj (f ∈ L2(R)).

Suppose that G is a group which acts as a group of symmetries and that G is
generated by squares. Then every element of G acts as a unitary symmetry. Now,
if G is a Lie group, it is known that the connected component of G is generated
by elements of the form expX where X lies in the Lie algebra of G. As expX =
(expX/2)2 it follows that every element of the connected component of G acts as
a unitary symmetry. We thus have the corollary:

Corollary 1.4.2. If G is a connected Lie group and λ : g 7−→ λ(g)(g ∈ G) is a
homomorphism of G into the group of symmetries of H, then for each g there is a
unitary operator L(g) of H such that λ(g) is induced by L(g).

If one makes the choice of L(g) for each g ∈ G in some manner, one obtains a
map

L : g 7−→ L(g) (g ∈ G)

which cannot in general be expected to be a unitary representation of G in H.
Recall here that to say that a map of a topological group G into U(H) of a Hilbert
space H is a representation is to require that L is a continuous homomorphism of G
into the unitary group U(H) of H equipped with its strong operator topology. The
continuity is already implied (when G and H are separable) by the much weaker
and almost always fulfilled condition that the maps ϕ,ψ 7→ (L(g)ϕ,ψ) are Borel.
In the case above, we may obviously assume that L(1) = 1; as λ(gh) = λ(g)λ(h) we
have

L(g)L(h) = m(g, h)L(gh) (|m(g, h)| = 1).

Now, although L(g) is not uniquely determined by λ(g), its image L∼(g) in the
projective unitary group U(H/C×1 is well-defined. We shall always assume that
the action of G is such that the map L∼ is continuous. The continuity of L∼,
and hence the continuity of the action of G, is guaranteed as soon as the maps
g 7−→ |(L(g)ϕ,ψ)| are Borel. Given such a continuous action one can always choose
the L(g) such that g 7−→ L(g) from G to U(H) is Borel . L is then called a projective
unitary representation of G in H. In this case the function m above is Borel.
Thus symmetry actions correspond to projective unitary representations of G. The
function m is called the multiplier of L; since we can change L(g) to c(g)L(g) for
each g, c being a Borel map of G into the unit circle, m is only significant upto
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multiplication by a function c(g)c(h)/c(gh), and L will be called unitarizable if we
can choose c so that cL is a unitary representation in the usual sense.

If G∼ is a locally compact second countable topological group and C ⊂ G∼ is
a closed normal subgroup and G = G∼/C, then any unitary representation of G∼

which takes elements of C into scalars (scalar on C) gives rise to a projective unitary
representation of G because for any g ∈ G all the unitaries of elements above g differ
only by scalars. If C is central , i.e., if the elements of C commute with all elements
of G∼, and if the original representation of G∼ is irreducible, then by Schur’s lemma
the representation is scalar on C and so we have a projective unitary representation
of G. G∼ is called a central extension of G if G = G∼/C where C is central. It
is a very general theorem that for any locally compact second countable group G
every projective unitary representation arises only in this manner, C being taken
as the circle group, although G∼ will in general depend on the given projective
representation of G.

Suppose G is a connected Lie group and G∼ is its simply connected covering
group with a given covering map G∼ −→ G. The kernel F of this map is a dis-
crete central subgroup of G∼; it is the fundamental group of G. Although every
irreducible unitary representation of G∼ defines a projective unitary representa-
tion of G, not every projective unitary representation of G can be obtained in this
manner; in general there will be irreducible projective unitary representations of G
which are not unitarizable even after being lifted to G∼. However in many cases we
can construct a universal central extension G∼ such that all projective irreducible
representations of G are induced as above by unitary representations of G∼.

This situation is in stark contrast with what happens for finite dimensional
representations, unitary or not. A projective finite dimensional representation of a
Lie group G is a smooth morphism of G into the projective group of some vector
space, i.e., into some PGL(N,C). It can then be shown that the lift of this map
to G∼ is renormalizable to an ordinary representation, which will be unique upto
multiplication by a character of G∼, i.e., a morphism of G∼ into C×.

Projective representations of finite groups go back to Schur. The theory for Lie
groups was begun by Weyl but was worked out in a definitive manner by Bargmann
for Lie groups and Mackey for general locally compact second countable groups5,15.

We shall now give some examples that have importance in physics to illustrate
some of these remarks.

G = R or the circle group S1: A projective unitary representation of S1 is
also one for R and so we can restrict ourselves to G = R. In this case any projec-
tive unitary representation can be renormalized to be a unitary representation. In
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particular, the dynamical evolution, which is governed by a projective unitary rep-
resentation D of R, is given by an ordinary unitary representation of R; by Stone’s
theorem we then have

D : t 7−→ eitH (t ∈ R)

where H is a self adjoint operator. Since

eit(H+k) = eitkeitH

where k is a real constant, the change H 7−→ H + kI does not change the corre-
sponding projective representation and so does not change the dynamics. However
this is the extent of the ambiguity. H is the energy of the system (recall that self-
adjoint operators correspond to observables). Exactly as in Hamiltonian mechanics,
dynamical systems are generated by the energy observables, and the observable is
determined by the dynamics up to an additive constant.

G = R2: It is no longer true that all projective unitary representations of G are
unitarizable. Indeed, the commutation rules of Heisenberg, as generalized by Weyl,
give rise to an infinite dimensional irreducible projective unitary representation of
G. Since irreducible unitary representations of an abelian group are of dimension
1, such a projective unitary representation cannot be unitarized. Let H = L2(R).
Let Q,P be the position and momentum operators, i.e.,

(Qf)(x) = xf(x), (Pf)(x) = −i df
dx
.

Both of these are unbounded and so one has to exercise care in thinking of them as
self adjoint operators. The way to do this is to pass to the unitary groups generated
by them. Let

U(a) : f(x) 7−→ eiaxf(x), V (b) : f(x) 7−→ f(x+ b) (a, b ∈ R).

These are both one-parameter unitary groups and so by Stone’s theorem they can
be written as

U(a) = eiaQ
′
, V (b) = eibP

′
(a, b ∈ R)

where Q′, P ′ are self-adjoint; we define Q = Q′, P = P ′. A simple calculation shows
that

U(a)V (b) = e−iabV (b)U(a).

So, if
W (a, b) = eiab/2U(a)V (b),
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(the exponential factor is harmless and is useful below) then we have

W (a, b)W (a′, b′) = ei(a
′b−ab′)/2W (a+ a′, b+ b′),

showing that W is a projective unitary representation of R2. If a bounded operator
A commutes with W , its commutativity with U implies that A is multiplication by
a bounded function f , and then its commutativity with V implies that f is invariant
under translations, so that f is constant, i.e., A is a scalar. So W is irreducible.

The multiplier of W arises directly out of the symplectic structure of R2 re-
garded as the classical phase space of a particle moving on R. Thus quantization
may be viewed as passing from the phase space to a projective unitary represen-
tation canonically associated to the symplectic structure of the phase space. This
was Weyl’s point of view.

G = SO(3), G∼ = SU(2): Rotational symmetry is of great importance in the
study of atomic spectra. G∼ = SU(2) operates on the space of 3 × 3 Hermitian
matrices of trace 0 by g, h 7−→ ghg−1. The Hermitian matrices of trace 0 can be
written as

h =
(

x3 x1 − ix2

x1 + ix2 −x3

)
.

Since
det(h) = −(x2

1 + x2
2 + x2

3)

is preserved, the action of any element of SU(2) lies in O(3) and so we have a map
G∼ −→ O(3). Its kernel is easily checked to be {±1}. Since G∼ is connected, its
image is actually in SO(3) and as the kernel of the map has dimension 0, the image
of SU(2) is also of dimension 3. As SO(3) also has dimension 3 the map is surjective.
We thus have an exact sequence

1 −→ {±1} −→ SU(2) −→ SO(3) −→ 1.

Now SU(2) consists of all matrices of the form(
a b
−b a

)
(aa+ bb = 1)

and so topologically SU(2) ' S3. Thus SU(2) is simply connected and the above
exact sequence describes the universal covering of SO(3). If we omit, in the descrip-
tion of elements of SU(2), the determinant condition, we get the quaternion algebra
by the identification(

a b
−b a

)
7−→ a+ bj (i2 = −1, j2 = −1, ij = −ji)
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so that SU(2) may be viewed as the group of elements of unit norm of the quaternion
algebra. For dimens ions N > 3 a similar description of the universal covering group
of SO(N) is possible; the universal covering groups are the spin groups Spin(N), and
they appear as the unit groups of the Clifford algebras which generalize quaternion
algebras.

G = SO(1, 3)0, G∼ = SL(2,C): G is the connected Lorentz group, namely, the
component of the identity element of the group O(1, 3) of all nonsingular matrices
g of order 4 preserving

x2
0 − x2

1 − x2
2 − x2

3.

Also SL(2,C) must be viewed as the real Lie group underlying the complex Lie group
SL(2,C) so that its real dimension is 6 which is double its complex dimension which
is 3; we shall omit the subscript R if it is clear that we are dealing with the real
Lie group. We have the action g, h 7−→ ghg∗ of G∼ on the space of 2× 2 Hermitian
matrices identified with R4 by writing them in the form

h =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

The action preserves
det(h) = x2

0 − x2
1 − x2

2 − x2
3

and so maps G∼ into O(1, 3). It is not difficult to check using polar decomposition
that G∼ is connected and simply connected and the kernel of the map G∼ −→ G
is (±1). As in the unitary case, as dim G = dim SO(1, 3)0 = 6, we have the exact
sequence

1 −→ {±1} −→ SL(2,C) −→ SO(1, 3)0 −→ 1.

Representations of SU(2) and SL(2,C): Any irreducible projective unitary rep-
resentation of SO(3) is finite dimensional and arises from an ordinary irreducible
representation of SU(2) via the covering map SU(2) −→ SO(3). The general rep-
resentation of SU(2) is parameterized by a half-integer j ∈ 1

2Z and is of dimension
2j+1. It is the representation obtained on the space of homogeneous polynomials p
in z1, z2 of degree 2j from the natural action of SU(2) on C2. It is usually denoted
by Dj . The representation D1/2 is the basic one. The parameter j is called the
spin of the representation. The element −1 of SU(2) goes over to (−1)2j and so
the representations of SO(3) are those for which j is itself an integer. These are the
odd dimensional ones. For applications one needs the formula

Dj ⊗Dk = D|j−k| ⊕D|j−k|+1 ⊕ . . .⊕Dj+k.
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This is the so-called Clebsch–Gordan formula.

