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1. Introduction. It is my aim here to speak about George W. Mackey,
discuss some of his ideas and their impact on the mathematics of his time,
and its continuing influence on the themes and concerns of our own era,



a generation and more removed from his. His influence went beyond the
immediate circle of his students and their students, and percolated to a
very wide circle of mathematicians. The themes he initiated played a
very important role in shaping the agenda of a large part of contemporary
mathematics—more precisely, functional analysis, representation theory of
general locally compact groups, ergodic theory, and mathematical physics,
all under the umbrella of representation theory of general locally compact
groups and their homogeneous spaces. He was a giant in a milieu that
included men like Gel’fand, Godement, Harish-Chandra, Mostow, Selberg,
Langlands, Kostant, and a host of others, a milieu in which he more than
held his own and made beautiful and permanent discoveries that rivaled
those of his contemporarries, and, if I may say, of their successors.

In the beginning of his career in the early and mid 1940’s he worked in
functional analysis, especially the theory of locally convex topological vec-
tor spaces which was just emerging at that time. He was the co-discoverer,
along with my late friend and colleague, Richard Arens, of the so-called
Mackey-Arens topology. But soon he gravitated towards unitary represen-
tation theory and the mathematics of quantum theory. In his own mind
he probably saw them not as two distinct disciplines but as two facets of a
complete picture. Starting from the late 1940’s and reaching into the mid
1960’s, he made fundamental contributions to the theory of unitary rep-
resentations of locally compact groups, going beyond the classical theory
where the groups were either compact or abelian. When everyone else was
trying to work out the theory on Lie groups and going for intensive and
detailed understanding, he opted for the broad picture and tried to see
what can be done for the category of all locally compact second countable
groups and their homogeneous spaces. He discovered the surprising and
rather profound fact that the locally compact category could be better un-
derstood as a subcategory of the Borel category (of standard Borel groups
and their homogeneous standard Borel spaces), and pioneered the measure
and operator theoretic approach to geometry and analysis on homogeneous
spaces that later found fuller expression in the works of Margulis, Zimmer,
Ratner, Popa, and a host of others. His ideas in ergodic theory and the
ergodic aspects of group actions were the first sightings of a huge new con-
tinent that Connes explored later—the theory of non commutative differ-
ential geometry. He summarized his points of view and achievements in his
American Mathematical Society Colloquium lectures given in Stillwater,
Oklahama in 1961 [Mal], although earlier versions had been circulating in
the form of his famous “Chicago Lectures” [Ma2] subsequently published
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by the University of Chicago Press. In addition he published two small
volumes in Benjamin on Induced representations and on Foundations of
Quantum Mechanics [Ma3], as well as a widely circulated set of notes on
classical mechanics, quantum mechanics, and representation theory that
formed the basis of the education of a huge number of mathematicians
including myself. I still remember my excitement when, as a visiting as-
sistant professor in the University of Washington in Seattle, I came across
these notes, and how much of an impact the global and universal view of
these subjects presented in these notes had on my thinking. In his later
years he wrote several expositions of his point of view, pedagogical as well
as historical, which are very valuable for the beginner and expert alike
[Mad].