Let us go back to the context of the Stern-Gerlach experiment in which atoms
are subjected to a magnetic field. The experiment is clearly covariant under SO(3)
and the mathematical description of the covariance must be through a projective
unitary representation of SO(3). But the measurements of the magnetic moment
are all two-valued and so the Hilbert space must be of dimension 2. So the represen-
tation must be D1/2. Notice that the use of projective representations is essential
since SO(3) has no ordinary representation in dimension 2 other than the direct
sum of two trivial representations which obviously cannot be the one we are looking
for . The space of D1/2 is to be viewed as an internal space of the particle. It is to be
thought of as being attached to the particle and so should move with the particle.
In the above discussion the symmetry action of SU(2) is global in the sense that
it does not depend on where the particle is. In the 1950’s the physicists Yang and
Mills introduced a deep generailzation of this global symmetry which they called
local symmetry. Here the element of SU(2) which describes the internal symmetry
is allowed to depend on the spacetime point where the particle is located. These lo-
cal symmetries are then described by functions on spacetime with values in SU(2);
they are called gauge symmetries and the group of all such (smooth) functions is
called the gauge group. The fact that the internal vector space varies with the point
of spacetime means that we have a vector bundle on spacetime. Thus the natural
context for treating gauge theories is a vector bundle on spacetime.

Internal characteristics of particles are pervasive in high energy physics. They
go under names such as spin, isospin, charm color, flavor, etc. In gauge theories
the goal is to work with equations which are gauge-invariant, i.e., invariant under
the group of gauge symmetries. Since the gauge group is infinite dimensional, this
is a vast generalization of classical theory. Actually the idea of a vector space
attached to points of the spacetime manifold originated with Weyl in the context
of his unification of electromagnetism and gravitation. Weyl wrote down the gauge
invariant coupled equations of electromagnetism and gravitation. The vector bundle
in Weyl’s case was a line bundle and so the gauge group is the group of smooth
functions on spacetime with values in the unit circle, hence an abelian group. The
Yang-Mills equations however involve a nonabelian gauge group16.

Suppose now G = SL(2,C). We must remember that we have to regard this
as a topological rather than a complex analytic group, or, what comes to the same
thing, view it as a real Lie group. So to make matters precise we usually write
this group as SL(2,C)R, omitting the subscript when there is no ambiguity. Notice
first of all that the representations Dj defined earlier by the action of SU(2) on the
space of homogeneous polynomials in z1, z2 of degree 2j actually make sense for the
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complex group SL(2,C); we denote these by Dj,0 and note that the representing
matrices (for instance with respect to the basis (zr1z

2j−r
2 )) have entries which are

polynomials in the entries a, b, c, d of the element of SL(2,C). They are thus alge-
braic or holomorphic representations. If C is the complex conjugation on the space
of polynomials, then D0,j := CDj,0C−1 is again a representation of SL(2,C) but
with antiholomorphic matrix entries. It turns out that the representations

Dj,k := Dj,0 ⊗D0,k

are still irreducible and that they are precisely all the finite dimensional irreducible
representations of SL(2,C)R. None of them except the trivial representation D0,0

is unitary. This construction is typical; if G is a complex connected Lie group
and GR is G treated as a real Lie group, then the irreducible finite dimensional
representations of GR are precisely the ones

D ⊗ E

where D,E are holomorphic irreducible representations of the complex group G. In
our case the restriction of D0.k to SU(2) is still Dk and so the restriction of Dj,k to
SU(2) is Dj ⊗Dk whose decomposition is given by the Clebsch-Gordan formula.

1.5. Poincaré symmetry and particle classification. Special relativity was
discovered by Einstein in 1905. Working in virtual isolation as a clerk in the Swiss
patent office in Berne, Switzerland, he wrote one of the most famous and influential
papers in the entire history of science with the deceptive title On the electrodynamics
of moving bodies, and thereby changed forever our conceptions of space and time.
Using beautiful but mathematically very elementary arguments he demolished the
assumptions of Newton and his successors that space and time were absolute. He
showed rather that time flows differently for different observers, that moving clocks
are slower, and that events that are simultaneous for one observer are not in general
simultaneous for another. By making the fundamental assumption that the speed of
light in vacuum is constant in all (inertial) frames of reference (i.e., independent of
the speed of the source of light), he showed that the change of coordinates between
two inertial observers has the form

x′ = Lx+ u (x, u ∈ R4),

where L is a 4× 4 real invertible matrix which preserves the quadratic form

(x0)2 − (x1)2 − (x2)2 − (x3)2;
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here x0 = ct where t is the time coordinate, xi(i = 1, 2, 3) are the space coordinates;
if the units are chosen so that the speed of light in vacuum is 1, then x0 is the time
coordinate itself. Such L are called Lorentz transformations and form a group
denoted by O(1, 3). The fact that the distinction between space and time, which
had been a part of all of our thinking for centuries, is dependent on the observer ,
follows from these formulae. It also follows that no particle can travel with a speed
greater than the speed of light in vacuum. The transformations for changing from
one inertial frame to another given above form the so-called inhomogeneous Lorentz
group; this is the set of pairs (u, L) with multiplication defined by

(u, L)(u′, L′) = (u+ Lu′, LL′).

It is the semidirect product R4 ×′ O(1, 3). The term Poincaré group is usually
reserved for R4 ×′ SL(2,C)R where SL(2,C)R is viewed as a covering group of
SO(1, 3)0, acting on R4 through the covering map. SO(1, 3)0 itself is the group of
Lorentz matrices L = (hµν) such that det(L) = 1 and h00 > 0 (since h2

00 − h2
01 −

h2
02 − h2

03 = 1, |h00| ≥ 1 always and so on SO(1, 3)0 it is ≥ 1).

It may be of interest to add a few remarks to this brief discussion of special
relativity. The idea that an observer can describe the surrounding world by 4
coordinates is the starting point of the mathematical treatment of phenomena.
This description applies especially convincingly in the part of the world that is
close to the observer. Already Kepler and Copernicus had realized that the laws
governing the planetary movements take a simple form only when viewed against the
background of the distant fixed stars. This meant that a special class of coordinate
frames were singled out, namely those in which the distant stars appear to be fixed
or moving with uniform speed (certainly not rotating as they would be if seen from
the frame of the rotating earth). These are the so-called inertial frames, the ones
in which Galilei’s law of inertia holds, namely, objects (such as the distant stars) on
which no forces are acting, are at rest or are in uniform motion in a straight line.
Nowadays such frames are commonplace, for instance the frame of a rocket ship
which is moving outside the earth’s gravitational field so that all objects inside it
are weightless, and Galelei’s law of inertia is satisfied for all objects in it. Observers
defining such frames are called inertial also. If now two inertial observers observe
the world, the change of coordinates between their respective frames must be such
that the linear character of the trajectories of objects moving uniformly without
acceleration must not change. It is a consequence of results in projective geometry
that such a transformation has to be affine, i.e., of the form

x′ = Lx+ u

28



where u refers to spacetime translation and is a vector in R4 and L is a real 4×4 in-
vertible matrix. Thus spacetime is an affine manifold. It is important to remember
that this much is already true without any assumptions on speeds of signals.

For Newton, space and time were absolute, and the space part, consisting of
events that are simultaneous, formed a Euclidean space of dimension 3. Thus space
time was layered by equal-time slices. The group of transformations between New-
tonian (or Galilean) inertial frames is then the 10-parameter Galilean group in which
L above is restricted to the group generated by spatial orthogonal transformations
and boosts. Boosts refer to the transformations linking an observer to another who
is moving with uniform velocity with respect to the first. They are of the form

(x0)′ = x0, ξ′ = ξ + x0v

where ξ refers to the space coordinates, and v is the velocity vector. However in
the last years of the 19th century there already appeared cracks in the structure of
the Newtonian view of the world. The Michelson-Morley experiment , designed to
discover the relative velocity of the earth in the ether, came up with the result that
the relative velocity was 0. Many different mechanistic hypotheses were put forward
to reconcile this with known theories, such as the Lorentz-Fitzgerald contraction
which asserted that all objects contracted in the ratio

1 :

√
1− v2

c2

along the direction of motion, v being the speed of motion and c the constant ve-
locity of light in vacuum. On the other hand, Poincaré observed that the Maxwell
equations are not invariant under the Galilean group but rather light behaves as
if its invariance group is really the inhomogeneous Lorentz group. So a number of
people sensed that some drastic changes were necessary in order to get a consistent
picture of the physical world that would include electromagnetic phenomena. It
was Einstein who took the decisive step; with a few simple strokes he painted a
coherent picture of space and time that has been vindicated by countless experi-
ments over the past century. Indeed, the experiments in high energy laboratories
confirm everyday the assumptions of Einstein. He banished the ether, abandoned
mechanistic assumptions to “justify” physical laws, and ushered in the era in which
the role of the physicist was limited to building mathematical models that explain
and predict phenomena. The revolution in thinking that he started was an abso-
lutely essential prerequisite for the second great revolution in 20th century science,
namely quantum theory.
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Spacetime with the affine structure given by R4 and equipped with the basic
quadratic form

(x0)2 − (x1)2 − (x2)2 − (x3)2,

is called Minkowski spacetime because its clear mathematical formulation as well
as a coordinate independent treatment of electrodynamics in it was first given by
Minkowski in a famous talk17. At each point of Minkowski spacetime, the future
is represented by all the points in a cone with vertex at that point, the so-called
forward light cone which is the set of all points that can be reached by a signal
emitted at that point. (In Galilean spacetime the future is the half-space of points
whose time coordinate is greater than the time coordinate of the given point.) One
can show (this is a beautiful result of A. D. Aleksandrov18) that any bijection of
Minkowski spacetime which preserves this cone structure is necessarily affine

x′ = a(Lx+ u)

where a is a nonzero constant, L a Lorentz transformation, and u ∈ R4. The
constant a cannot be asserted to be 1 if one uses only light signals in analyzing
the structure of spacetime; indeed, one cannot pin down the basic quadratic form
except up to a multiplicative scalar, because the points reached from the origin by
light signals satisfy the equation (x0)2−(x1)2−(x2)2−(x3)2 = 0, which is unaltered
by scalar multiplication. But if we consider material particles as well, one can show
that the quadratic form is determined absolutely. Thus the transformation between
two inertial observers O,O′ where O′ is moving uniformly in the positive direction
of the x-axis of O with velocity v > 0 is given in the units where c = 1 by

x0′ =
1√

1− v2
(x0 − vx1), x1′ =

1√
1− v2

(−vx1 + x1).

To get the formula in the usual units one must replace v by v/c and x0′, x0 by
ct′, ct. It follows from this that the constant a in the earlier formula must be 1.
If the direction of motion of O′ is arbitrary, the transformation formula is more
complicated; it was first obtained by Herglotz. All the remarkable properties of
moving observers such as time dilation, space contraction, relativistic composition
formula for velocities, and so on, can be derived from the above formula19.

The fact that in the treatment of light the quadratic form is determined only
up to a scalar means that description of radiation phenomena must be invariant
under the much larger conformal group. Globally it is nothing more than adding
the dilations to the Poincaré group; but conformal transformations can be fully
treated only after compactifying spacetime, and then the conformal group becomes
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SO(2, 4). We shall discuss this later on. The reader can in the meantime think of the
corresponding situation in complex geometry where the group of transformations
z 7−→ az + b of C enlarges to the group of the fractional linear transformations
z 7−→ (az + b)/(cz + d) of the extended complex plane C ∪∞.

Let us now return to quantum theory. To describe a quantum system in a
manner compatible with special relativity means that we must have a projective
unitary representation of the Poincaré group on the Hilbert space H of the system.
It was proved by Wigner20 in a famous paper in 1939 that any projective unitary
representation of the Poincaré group is unitarizable. It was also in the same paper
that he classified the physically relevant irreducible unitary representations of the
Poincaré group. If G is a semidirect product RN ×′ H where H is a simply con-
nected semisimple group acting on RN in such a manner that there are no nonzero
skewsymmetric invariant bilinear forms (if the action of H on CN is irreducible and
admits a nonzero symmetric invariant bilinear form then this condition is satisfied),
then all projective representations of G are unitarizable; Wigner’s theorem is a spe-
cial case of this5. However there are groups for which the unitarizability theorem is
not true, such as the additive groups of vector spaces of dimension ≥ 2, and more
significantly, the simply connected covering group of the Galilean group. Indeed,
for a given simply connected Lie group to have the property that all projective
unitaries are unitarizable, the second cohomology of the group with coefficients in
the circle group must vanish.

It follows from these remarks that relativistic invariance of a quantum system
is encoded by a unitary representation of the Poincaré group. It is natural to pos-
tulate that if the system is that of an elementary particle then the corresponding
representation should be irreducible. Thus, a classification of irreducible unitary
representations of the Poincaré group will yield a classification of elementary par-
ticles that is compatible with special relativity. We shall now describe how the
irreducible unitary representations of the Poincaré group are constructed.

Before taking this up I should point out that physicists do not describe sym-
metries as we have done using unitary representations explicitly. Most of the time
the Hilbert spaces they work with contain only the most important states of the
system, for instance those that are obtained by repeated application of certain key
operators (creation, annihilation) on certain key states (vacuum); this core is usu-
ally invariant under the operators of the Lie algebra of the symmetry group and
so only these Lie algebra operators are specified. In certain cases the symmetry
group or rather its Lie algebra is infinite dimensional, such as the Virasoro or affine
Lie algebras; in this case there is no natural Lie group and the symmetry is only
infinitesimal.
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Let P be the Poincaré group,

P = R4 ×′ SL(2,C).

Wigner’s determination of the irreducible unitary representations of P in 1939 was
extended in great depth to a vast class of locally compact semidirect product groups
by Mackey (the “Mackey machine”). But the basic ideas already go back to Frobe-
nius who was a great pioneer in the theory of representations of finite groups. Let

G = A×′ H

where A is abelian, H acts on A through automorphisms. The irreducible represen-
tations are then classified by a very general scheme, depending on two “parameters”
O, σ where O is an orbit of the (dual) action of H on the character group Â of A,
and σ is an irreducible unitary representation of the stability subgroup in H of a
point χ ∈ O. In order to motivate the Mackey theory better I shall first discuss the
case when G is finite where there are no technical complications.

Let then G be finite and L an irreducible unitary representation of G. We
identify A and H with subgroups of G by the maps a 7−→ (a, 1) and h 7−→ (1, h). A
will then be normal in G and H will act on it by h, a 7−→ hah−1. The restrictions
of L to A and H are unitary representations of these groups which we write as U
and V . Thus

L(ah) = U(a)V (h), V (h)U(a)V (h)−1 = U(hah−1) (a ∈ A, h ∈ H).

Conversely, if we start with unitary representations U, V of A and H in the same
Hilbert space such that

V (h)U(a)V (h)−1 = U(hah−1) (a ∈ A, h ∈ H) (∗)

then
L : ah 7−→ U(a)V (h)

is a unitary representation of G. Thus we must try to build pairs (U, V ) satisfying
(∗) which are irreducible.

Let H be the (finite dimensional) Hilbert space of U, V . Since the U(a)(a ∈ A)
is a set of commuting unitaries, there is an ON basis in which all the U(a) are
diagonal. If v is a basis vector, U(a)v = χ(a)v and it is clear that χ ∈ Â, where, as
we mentioned earlier, Â is the group of characters of A. So we can write

H = ⊕χ∈FHχ U(a)v = χ(a)v (v ∈ Hχ)
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where F is a subset of Â and the Hχ 6= 0. The action of H on A gives rise to
the dual action of H on Â given by h, χ 7−→ h · χ where (h · χ)(a) = χ(h−1ah).
Since U(a)V (h)v = V (h)U(h−1ah)v it follows that each V (h)(h ∈ H) moves Hχ
into Hh·χ. This shows that F is stable under H and that if O is an orbit contained
in F , the space ⊕χ∈OHχ is invariant under both A and H and so invariant under
(U, V ). Since (U, V ) is irreducible this means that F is a single orbit, say O. Let
us fix a χ ∈ O and let Hχ be the subgroup of all h ∈ H such that h · χ = χ.
Since V (h) takes Hχ to Hh·χ we see that Hχ is stable under Hχ and so defines
a unitary representation σ of Hχ. If W is a subspace of Hχ invariant under σ,
it is clear that S[W ] := ⊕h∈HL(h)[W ] is stable under V . If W ′ ⊥ W is another
σ-invariant subspace of Hχ then S[W ] ⊥ S[W ′]; indeed, if hHχ 6= h′Hχ then
V (h)[W ] and V (h′)[W ′] are orthogonal because they belong to different Hξ, while
for hHχ = h′Hχ they are orthogonal because V (h′)[W ′] = V (h)[W ′] ⊥ V (h)[W ]
from the unitarity of V (h). These remarks prove that σ is irreducible. We have
thus defined O, σ corresponding to L.

Notice that we can think of H as the collection of vector spaces (Hξ) parame-
terized by ξ ∈ O, i.e., as a vector bundle over O. A section of the bundle is a family
(v(ξ)) where v(ξ) ∈ Hξ for all ξ ∈ O. Under componentwise addition these sections
form a vector space which is isomorphic to H by the map (v(ξ)) 7→

∑
ξ v(ξ). The

action of V on H takes Hξ to Hh·ξ and so can be viewed as an action of H on the
bundle compatible with its action on O. The stabilizer Hχ then acts on Hχ. Thus
irreducible pairs (U, V ) are completely determined by such vector bundles on the
orbits of H. We call them H-bundles.

Suppose that we have two H-bundles (Hξ) and (Kξ) on O such that the rep-
resentations of Hχ on Hχ and Kχ are equivalent by an isomorphism v 7−→ v′. We
claim that we can extend this to an isomorphism of the bundles that commutes
with the action of H. In fact there is just one possible way to define the extension:
it should take h[v] to h[v′] for h ∈ H and v ∈ Hχ. So the claim will be proved if
we show that this is well-defined. But suppose that h[v] = h1[v1] were h, h1 ∈ H
and v, v1 ∈ Hχ. Then h · χ = h1 · χ and so h1 = hk for some k ∈ Hχ. But then
h[v] = h1[v1] = hk[v1] so that v = k[v1]; and so

h1[v′1] = hk[v′1] = h[(k[v1])′] = h[v′].

It only remains to show that any pair (O, σ) gives rise to a H-bundle for which
these are the corresponding objects. We define the vector bundle V over O as the
quotient of the trivial bundle H×Hχ on H by a natural equivalence relation which
will make the quotient a vector bundle over O. More precisely,

V = H ×Hχ/ ∼
(h, v) ∼ (h′, v′) ⇐⇒ h′ = hk, v′ = σ(k)−1v for some k ∈ Hχ

.
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Note that (h, v) 7−→ hHχ gives a well defined map of V to H/Hχ and allows us to
view V as a vector bundle over H/Hχ. The map

h, (h′, v) 7−→ (hh′, v)

the defines an action of H on V and converts V into a H-bundle.

The subgroup Hχ is called the little group. Thus the irreducible representations
of G correspond bijectively (up to equivalence of course) to H-bundles V on orbits
O of H in Â such that the action of the little group Hχ at a point χ ∈ O on the
fiber at χ is irreducible. The scalar product on the fiber vector space at χ which
makes the representation σ of Hχ unitary can then be transported by H to get a
covariant family of scalar products (( · )ξ) on the fibers of V. V is thus a unitary
H–bundle. The sections of V then form a Hilbert space for the scalar product

(s, t) =
∑
ξ∈O

(s(ξ), t(ξ))ξ.

The representation L of G is then given by

L(ah) = U(a)V (h)
(U(a)s)(ξ) = ξ(a)s(ξ) (ξ ∈ O)

(V (h)s)(ξ) = h[s(h−1(ξ))] (ξ ∈ O).

The vector bundle on O ' H/Hχ is determined as soon as σ is given. Indeed,
we can replace Hχ by any subgroup H0 of H. Thus, given any subgroup H0 of H
and a vector space F which is a H0-module, there is a vector bundle V on H/H0

which is a H-bundle whose fiber at the coset H0 is F . The H-action on V gives
rise to a representation of H on the space of sections of V. If F has a unitary
structure then V becomes a unitary bundle and the representation of H is unitary.
This is called the representation of H induced by σ. We shall now give a definition
of it without the intervention of the vector bundle; this will be useful later on in
situations where the vector bundles are not so easily constructed. Recall that we
have defined V as the set of equivalence classes (h, v) with h ∈ H, v ∈ F . A section
is then a map of H into F ,

s : h 7−→ s(h) (h ∈ H, s(h) ∈ F )

such that
s(hk) = σ(k)−1s(h) (k ∈ H0, h ∈ H),
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the corresponding section being

hH0 7−→ [(h, s(h))]

where [(h, v)] represents the equivalence class of (h, v). A simple calculation shows
that the action of h ∈ H on the section becomes the action

s 7−→ s′, s′(h′) = s(h−1h′) (h′ ∈ H).

Thus the space of sections is identified with the space Fσ of functions s from H to
F satisfying

s(hk) = σ(k)−1s(h) (h ∈ H, k ∈ H0)

and the representation V = V σ is just left translation:

(V (h)s)(h′) = s(h−1h′) (h, h′ ∈ H).

The defining condition for Fσ is on the right and so the action from the left does
not disturb it. The representation is unitary (if F is unitary) for the scalar product

(s, t) =
∑

h∈H/H0

(s(h), t(h)).

The sum is over the coset space H/H0 as (s(h), t(h)) is really a function on H/H0.

Apart from technical measure theoretic points the theory is the same when
G is locally compact and second countable. The second countability is strictly
speaking not necessary but is satisfied in all applications and so there is no sense
in not imposing it. In this case the dual group Â is also locally compact abelian
and second countable, and the action of H on Â is continuous. What has to be
faced however is that there are in general continuum many orbits of H in Â, and
the space of orbits may not have good properties. As a result we can only say that
while a given orbit and an irreducible representation of the little group of a point
on that orbit still define an irreducible unitary representation of G, there will be
still others if the orbit space is not nice in a measure theoretic sense. So there has
to be an additional condition of regularity.