His students and their students carried on the development of his
ideas discovering new things in the process. I was not a student of his in
the technical sense but had a deep interaction with him at a very early
point of my career that started me on what I should do. He was aware
of this and told me once that he counted me as a “half student”. The
notion of a half student was never clarified, but I always took it to mean
that I had the freedom to work in whatever area I wanted! It was in the
summer of 1961 that I first met him. I was a visiting assistant professor
at the University of Washington in Seattle, and he came there to give
the Walker Ames lectures. He lectured every day of the week for four
weeks, with ten lectures on representation theory and the remaining ten
on quantum theory. The lectures were a trial run for his Colloquium
lectures at Stillwater that were to be given later that summer. It was a
great opportunity for me to see a great master at work, and that encounter
shaped my entire mathematical career. I became a great admirer of his
way of thinking that encompassed a broad picture of mathematics and
physics, and emphasized concepts above brute calculation and ideas above
technique. I was deeply impressed by the curiosity as well as humility with
which he viewed the role of mathematics and the mathematician in the
understanding, description, and interpretation of the world of phenomena
around us. I had a chance to discuss things with him every day and he
gave me lots of advice. I remember one such with great vividness. We
were talking about the work of Harish-Chandra and he told me that it
was based on a “terrifying technique of algebra, especially Lie algebras”,
and that if I were ambitious it should form my starting point. No one
has given me better advice since then. It was also under the influence of
his lectures that I wrote my paper on the logic of quantum mechanics [Va
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3] and subsequently the book [Va 2] on the geometry of quantum theory.
Years later, when I returned again to quantum foundations, my work was
still animated by the themes he had introduced [CTV] [CCTV1].

In all my encounters with him there was never any intrusive manifes-
tation of the gap in age, experience, and achievements between us. About
him there was a certain transparency that was almost child-like, in the
presence of which all barriers melted away. With him, in a very real and
rare sense, what you saw was what you got.

In the following sections I shall give a brief and impressionistic tour
of some parts of his world of ideas with which I have some familiarity, and
hope to convince the reader of their power and vitality even in the new
frontiers of mathematics and physics today.

2. Stone-Von Neumann theorem, systems of imprimitivity, and
the imprimitivity theorem. The first major contribution of Mackey
to representation theory was to the problem of the uniqueness of the
Schrodinger representation of the Heisenberg commutation rules in quan-
tum mechanics. Actually the Heisenberg rules are infinitesimal; the global
commutation rules which represent the integrated version of these rules
were obtained by Weyl (almost at the same time as Born, Heisenberg,
and Jordan obtained their results; see the very interesting account of the
concerned events in van der Waerden’s historical account [vW], pp. 52—
54). In the simplest case for the kinematics of a single quantum particle
moving on a line, whose position and momentum operators are ¢ and p,
the Heisenberg rule is

[p,q] = —1 (we assume that b = 1)
while the Weyl rule is
eiapeibq — eiabeibqeiap.

If we take the Hilbert space of states of the particle to be L?(dq) and ¢, p
as the (self adjoint)operators

q:9(q) —qv(e), p:y(g)— —i—,
then both the Heisenberg and Weyl rules are satisfied, with

¢ (q) — (gt a), e u(g) — ().



Weyl [W] (see Chapter III, §16) realized that the crucial question now is
whether this is the only choice possible. Since we can replace everything
by a system which is the direct sum of a number of copies of this one, the
uniqueness has to be asserted under the assumption that the system is
irreducible(in an obvious sense). Weyl had the very fruitful idea that the
correct set up was that involving two abelian groups in duality, say A, B
with
X : (a,b) — x(a,b)

as the duality map into the unit circle, and a pair of unitary representations
U,V of A, B respectively, satisfying

U(a)V(b) = x(a,b)V(b)U(a) ((a,b) € A x B).
The simplest case of interest to physics is when
A=B=R, x(a,b) = ',

He could not do this case but settled for proving the uniqueness in the
case ‘
A=B=1Zy:=Z/NZ  x(a,b) = > /N,

Stone [St] and Von Neumann [vN1] proved the uniqueness directly when
A = B = RN with x(a,b) = eH@rbiFFanbn) Mackey’s 1949 paper [Ma5]
showed that the theorem (properly formulated) is true when A = G is an
arbitrary locally compact abelian second countable group, with B = @,
the dual group of GG, and x the natural duality between a group and its
dual group. The unitary representations U, V respectively of G, G act on
a Hilbert space H and satisfy

U@)V(€) = (a,§)V(OU(a)  ((a,§) € G xG).

Mackey’s theorem was that every such pair (U, V') is equivalent to a direct
sum of copies of the unique irreducible system where

H =L*G,dq), Ul(a):v¥(q)— (qg+a), V(&) :v(q) — (g,)9(q).