What do we mean by the requirement that the orbit space is nice? Let X be
a second countable locally compact Hausdorff space on which a second countable
locally compact group L acts continuously. Both X and L are separable metric
and have their σ-algebras (Borel structures) of Borel sets. These σ-algebras are
standard in the sense that X and L, equipped with their Borel structures, are Borel
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isomorphic to the Borel space of the real line. We now introduce the space Y of
the L-orbits in X and the natural map π : X −→ Y that sends any point to the
orbit containing it. We can equip Y with the σ-algebra of sets with the property
that their preimages are Borel in X. One way to formulate the niceness of Y is to
require that Y , with this Borel structure is standard. A more heuristic idea is to
require that we can enumerate the orbits in some way, namely, that there is a Borel
set in X that meets each orbit exactly once. The central theorem in the subject is
a remarkable criterion due to Effros for the space of orbits to be nice in any one
of these senses. We shall formulate it by first giving a definition. The action of L
on X is said to be regular if the orbits of L in X are all locally closed. Recall here
that a subset Z of a topological space Y is locally closed if the following equivalent
conditions are satisfied:

(i) Z is open in its closure.
(ii) Z = C ∩ U where C is closed and U is open in Y .
(iii) For any z ∈ Z there is an open neighborhood V of z in Y such that Z ∩V

is closed in V .

The significance of the condition of regularity is contained in the following theorem
which is a special case of Effros’s work21 on group actions in the Polonais category.

Theorem (Effros) 1.5.1. Let X be a locally compact second countable Hausdorff
space and L a locally compact second countable group acting continuously on X.
Then the following are equivalent:

(i) All L-orbits in X are locally closed.
(ii) There exists a Borel set E ⊂ X which meets each L-orbit exactly once.
(iii) If Y = L\X is equipped with the quotient topology, the Borel structure of

Y consists of all sets F ⊂ Y whose preimages in X are Borel, and the
space Y with this Borel structure is standard.

(iv) Every invariant measure on X which is ergodic for L is supported on an
orbit and is the unique (up to a normalizing scalar) invariant measure on
this orbit.

Remark. The conditions (ii) through (iv) are the ones that say that the space of
orbits is nice in a measure theoretic sense. The real depth of the Effros theorem is
that this property of niceness of the orbit space, which is global, is equivalent to the
condition (i) which is essentially local,; it can be verified by looking at each orbit
without worrying about the others. If the group L is compact, then all orbits are
closed and so the semidirect product is always regular. The action of Q on R by
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q, r 7−→ q + r is not regular as Lebesgue first pointed out; indeed any set meeting
each orbit exactly once is not even Lebesgue measurable. There are many other
examples of this kind.

To relate this definition of regularity in our set up we shall say that the semidi-
rect product G = A ×′ H is regular if the action of H on Â is regular. In order to
state the main result elegantly we need the concept of induced representations in
this general context. Let H be a locally compact second countable group and H0 a
closed subgroup; let X = H/H0. For simplicity we shall assume that H/H0 has a
H-invariant measure, although everything goes through with suitable modifications
in the general case. Given a unitary representation σ of H0 in a Hilbert space F
(with norm | · | and scalar product (·, ·)) we define Fσ to be the space of all (Borel)
functions (up to equality almost everywhere) s from H to F such that

s(hk) = σ(k)−1s(h)

for each k ∈ H0 for almost all h ∈ H, and

||s||2 =
∫
H/H0

|s(h)|2 dh <∞

where dh is the invariant measure on H/H0. Under the scalar product

(s|t) =
∫
H/H0

(s(h), t(h))dh

Fσ is a Hilbert space. If

(V σ(h)s)(h′) = s(h−1h′) (h, h′ ∈ H)

then V σ is a unitary representation of H; it is the representation induced by σ.

Under additional assumptions it is possible to exhibit a more geometric defi-
nition of the induced representation. Let H be a Lie group and let σ be a unitary
finite dimensional representation of H0 in F . Then one can construct a smooth
vector bundle on X with fibers isomorphic to F in the same way as we did in the
finite case. The fact that the action of H on X has local sections implies that we
have a smooth vector bundle Vσ on H/H0 admitting an action h, u 7−→ h[u] of H
such that the action of H0 on the fiber at H0 is just σ. Using the scalar products
on F we can define the structure of a unitary bundle on V. If we assume that X
has a H-invariant measure then we can define the notion of square integrability of
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sections and form Fσ, the Hilbert space of square integrable sections of Vσ. Let us
define

(V σ(h)s)(x) = h[s(h−1(x))] (h ∈ H, s ∈ Fσ, x ∈ H/H0).

Then V σ is the induced representation we defined earlier.

Theorem (Mackey) 1.5.2. Let G = A×′H and let O be an orbit of H in Â. Fix
a point χ in O and let Hχ be the stabilizer of χ in H. Let σ be a unitary irreducible
representation of Hχ and let V = V σ be the induced representation of H. For any
a ∈ A let U(a) be the unitary operator on Fσ defined by

(U(a)s)(h) = (h · χ)(a)s(h) (s ∈ Fσ, h ∈ H, a ∈ A).

If we define
L(ah) = U(a)V σ(h) (a ∈ A, h ∈ H)

then L = LO,σ is a unitary representation of G which is irreducible. If G is a regular
semidirect product then every irreducible unitary representation of G is of this form.
The choice of a different χ in O leads to equivalent representations. Finally,

LO,σ ' LO′,σ′ ⇐⇒ O = O′, σ ' σ′

(for the same choice of χ).

The subgroup Hχ is called the little group at χ.

Remark. Suppose that G is not a regular semidirect product. Then by the theorem
of Effros there is a H-invariant measure on Â which is ergodic but gives measure 0
to all orbits. Let µ be such a measure and let H = L2(µ). Define U, V and L by
L(ah) = U(a)V (h) and

(U(a)f)(ξ) = ξ(a)f(ξ), (V (h)f)(ξ) = f(h−1 · ξ) (f ∈ H, a ∈ A, h ∈ H).

Then L is an irreducible unitary representation of G which does not arise from any
orbit.

The Poincaré group. Here A = R4 with coordinates (xµ), H is the group
SO(1, 3)0, and

P = R4 ×′ SO(1, 3)0,

the Poincaré group. We identify Â with a copy of R4 which we write as P4 with
coordinates (pµ), by the map p = (pµ) 7−→ χp where χp(x) = ei〈x,p〉, with

〈x, p〉 = x0p0 − x1p1 − x2p2 − x3p3.
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P4 is the momentum space. The dual action of O(1, 3) on P4 is then the same as
its action on R4. There is one invariant, namely the quadratic form

p2
0 − p2

1 − p2
2 − p2

3

and so the level sets of this form are certainly invariant and fill up the P4. The
orbits are obtained by splitting these level sets.

The orbits X±m: The sets X±m are defined by

X±m = {p2
0 − p2

1 − p2
2 − p2

3 = m2, p0 >< 0} (m > 0).

These are hyperboloids inside the forward or the backward cone at the origin. Note
that p2

0 = p2
1 +p2

2 +p2
3 +m2 > m2 on the orbits and so p0 is either > m or < −m on

any of these orbits. The point (m, 0, 0, 0) is the rest frame of a particle of mass m
since all the momenta are 0. The little group at (m, 0, 0, 0) is the preimage of SO(3)
in SL(2,C) and so is SU(2). The representations of SU(2) are the Dj(j ∈ 1

2Z) and
the corresponding representations of P are denoted by L±m,j . There is an antiunitary
isomorphism of L+

m,j with L−m,j allowing the interpretation of the representations
defined by the latter as the antiparticle with opposite charge. We write Lm,j for the
representation L+

m,j . It describes a massive particle, of mass m and spin j (and, by
convention, of negative charge). The representation Lm,1/2 describes any massive
particle of spin 1/2 such as the electron. We note also that there is an invariant
measure on the orbit. There are several ways of seeing this. The simplest is to note
that in the region F = {p2

0 − p2
1 − p2

2 − p2
3 > 0} the change of coordinates

q0 = p2
0 − p2

1 − p2
2 − p2

3 > 0, qi = pi (i = 1, 2, 3)

is a diffeomorphism and we have

d4p =
1

2(q0 + q2
1 + q2

2 + q2
3)1/2

d4q.

Since q0 is invariant under SO(1, 3)0 we see that for any m > 0 the measure

dµ+
m =

d3p

2(m2 + p2
1 + p2

2 + p2
3)1/2

is an invariant measure on X+
m where we use the pi(i = 1, 2, 3) as the coordinates

for X+
m through the map

(p0, p1, p2, p3) 7−→ (p1, p2, p3)

39



which is a diffeomorphism of X+
m with R3.

The orbits X±0 : The sets X±0 are defined by

X±0 = {p2
0 − p2

1 − p2
2 − p2

3 = 0, p0 >< 0}.

We determine the little group at (1, 0, 0, 1) (as before we ignore the orbit where
p0 < 0). The points of X+

0 represent particle travelling with the speed of light.
Classically the only such particles are the photons. There is no frame where such
particles are at rest, contrary to the case of the massive particles. We choose for
convenience the point (1, 0, 0, 1). In our identification of P4 with 2 × 2 Hermitian
matrices it corresponds to the Hermitian matrix(

2 0
0 0

)
which goes into (

2aa 2ac
2ac 2cc

)
under the action of (

a b
c d

)
.

So the little group is the group of all matrices

ea,b =
(
a b
0 a−1

)
(a, b ∈ C, |a| = 1).

This is also a semidirect product of the group of all elements e1,b which is isomorphic
to C, and the group of all elements ea,0 which is isomorphic to the circle group S;
the action defining the semidirect product is

a, b 7−→ a2b.

So the little group at (1, 0, 0, 1) is the 2-fold cover of the Euclidean motion group of
the plane, the plane being identified with C. The only finite dimensional unitary
irreducible representations of the little group are

σn :
(
a b
0 a−1

)
7−→ an (n ∈ Z).
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The corresponding representations are denoted by L0,n. The representations

L′0,n = L0,n ⊕ L0,−n (n > 0)

are called representations with helicity |n|; they are not irreducible. The represen-
tation L′0,2 describes the photon. The orbit X+

0 also has an invariant measure (seen
by letting m→ 0+ in the formula for the invariant measure on X+

m), namely

dµ+
0 =

d3p

2(p2
1 + p2

2 + p2
3)1/2

is an invariant measure on X+
0 where we use the pi(i = 1, 2, 3) as the coordinates

for X+
0 through the map

(p0, p1, p2, p3) 7−→ (p1, p2, p3)

which is a diffeomorphism of X+
0 with R3 \ {0}.

The orbits Ym: These are defined by

Ym = {p2
0 − p2

1 − p2
2 − p2

3 = −m2} (m > 0).

The little groups are not compact and these are unphysical as we shall explain a
little later.

The orbit (0): The orbit is the single point 0, the origin of P4. The little group
is all of SL(2,C), and the corresponding representations are just the irreducible
unitary representations of SL(2,C) viewed as representations of P via the map
P −→ P/R4 ' SL(2,C). These are also unphysical except for the trivial one
dimensional representation which models the vacuum.

Let O denote any one of these orbits and H0 the little group at the point
described above of the orbit in question (base point). We shall presently construct
smooth vector bundles V over O which are SL(2,C)-bundles, namely which admit
an action by SL(2,C), written h, v 7→ h[v], compatible with its action on the orbit,
such that the action of the little group H0 on the fiber at the corresponding base
point is a specified irreducible unitary representation of the little group. Let µ be
an invariant measure on O. Since the representation of the little group is unitary,
the scalar product on the fiber at the base point can be transported by the action
of H to scalar products ((·, ·)p, | · p) on the fibers at all points of O which vary
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covariantly under the action of H. V thus becomes a unitary bundle. Then the
Hilbert space of the representation is the space of sections s such that

||s||2 =
∫
O

|s(p)|2pdµ(p) <∞

and the representation L of the Poincaré group is given as follows:

(L(a)s)(p) = ei〈a,p〉s(p) (a ∈ R4, p ∈ O)

(L(h)s)(p) = h[s(h−1p)] (h ∈ SL(2,C), p ∈ O).

In this model spacetime translations act as multiplication operators. If eµ is
the vector in spacetime with components δµν , then

(L(teµ)s)(p) = eitpµs(p)

so that the momentum operators are multiplications:

Pµ : s 7−→ pµs.

We have
P 2

0 − P 2
1 − P 2

2 − P 2
3 = m2

which is the relativistic energy momentum relation. Thus the parameter m may
be identified with the mass of the particle. This identification makes clear the
reason why we excluded the orbits Ym; they lead to particles with imaginary mass.
The representations corresponding to the orbit (0) are such that the spacetime
translations act trivially in them. So the energy is 0 and the only representation of
this type that is physical is the trivial 1-dimensional representation, which represents
the vacuum.

There is however a more serious omission in our discussion for the case m = 0.
We have considered only the characters σn of the little group H0. This group is a
semidirect product

P0 = C×′ S

where S is the circle group acting on C by

a[b] = a2b, |a| = 1, b ∈ C.

The Mackey theory can be used to determine all of its unitary representations. The
orbits are the circles |b| = β2 for β ≥ 0. The orbit β = 0 corresponds to the
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representations σn, these being the characters of S viewed as representations of H0.
At the points β the little group is (±1) which has two characters, the trivial one and
the one which takes −1 to −1. So there are two irreducible unitaries λβ,± for each
β > 0. Associated to these we have representations L0,β,± which define particles of
mass 0 and infinite helicity, i.e., possessing an internal space of infinite dimension.
These have also to be excluded because of their unphysical nature.

Representations of the Poincaré group of Minkowski space of arbitrary
dimension. The theory described above goes over with virtually no changes to the
case of the Minkowski space V = R1,D−1 of dimension D. Thus

G = R1,D−1 ×′ H, H = Spin(1, D − 1)

where the spin group Spin(1, D−1) is the universal (= 2-fold) cover of SO(1, D−1)0

(see Chapter 5 for notation and results on real spin groups). The orbits are classified
as before. For the orbits X±m the little group at (m, 0, . . . , 0) is Spin(D − 1). The
orbits have the invariant measure

dµ+
m =

dD−1p

(m2 + p2
1 + . . .+ p2

D−1)1/2
.

The orbits X±0 require a little more care because our earlier description of the
little groups for the case D = 4 used the special model of Hermitian matrices for
spacetime.

We write (eµ)0≤µ≤D−1 for the standard basis of V = R1,D−1, with (e0, e0) =
−(ej , ej) = 1(1 ≤ j ≤ D − 1). We wish to determine the little group at the point
q = e0+eD−1. Let ` be the line R·q and let Hq be the little group at q, the subgroup
of H fixing q. We write H ′q for the stabilizer of q in the group V ×′ SO(1, D − 1)0

so that Hq is the lift of H ′q inside G. Clearly Hq fixes `⊥ and so we have the
Hq-invariant flag

` ⊂ `⊥ ⊂ V.

Now ` is the radical of the restriction of the metric to `⊥ and so the induced metric
on E := `⊥/` is strictly negative definite. We shall now show that there is a natural
map

H ′q ' E ×′ SO(E).

Let h ∈ H ′q. Then h induces an element h∼ of O(E). We claim first that h∼ ∈
SO(E) and that h induces the identity on V/`⊥. Since det(h) = 1 and det(h∼) =
±1, we see that h induces ±1 on V/`⊥ and so it is enough to prove that h induces
+1 on V/`⊥. Now e0 /∈ `⊥ and h·e0 = ae0 + u where a = ±1 and u ∈ `⊥. Then
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(e0, q) = (h·e0, q) = a(q, e0) so that a = 1. Since h·e0 − e0 ∈ `⊥ its image in E is
well-defined; we write t(h) for it. We thus have a map

H ′q −→ E ×′ SO(E), h 7−→ (t(h), h∼).

It is easy to check that this is a morphism of Lie groups. We assert that this map is
injective. Suppose that h is in the kernel of this map so that h·u = u+a(h)q for all
u ∈ `⊥ and h·e0 = e0 + b(h)q. Then (e0, e0) = (h·e0, h·e0) = (e0, e0) + 2b(h)(q, e0),
giving b(h) = 0. Also (u, e0) = (h·u, h·e0) = (u, e0) + a(h)(q, e0), giving a(h) = 0.
Thus h = 1. A simple calculation with the Lie algebra shows that Lie(H ′q) has the
same dimension as E ×′ SO(E). Therefore the map above is an isomorphism of H ′q
with E ×′ SO(E).

Let Hq be the stabilizer of q in V ×′ Spin(1, D − 1). We shall show that Hq is
connected if D ≥ 4. Let x = e1e2 and at = exp tx. Since (e1, e1) = (e2, e2) = −1,
we have x2 = −1 and so at = cos t·1 + sin t·x. It is obvious that at fixes q and so
lies in Hq for all t. But for t = π we have aπ = −1. Thus H0

q contains the kernel of
the map from Spin(1, D− 1) to SO(1, D− 1)0, proving that Hq = H0

q . Thus finally

Hq = H0
q ' E ×′ Spin(E).

We have thus shown that for D ≥ 4, the little group of any point q of X+
0 is the

2-fold cover of the Euclidean motion group of `⊥/` where ` = Rq, exactly as in the
case D = 4.

1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl
equations. Two things remain to be done. The first is to construct the represen-
tations explicitly by describing the corresponding vector bundles. This will give a
description of the states in what is called the momentum picture, in which the mo-
mentum operators are diagonalized. The physicists also use frequently a description
where the states are represented by functions on spacetime and the spacetime group
acts naturally on them. Indeed such descriptions are very useful when treating in-
teractions of the particles with other systems such as an external electromagnetic
field. In the spacetime picture the states will be formally singled out by a wave
equation. This description can be obtained from the momentum space representa-
tion by taking Fourier transforms. Throughout this section Fourier transforms are
taken with respect to the Lorentz-invariant scalar product

〈x, p〉 =
∑

εµxµpµ

so that
û(x) =

∫
e−i〈x,p〉u(p)d4p.
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In particular, multiplication by pµ goes over to iεµ∂µ:

pµ −→ iεµ∂µ (∂µ = ∂/∂xµ).

Klein-Gordon equation. As our first example let us take the simplest particle,
one of mass m ≥ 0 and spin 0. It could be charged or neutral. Here there is no
internal space and so the bundle is trivial; the Hilbert space is

H±m = L2(X±m, µ
±
m)

where µ±m is the invariant measure on X±m. The action of the Poincaré group is as
follows:

(L(a)f)(p) = ei〈a,p〉f(p) (a ∈ R4)

(L(h)f)(p) = f(h−1p) (h ∈ SL(2,C)).

To take Fourier transforms of the f we view them as distributions on R4,

fdµ±m : ϕ 7−→
∫

P4
fϕdµ±m (ϕ ∈ D(P4))

where D(P4) is the space of smooth compactly supported functions on P4. It is not
difficult to show that these distributions, which are actually complex measures, are
tempered . Indeed, this follows from the easily established fact that the µ±m-measure
of a ball of radius R grows at most like a power of R, actually like R3 in this case.
Since the fdµ±m live on X±m it is immediate that they satisfy the equation

(p2
0 − p2

1 − p2
2 − p2

3 −m2) · (fdµ±m) = 0.

Taking Fourier transforms and writing ψ = ̂fdµm, we have

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 +m2)ψ = 0

which is the so-called Klein-Gordon equation. One can say that the states of the
scalar massive particle of mass m > 0 are the tempered solutions of the K-G equa-
tion. On the other hand, if we are given a tempered solution ψ of the K-G equation,
it is not difficult to see that ψ = û where u is a distribution which lives on Xm.
Whether the support of u is confined to one of the two orbits X±m is not easily
decidable in terms of ψ alone. At the same time, from the formula for the action
of the spacetime translations we see that the energy operator P0 is multiplication
by p0 and so the spectrum of P0 is ≥ m on H+

m and ≤ −m on H−m (the so-called
negative energy states). Nowadays, following Dirac (see below), the space H−m is
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viewed as antiparticle charged oppositely to the original particle described by H+
m.

We can combine the two Hilbert spaces H±m into one,

Hm = H+
m ⊕H−m = L2(Xm, µm)

where µm is the measure on Xm coinciding with µ±m on X±m, and allow the full
symmetry group

R4 ×′ O(1, 3)

to act on Hm. Thus the K-G spinless particle-antiparticle of mass m has this
complete symmetry group and the distributions ψ = û (u ∈ Hm) satisfy the K-G
equation. For any tempered solution ψ we have ψ = û where u lives on Xm; but
to define an actual state u must be a measure on Xm absolutely continuous with
respect to µm and du/µm ∈ f ∈ L2(Xm, µm), the L2-norm of this derivative being
the norm of the state.

Dirac equation. During the early stages of development of relativistic quantum
mechanics the K-G equation was the only equation that described relativistic par-
ticles. But Dirac was dissatisfied with this picture. For various reasons connected
with difficulties in defining probability densities and currents he felt that the wave
equation should be of the first order in time, and hence, as time and space coor-
dinates are to be treated on the same footing, it should be of the first order in all
variables. He therefore looked for an equation of the form

i

(∑
µ

γµ∂µ

)
ψ = mψ.

Of course the K-G equation was not to be abandoned; it was required to follow as
a consequence of this equation. Dirac therefore assumed that(∑

µ

γµ∂µ

)2

= ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 .

In this way the differential operator he was looking for would be a sort of square
root of the K-G operator. Dirac’s assumption leads to the relations

γ2
µ = εµ, γµγν + γνγµ = 0 (µ 6= ν)

where

εµ =
{

1 if µ = 0
−1 if µ = 1, 2, 3.
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It is now clear that the γµ cannot be scalars. Dirac discovered that there is a
solution with 4× 4 matrices and that this solution is unique upto a similarity. But
then the operator

D = i
∑
µ

γµ∂µ

has to operate on vector functions with 4 components so that the Dirac particle has
automatically an internal space of dimension 4! D is the famous Dirac operator.

We shall follow this procedure of Dirac in constructing the vector bundle on
the full orbit Xm. We look for objects γµ such that

(∑
µ

γµpµ

)2

=
∑

εµp
2
µ =

∑
µ

pµp
µ (pµ = εµpµ)

giving the relations

γ2
µ = εµ, γµγν + γνγµ = 0 (µ 6= ν).

We consider the algebra C generated by the γµ with the relations above. It is
called the Clifford algebra which is a generalization of the quaternion algebra. It
is of dimension 16, and is isomorphic to a full matrix algebra (this will follow
from our explicit formula for the γ’s below). Hence it has a unique irreducible
representation in dimension 4; any representation of C is a direct sum of copies of
this representation. The uniqueness of the 4-dimensional representation means that
if γµ, γ′µ are 4× 4 matrices satisfying the above relations, there is a 4× 4 invertible
matrix S such that

γ′µ = SγµS
−1

for all µ. S is unique up to a scalar multiplier because if S′ is another such, then
S′S−1 commutes with all the γ’s and so must be a scalar by Schur’s lemma. As a
useful application of this principle we note that given a set (γµ), the matrices (−γµ)
also satisfy the same relations and so there is S ∈ GL(4,C) such that

−γµ = SγµS
−1.

As γ2
0 = 1 and γ0 and −γ0 are similar, we see that γ0 has the eigenvalues ±1 with

eigenspaces of dimension 2 each. The same is true of iγj(j = 1, 2, 3). The γµ are the
famous Dirac gamma matrices. They are a part of a whole yoga of spinor calculus
(see Chapter 5).
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At the risk of being pedantic let us write Λ for the covering morphism from
SL(2,C) onto SO(1, 3)0. Consider now a variable point p = (pµ). Fix a set of 4× 4
gamma matrices γµ. Write pµ = εµpµ. If h = (hµν) ∈ O(1, 3) and q = hp, we have(∑

µ

pµγµ

)2

=
∑
µ

pµp
µ =

∑
µ

qµq
µ =

(∑
µ

qµγµ

)2

=

(∑
µ

pνγ
′
ν

)2

where
γ′ν =

∑
µ

hµνγµ.

Thus the γ′µ also satisfy the basic relations and hence there is S(h) ∈ GL(4,C) such
that

S(h)γµS(h)−1 =
∑
ν

γνhνµ

or, equivalently,

S(h)(p·γ)S(h)−1 = (hp)·γ, p·γ =
∑
µ

pµγµ.

From the uniqueness up to a scalar of S(h) and the calculation

S(k)S(h)γµS(h)−1S(k)−1 =
∑
ρ

γρkρνhνµ = S(kh)γµS(kh)−1

we see that S(k)S(h) and S(kh) differ by a scalar. So S defines a homomorphism
of O(1, 3) into the projective group PGL(4,C). We shall show presently that its
restriction to SL(2,C) comes from a representation of SL(2,C) and that this rep-
resentation is unique.

For this we shall exhibit a set of γ’s and compute the representation S explicitly.
Since we want to involve the full symmetry group O(1, 3) rather than its connected
component we shall first enlarge SL(2,C) to a group O(1, 3)∼ so SL(2,C) is the
connected component of O(1, 3)∼ and we have a natural 2-fold covering map Λ from
O(1, 3)∼ to O(1, 3). To do this notice that O(1, 3) is the semidirect product

O(1, 3) = O(1, 3)0 ×′ I

where
I ' Z2 ⊕ Z2 = {1, Is, It, Ist}
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the I’s being the inversions in space, time, and spacetime. Since SL(2,C) is simply
connected we can view I (uniquely) as acting on it compatibly with the covering
map onto O(1, 3)0. This means that for any inversion Ir(r = s, t, st), g 7−→ Ir[g] is
an automorphism of SL(2,C) such that Λ(Ir[g]) = IrΛ(g)Ir. We can then define

O(1, 3)∼ = SL(2,C)×′ I

and get a 2-fold cover
Λ : O(1, 3)∼ −→ O(1, 3).

Let us introduce the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then
σ2
j = 1, σjσk + σkσj = 0 (j 6= k).

If we then take

γ0 =
(

0 1
1 0

)
, γj =

(
0 σj
−σj 0

)
(j = 1, 2, 3)

where 1 refers to the 2× 2 identity matrix, then we have a set of γ’s satisfying the
relations we need. It is easy to check that the γµ act irreducibly.

Let us write p = (p1, p2, p3) and p = (p0,p) and let s = (σ1, σ2, σ3). Then,
writing p·s = p1σ1 + p2σ2 + p3σ3 we have

p·γ =
∑
µ

pµγµ =
(

0 p01 + p·s
p01− p·s 0

)
.

On the other hand

p01 + p·s =
(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
so that, with ∗ denoting adjoints,

g(p01 + p·s)g∗ = q01 + q·s, q = Λ(g)p (g ∈ SL(2,C)).

Now det(p01 + p·s) = p2 where p2 = p2
0 − p2

1 − p2
2 − p2

3 and so

(p01 + p·s)−1 = (p2)−1(p01− p·s)
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from which we get
g∗−1(p01− p·s)g−1 = q01− q·s.

From this we get at once that(
g 0
0 g∗−1

)(∑
µ

pµγµ

)(
g−1 0
0 g∗

)
=
∑
µ

qµγµ q = Λ(g)p.

Since this is precisely the defining relation for S(g) we get

S(g) =
(
g 0
0 g∗−1

)
.

We would like to extend S to include the inversions also. A simple calculation shows
that we can take

S(Is) = ±
(

0 I
I 0

)
, S(It) = ±

(
0 iI
−iI 0

)
, S(Ist) = ±

(
iI 0
0 −iI

)
.

The uniqueness of S follows from the fact that SL(2,C) has only the trivial repre-
sentation in dimension 1. Notice that with any choices S(Is)S(It) = −S(It)S(Is)
so that these choices always define the unique irreducible projective representation
of I ' Z2 ⊕ Z2 in dimension 2 tensored by C2. A simple calculation shows that

S(Ir[g]) = S(Ir)S(g)S(Ir)

since both sides are examples of a representation S′ satisfying the relations

S′(g)(p·γ)S′(g)−1 = (Λ(Ir[g])p)·γ.

If we define
S(Irg) = S(Ir)S(g) (r = s, t, st, g ∈ SL(2,C))

we see that S is a double-valued representation of O(1, 3)∼ that restricts on SL(2,C)
to a representation.

Lemma 1.6.1 Let γµ be defined as above. Then there is a double-valued (d.v.) rep-
resentation S of O(1, 3)∼ in dimension 4 restricting to a representation on SL(2,C)
such that

S(h)(p·γ)S(h)−1 =
∑
µ

qµγµ (q = Λ(h)p).
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The restriction of S to SL(2,C) is unique and is given by

S(g) =
(
g 0
0 g∗−1

)
.

The d.v. representation S defines a d.v. action of O(1, 3)∼ on the trivial bundle

T = X ×C4 (X = X+
m)

by
g, (p, v) 7−→ (Λ(g)p, S(g)v).

Define now
Dm(p) =

{
v ∈ C4

∣∣∣ (p·γ) v = mv
}
.

If p = Λ(g)p0 where p0 is the base point with coordinates (m, 0, 0, 0), we have
S(g)(mγ0)S(g)−1 =

∑
µ pµγµ. Hence

∑
pµγµ is semisimple for all (pµ) with∑

µ pµp
µ = m2 > 0 and its eigenspaces for the eigenvalues ±m are of dimension 2.

In particular all the spaces Dm(p) have dimension 2 and

S(g)[Dm(p)] = Dm(Λ(g)p).

This shows that the spaces Dm(p) define a subbundle Dm of T of rank 2, stable
under the d.v. action of O(1, 3)∼ given by

(p, v) 7−→ (Λ(g)p, S(h)v) (h ∈ O(1, 3)∼).

One may call Dm the Dirac bundle on Xm.

The stabilizer of ±p0 = (±m, 0, 0, 0) within SL(2,C) is SU(2) and it acts by(
g 0
0 g

)
(g ∈ SU(2)).

It commutes with γ0 and so leaves invariant the spaces Dm(±p0) where it acts like
the representation 2. The standard scalar product on C4 is invariant under SU(2)
and so induces an invariant scalar product on Dm(±p0). The inversions Ir either
preserve the spaces and are unitary on them (r = st) or exchange them in a unitary
manner (r = s, t). We may then transport this scalar product to all the fibers
Dm(±p) on Xm covariantly. We thus obtain a Hermitian bundle on Xm on which
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the action of SL(2,C) is unitary. The inversions preserve this Hermitian structure
and so the action of the entire group O(1, 3)∼ is unitary.

The Hilbert space of square integrable sections of the bundle Dm then carries
a projective unitary representation of O(1, 3)∼ whose restriction to SL(2,C) is

Lm,1/2 := L+
m,1/2 ⊕ L

−
m,1/2.

Identifying sections s with measures sdµm and taking Fourier transforms we get the
Dirac equation

i

(∑
µ

εµγµ∂µ

)
ψ = mψ

or

i

(∑
µ

γµ∂µ

)
ψ = mψ.

As before we shall regard Hm as describing the particle-antiparticle of mass m.

Write any section ψ of T in the form

ψ =
(
ψ1

ψ2

)
, ψj : Xm −→ C2.

Since
(p01 + p·s)(p01− p·s) = p21

it follows that (
ψ1(p)
ψ2(p)

)
∈ Dm(p)⇔ ψ2(p) = m−1(p01− p·s)ψ1(p).

Hence (
v1

v

)
7−→ v1

gives a bundle isomorphism of Dm with the trivial bundle Vm = Xm ×C2 in such
a manner that the action of the Poincaré group on Dm goes over to the action L′m
on Vm defined by

(L′m(u, g)ψ1)(p) = ei〈u,p〉gψ1(Λ(g)−1p).

The spinor field ψ1 which is a section of the SL(2,C)-bundle Vm is usually called a
2-component spinor . It was first treated systematically by van der Waerden.
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Holes and antimatter. Let us go back to the description of the states of the
electron by the Dirac wave equation

i
∑
µ

γµ∂µψ = mψ.

The Hilbert space Hm carries a (projective) action of the full group of automor-
phisms of Minkowski spacetime. Now Hm = H+

m ⊕ H−m and it is clear as in the
case of the K-G equation that the spectrum of the energy operator P0, which is
multiplication by p0, is > 0 on H+

m and < 0 on H−m. The states in H±m are usually
called the positive and negative energy states. As long as the electron is free its
state will be in H+, but as soon as it is placed in a magnetic field, transitions to
negative energy states cannot be excluded. That this does not happen was a big
problem to be solved at the time Dirac proposed his equation. It was in order to
explain the meaning of the negative energy states that Dirac invented his hole the-
ory which asserts that all the negative energy states are occupied, and transition
to them is possible only when one of these states becomes available for occupation
as a hole. The holes were then interpreted by him as positive energy particles of
charge opposite to that of the electron. This led him to predict the existence of a
new particle, the positron. Shortly after Dirac made his prediction, the positron was
discovered by Anderson. Eventually, with the discovery of the antiproton and other
antiparticles it became clear that all particles have their antiparticles which are
constituents of antimatter. (However the overwhelming preponderance of matter
over antimatter in the universe probably depends on conditions that were prevalent
in the early evolution of the universe.) The discovery of antimatter is regarded by
physicists as one of the greatest achievements of physics of all time and consequently
the stature of Dirac in the physics pantheon rivals that of Newton and Einstein.

As an interesting historical footnote, when Dirac proposed that particles of
positive charge should correspond to the holes he thought that these should be
protons which were the only particles of positive charge known at that time (1929c);
it was Weyl who pointed out that symmetry requirements force the hole to have
the same mass as the electron and so the new particle cannot be the proton but
a positively charged particle with the same mass as the electron, nowadays called
the positron. Eventually this prediction of Dirac was confirmed when Anderson
exhibited the track of a positron. In retrospect one knows that at the time of
Anderson’s discovery Blackett apparently had three tracks of the positron in his
experiments but was hesitant to announce them because he felt more evidence
was necessary. Anderson at Caltech had only one track and had no hesitation in
announcing it!

Zero mass bundles and equations. We shall now construct the bundles for the
representations L±0,N .
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Maxwell equation for the photon. We consider first the case N = 2. We start
with the tangent bundle F of the cone X+

0 . The action of the Lorentz group on
the cone lifts to an action on F . The tangent space at (1, 0, 0, 1) consists of all
(ξ0, ξ1, ξ2, ξ0). The ambient metric on this space is −(ξ2

1 + ξ2
2) which is ≤ 0 but

degenerate, and the null vectors are multiples of (1, 0, 0, 1). In the basis

v0 = (1, 0, 0, 1), v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0)

the action of the little group at p0 = (1, 0, 0, 1) is(
eiθ b
0 e−iθ

)
: v0 7→ v0,

(
v1

v2

)
7→
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
v1

v2

)
.

Let R be the subbundle of F whose fiber at p is the line Rp; this is the line bundle
whose fiber at p is the space of null vectors at p for the induced metric on the
tangent space Fp at p. Let F+ be the quotient bundle F/R. The metric on the
fibers of F then descends to a positive definite metric on the fibers of F+ and the
representation carried by the square integrable (with respect to µ+

0 ) sections of F+

is L0,2 ⊕ L0,−2. We may regard the sections of F+ as vectors a = (aµ) with 4
components satisfying ∑

εµpµaµ = 0

but identifying sections a = (aµ) and a′ = (a′µ) by

a ∼ a′ ⇐⇒ p ∧ (a− a′) = 0.

Taking Fourier transforms and writing Aµ = εµâµ, we get

DAµ = 0, div LA = 0

with
A ∼ A′ ⇐⇒ d(A−A′) = 0.

These are just the Maxwell equations in the Lorentz gauge. It is thus natural to
call L0,2⊕L0,−2 the photon representation. Thus the one particle photon equations
are already the Maxwell equations. However one must remember that the Maxwell
equations deal with real vector potentials and the photon equations deal with com-
plex potentials. But because the tangent bundle is real, the real sections define a
real form of L0,2 ⊕ L0,−2, and so our identification of the two equations is quite
reasonable. The helicity of the photon is ±1 and the two values correspond to left
and right circularly polarizations.
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The fact that the equations describing the photon are the same as Maxwell’s
equation is very important. In Dirac’s theory of radiation he quantized the clas-
sical wave equation of Maxwell and found that the states of the (free) quantized
electromagnetic field thus obtained were the same as one would obtain by treating
a system of photons with Bose-Einstein statistics, i.e., by replacing the one-photon
Hilbert space by the symmetric algebra over it (see Section 7 below). This was then
interpreted by him as an expression of the wave-particle duality of light. Since the
Maxwell equations are already the equations describing a free photon, the process
of going from a single photon to a system of several photons was called the second
quantization.

Weyl equation for the neutrino. One can make m = 0 in the Dirac bundle and
get the bundle N on the light cone. However more care is necessary because for
p ∈ X0 = X + 0+ ∪X−0 the operator p·γ is nilpotent: (p·γ)2 = 0. Let

N(p) = {v ∈ C4 | (p·γ)v = 0}.

For p ∈ X0, p·γ is conjugate by an element of SL(2,C) to ±(γ0 + γ3). But (γ0 +
γ3)2 = 0 and its null space is spanned by e0, e3 in C4. Hence dim(N(p)) = 2. Thus
the N(p) define a smooth subbundle N of X0 ×C4 stable under O(1, 3)∼.

For p ∈ X0 we have(
v−
v+

)
∈ N(p)⇔ (p01± p·s)v± = 0 (v± ∈ C2).

We write
`±(p) = {v ∈ C2 | (p01± p·s)v = 0}.

Since we have, for g ∈ SL(2,C),

g(p01 + p·s)g∗ = q01 + q·s, g∗−1(p01− p·s)g−1 = q01− q·s (q = Λ(g)p),

it follows that

v ∈ `−(p)⇐⇒ gv ∈ `−(Λ(g)p), v ∈ `+(p)⇐⇒ g∗−1v ∈ `+(Λ(g)p).

This shows that the `±(p) define line bundles W0,± which are homogeneous for the
action of SL(2,C) defined by

(W0,−) : (p, v) 7−→ (Λ(g)p, gv), (W0,+) : (p, v) 7−→ (Λ(g)p, g∗−1v).
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We then have an isomorphism

`−(p)⊕ `+(p) ' N(p), (u, v) 7−→
(
u
v

)
which gives a SL(2,C)-equivariant bundle isomorphism

W0,− ⊕W0,+ ' N.

We shall identify W0,± as subbundles of N and denote their restrictions to X±0 by
W±

0,±. The bundles W±
0,± may be appropriately called the Weyl bundles since the

equations satisfied by the Fourier transforms of their sections were first discovered
by Weyl and proposed by him as the equations that the neutrinos should satisfy.

Let us compute the little group actions at ±p0 = ±(1, 0, 0, 1). The little group
at p0 is (

a b
0 a

)
(|a| = 1).

Further `±(p0) are spanned by e3 and e0 respectively, and the actions are easily
computed to be (

a b
0 a

)
: v 7−→ a∓v.

So the representations defined by the W±0,±, the restrictions of W0,± to X±0 , are
L±0,∓1. The calculations are the same at −p0. The restriction to the one-dimensional
spaces `±(±p0) of the standard norm in C4 transported by the group action now
gives the invariant Hermitian structures on the Weyl bundles which is invariant
under the action of the Poincaré group.

It must be noticed that the Weyl bundles are invariant under spacetime inver-
sion but not invariant under the action of either space or time inversions. In fact
we have

Is, It : W±
0,± −→W±

0,∓, Ist : W±
0,± −→W±

0,±.

Let us now take a closer look at the elements of `±(p). We have

u ∈ `+(p)⇐⇒ (p·s)u = −p0u.

For p0 > 0 or p0 < 0 respectively we have p0 = ±|p| and so we have

u ∈ `+(p)⇐⇒ (p·s)u =
{
−|p|u if p0 > 0
+|p|u if p0 < 0
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showing that the direction of the spin is antiparallel to the momentum for p0 > 0 and
parallel to the momentum for p0 < 0. Similarly for u ∈ `+(p) we have the spin and
momentum are parallel for p0 > 0 and antiparallel for p0 < 0. Let us refer to the case
where the spin and momentum are antiparallel (resp. parallel) as lefthanded (resp.
righthanded). It follows that the bundles W+

0,+, W−
0,+ represent respectively the

lefthanded neutrinos and righthanded antineutrinos, while W+
0,−, W−

0,− represent
respectively the righthanded neutrinos and lefthanded antineutrinos.

By taking Fourier transforms of sections of these bundles we get the 2-
component Weyl equations for the neutrino-antineutro pairs, namely

(∂0 −∇·s)ψ+ = 0

for the wave functions of the leftneutrino-rightantineutrino pairs and

(∂0 +∇·s)ψ− = 0

for the wave functions of the rightneutrino-leftantineutrino pairs. Under space in-
version the two equations are interchanged.

Weyl proposed these 2-component equations for the zero mass spin 1/2 par-
ticles in 1929. At that time they were rejected by Pauli because of their lack of
invariance with respect to space inversion. Indeed it was always a basic princi-
ple that the wave equations should be invariant under all Lorentz transformations,
not just those in the connected component. In particular, invariance under space
inversion, also called parity conservation, was demanded. In the mid 1950’s, in
experiments performed by Wu following a famous suggestion by Yang and Lee that
the neutrinos did not have the parity conservation property, it was found that the
neutrinos emitted during beta decay had a preferred orientation. Experimental ev-
idence further indicated that the spin is always antiparallel to the momentum for
the neutrinos so that the neutrinos are always lefthanded . After Wu’s experiment,
Landau and Salam proposed that the Weyl equation, namely

(∂0 −∇·s)ψ± = 0,

for the lefthanded neutrino-righthanded antineutrino pairs be restored as the equa-
tion satisfied by the neutrino. It is this equation that now governs massless particles,
not only in Minkowski spacetime but also in curved spacetime.

It is clear from the entire discussion that in the course of quantization, classical
particles acquire internal spaces and symmetries (little groups). Thus classically
only the photons travel with the speed of light but quantum theory allows many
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more, such as the neutrinos (although there are some recent indications that the
neutrinos have a very small but positive mass).

The direct approach to wave equations of L. Schwartz and Hilbert spaces
of distributions on spacetime. The method of first getting the bundles in mo-
mentum space and then obtaining the wave equations by Fourier transforms that
we have followed above is indirect. It is natural to ask if one can construct the wave
equations and the Hilbert spaces directly on spacetime. This was carried out by L.
Schwartz in a beautiful memoir22. Schwartz determined all Hilbert subspaces H of
the space D′(M) of distributions on Minkowski spacetime M , with scalar or vector
values such that

(i) The natural inclusion H ↪→ D′(M) is continuous.
(ii) The natural action of the Poincaré group on D′(M) leaves H invariant and

induces a unitary representation on it.

Not surprisingly his classification is the same as the Wigner one. However by
focussing attention on distributions on spacetime his analysis reveals how restrictive
the requirements of Hilbert structure, unitarity and Poincaré invariance are. For
instance translation invariance already implies that all elements of H are tempered.

The analysis of Schwartz does not exhaust the subject of wave equations. In-
deed, the same representation is obtained by wave equations which look very dif-
ferent formally, and the different versions are important in interpretation. One can
formulate the general notion of a relativistic wave equation and try to classify them.
Many people have worked on this problem and the results in some sense are still
not definitive. For a discussion of these aspects see23.

1.7. Bosons and fermions. The concept of bosons and fermions arises when one
wishes to treat a system of identical particles quantum mechanically. If Si(1 ≤ i ≤
N) are quantum systems, then the natural way to represent the states of S, the
system composed of the Si, is to take its Hilbert space as H1 ⊗ . . . ⊗ HN where
Hi is the Hilbert space of Si. Thus if Si is in the state ψi, then S is in the state
ψ1 ⊗ . . .⊗ ψN . However if Si = S0 is the systems of a particle such as the electron
or the photon, the quantum theoretic description of S must take into account the
purely quantum theoretic phenomenon that the particles are indistinguishable. For
instance, the theory must allow for the Pauli exclusion principle according to which
two electrons cannot occupy the same state. It was found that the correct way to
describe an N -electron system is to use the space ΛN (K) of antisymmetric tensors
in K⊗N , K being the space of states of a single electron. Similarly, in dealing with
a system of N photons the correct space was found to be SN (K), the space of
symmetric tensors in K⊗N where K is now the space of states of a single photon.
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Let P a, P s be the orthogonal projection from the full tensor product onto the space
of antisymmetric and symmetric tensors. If ψ is in K, P a(ψ ⊗ . . .⊗ ψ) is the state
in which all the electrons are in the state ψ, and as this is 0 for N ≥ 2 we see that
this model is compatible with the exclusion principle. But for photons ψ ⊗ . . .⊗ ψ
is already symmetric and nonzero and represents the state where all the photons
are in the state ψ. There is nothing which forbids this, and in fact this possibility
is crucial in the construction of the laser.

Experimentally it has been found that all particles belong to one of these
two categories, namely, those whose N -particle systems are modeled by ΛN (K),
and those whose N -particle systems are modeled by SN (K). The former type of
particles are called fermions after the great Italian physicist E. Fermi, and the latter
kind bosons, after the great Indian physicist S. N. Bose.

Let us now look more closely into the mathematical description of systems of
identical particles without assuming anything except the indistinguishability of the
particles. Let K be the Hilbert space of states of a single particle. If there are N
particles, then to start with the Hilbert space of states of the N–particle system
may be taken as HN = K⊗N . This space carries an obvious action of the group SN ,
the group of permutations of {1, 2, . . . , N}. The indistinguishability of the particles
may then be expressed by saying that the observable algebra is the centralizer of
SN , the algebra O of all bounded operators commuting with SN . We shall now
decompose HN with respect to the action of SN . For any irreducible representation
π of SN of dimension d(π) let Pπ be the operator

Pπ =
d(π)
N !

∑
s∈SN

χπ(s)conjs

where we write s for the operator corresponding to s and χπ is the character of π.
It is easy to see that Pπ is a projection, and in fact, it is the projection on the span
of all subspaces that transform according to π under the action of SN . Let

HN [π] = PπHN .

If M is any subspace of HN transforming according to π and L ∈ O, then L[M ]
is either 0 or transforms according to π and so HN [π] is stable under L. Thus
any element of the observable algebra O commutes with each Pπ. We now have a
decomposition

HN [π] ' V [π]⊗Kπ

where:

59



(i) V [π] is a model for π.
(ii) An operator of HN [π] lies in O if and only if it is of the form 1⊗A where

A is an operator of Kπ.

Hence the observable algebra O has the decomposition

O =
⊕
π

(1⊗Oπ)

where Oπ is the full algebra of all bounded operators on Kπ. This is a situation
which we have discussed earlier. After that discussion it is clear that the states may
now be identified with ⋃

π

P(Kπ).

We thus have superselection sectors corresponding to the various π. There will be
no superposition between states belonging to different sectors. For fixed π if we
take the Hilbert space Kπ as the Hilbert space of states we get a model for treating
N identical particles obeying π-statistics.

The group SN has two basic representations: the trivial one and the alternating
one, the latter being the representation in dimension 1 that sends each permutation
s to its signature sgn(s). We then get the two projections

1
N !

∑
s

s,
1
N !

∑
s

sgn(s).

The corresponding spaces HN [π] are respectively

SN (K), ΛN (K)

where SN (K) is the space of symmetric tensors and ΛN (K) is the space of antisym-
metric tensors. In physics only these two types of statistics have been encountered.
Particles for which the states are represented by SN (K), the bosons, are said to obey
the Bose-Einstein statistics, while particles for which the states are represented by
ΛN (K), the fermions, are said to obey the Fermi-Dirac statistics.

The essential question at this stage is the following. Can one tell, from the
properties of a single particle, the type of statistics obeyed by a system consisting
of several particles of the same type? It turns out, and this is a consequence
of special relativity, that the statistics are completely determined by the spin of
the particle. This is the so-called spin-statistics theorem in relativistic quantum
field theory; it says that particles with half-integral spin are fermions and obey
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the statistics corresponding to the signature representation (Fermi-Dirac statistics),
while particles with integral spin are bosons and obey the statistics corresponding
to the trivial representation (Bose-Einstein statistics). Thus for a system of N
particles with half-integral spin we use ΛN (K) as the Hilbert space of states and
for a system of N particles with integral spin we use SN (K) as the Hilbert space of
states. This distinction is of crucial importance in the theory of superconductivity;
properties of bulk matter differ spectacularly depending on whether we are dealing
with matter formed of particles of integral or half-integral spin.

1.8. Supersymmetry as the symmetry of a Z2–graded geometry. In a
quantum field theory which contains interacting particles of both spin parities, the
Hilbert space K of 1-particle states has a decomposition

K = K0 ⊕K1

where K0 (resp. K1) is the space of states where there is one boson (resp. one
fermion). The N -particle space is then

HN =
⊕

1≤d≤N

Sd(K0)⊗ ΛN−d(K1).

The full Hilbert space in which the particle number is not fixed is then

H = S(K0)⊗ Λ(K1).

People slowly realized that it would be advantageous to have a single unified frame-
work in which there would be no necessity to treat separately the bosonic and
fermionic cases∗ and that the unified treatment would result in increased clarity
and understanding. Eventually the algebraic aspects of such a unified theory came
to be seen as a linear theory where all (linear) objects are systematically graded
by Z2, just as the Hilbert space of 1-particles above was graded into bosonic and
fermionic parts. In the meantime, in the early 1970’s, several groups of physicists
(Gol’fand, Likhtman, and Volvov, and Akulov, Zumino, Wess) almost simultane-
ously came up with a notion of infinitesimal symmetry of such graded spaces, and
viewed it as a type of symmetry not encountered hitherto, namely a symmetry that
sent bosonic states into fermionic states and vice versa. These symmetries were
called supersymmetries, and remarkably, they depended on parameters consisting
of both usual variables and variables from a Grassmann algebra. The appearance

∗ Separate but equal facilities are inherently discriminatory!
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of the Grassmann or exterior algebra is related to the circumstance that in quan-
tum field theory the Fermi fields obey not commutation rules but anticommutation
rules. It was soon realized (Salam and Strathdee) that a systematic theory of spaces
with usual and Grassmann coordinates could be developed in great depth, and that
classical field theory on these superspaces would lead, upon quantization, to su-
persymmetric quantum field theories and gauge theories (Wess, Zumino, Ferrara,
Salam, Strathdee). Then in 1976 a supersymmetric extension of Einstein’s theory of
gravitation (supergravity) was discovered by Ferrara, Freedman and van Nieuwen-
huizen, and a little later, by Deser and Zumino. With this discovery supersymmetry
became the natural context for seeking a unified field theory24.

The infinitesimal supersymmetries discovered by the physicists would become
the super Lie algebras and their corresponding groups the super Lie groups. A sys-
tematic theory of super Lie algebras culminating in the classification of simple super
Lie algebras over an algebraically closed field was carried out by V. Kac shortly after
the first papers on supergroups and algebras appeared in the physics literature25. Of
course as long as one can work with the infinitesimal picture the theory of super Lie
algebras is perfectly adequate and it is immediately accessible because it is a linear
theory and is modeled after the well-known theory of simple Lie algebras; but for a
fuller understanding the deeper (nonlinear) theory of supermanifolds and super Lie
groups cannot be evaded. First introduced by Salam and Strathdee, the concept
of supermanifolds and super Lie groups was developed by the physicists. Among
mathematicians one of the earliest pioneering efforts was that of F. A. Berezin26

who tried to emphasize the idea that this was a new branch of algebra and analysis.
Among the important more recent works exposing the theory for mathematicians
were the articles and books of B. De Witt, D. Leites, and Yu. Manin as well as the
expositions of P. Deligne and J. Morgan27, and the lectures of D. Freed28.

Informally speaking, a supermanifold is a manifold in which the coordinate
functions are smooth functions of the usual coordinates as well as the so-called odd
variables. The simplest example of this is Rp on which the coordinate functions
form the algebra C∞(Rp) ⊗ R[θ1, . . . , θq] where θj(1 ≤ j ≤ q) are odd variables
which are anticommuting, i.e., satisfy

θjθk + θkθj = 0 (1 ≤ j, k ≤ q).

Such a space is denoted by Rp|q, and the general supermanifold is obtained by gluing
spaces which locally look like Rp|q. While this definition imitates that of smooth
manifolds with obvious variants in the analytic and holomorphic categories, there is
a striking difference: the odd variables are not numerical in the sense that they all
have the value 0. So they are more subtle, and a supermanifold is more like a scheme
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of Grothendieck on which the rings of the structure sheaf have nilpotent elements;
indeed, any odd element in the structure sheaf of a supermanifold is nilpotent. So
a supermanifold is a generalization of a manifold at a fundamental level. However
the techniques for studying supermanifolds did not have to be freshly created; one
could simply follow the ideas of Grothendieck’s theory of schemes. Supermanifolds
are more general than schemes because the coordinate rings are not commutative
but supercommutative, a mildly noncommutative variant of commutative rings. If
we drop the smoothness requirement in a supermanifold we obtain a superscheme
which is the most general geometric object yet constructed. Super Lie groups, and
more generally super group schemes, are the symmetries of these objects.
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