Here dq is a Haar measure on GG. Mackey’s work thus placed the themes of
Weyl and Stone-von Neumann in their natural generality. It is remarkable
that he was able to do something highly non trivial in a theme already
examined in some depth by Weyl, Stone, and von Neumann.
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Although the problem is completely symmetric between G and CAv’, in
practice one breaks this symmetry and starts by representing V' (say) in
diagonal form. This means that we write

~

V() = /G (@.6)dP(q) (€€ Q)

where P is the uniquely determined spectral measure of V. The relation
between U and V' then becomes the relation

U(a)PeU(a)™ ' = Pp_q (%)

between U and P. Note that both U and P are now defined on G, thus
eliminating G from the picture entirely, and hence also the assumption
of commutativity on G. Now P can be explicitly written down using the
Hahn-Hellinger-Wecken-Nakano theory of spectral multiplicity [Hal]. For
a o-finite measure p on G let us write P* for the projection valued measure
in L?(u) given by P& : f(q) — xr(q)f(g) where xg is the characteristic
function of the Borel set E. Then the spectral multiplicity theory asserts
that
P ~n P @nyP*? @ ...

where the measures p1, fio, . .. are mutually orthogonal to each other and
ni,Na, ... are distinct integers, 1 < n; < oo (note that oo is a possible
value). The measures p; are unique up to mutual absolute continuity.
The relation (%) then implies that under translations by elements of G,
for each j, the measure p; is changed into another mutually absolutely
continuous with respect to it (or as we say, in the same measure class).
But, and this is the first key observation of Mackey, there is just one
measure class on G invariant with respect to all translations, namely that
of the Haar measure dq, so that we can write

P ~ npP% (1 <n<o0).

If H,, is a Hilbert space of dimension n, we can take nP% as the projection
valued measure 1 ® P% on ‘H,, ® L?(dq). We still have to determine all U
satisfying (xx) with P as above. Certainly

U(a): f(q)— fla+a)  (f €Hn,®L*(dg))

is a possibility and we write
Ua) = C(a)U%a).
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The representation property for U now gives the relations
O(Gl + CLQ) = C(CLl)[Uo(a1)0<a2)UO(6L1)_1]

showing that C' becomes a cocycle with values in the unitary group of
H, @ L*(dq) with all C(a) commuting with P. Ignoring measure theoretic
subtleties we may therefore write

Cla) : 9@ flq) — Cla,q)g® flq) (9 € Hn, f € L*(dq))

where C(a, ) lies in the unitary group of H,, for almost all g. The cocycle
property of C' is expressed by the identity

C(a1 + ag,CLg) = C(al,ag)C(ag,al + a3).
Taking a; = q,a2 = a,a3 = 0,b(q) = C(q,0) we get

C(a,q) = b(q)""b(a+q).

If we write T for the automorphism

T:9® f(q) — b(q)g @ f(q)

then
T7'U%a)T = Ul(a).

The irreducibility then forces n = 1 and we get the uniqueness of the
Schrodinger representation. In his paper Mackey essentially gave this
proof but with meticulous attention paid to the measure theoretic sub-
tleties.

We have already remarked that this is really a story of a pair (U, P)
defined on G satisfying (x*), where P is a projection valued measure on
G and U is a unitary representation of G. He almost immediately realized
that P need only be defined on a space X which has a G-action to make
sense of (xx). He thus obtained what one may now call a representation
of a G-space X, namely, a pair (U, P) where P is a projection valued
measure on a second countable locally compact space X on which G acts
continuously, G being a second countable locally compact group, and U is
a unitary representation of G, everything on a Hilbert space H, satisfying
the relation

U(g)PpU(g9)~" = Pyp (g € G,E a Borel set C X).
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The previous case is obtained when X = G with G abelian and acting by
translations. This generalization proved very fortuitous as well as fertile
for him and completely determined his entire scientific thrust from then
onwards. The pairs (U, P) generalize the systems of imprimitivity first in-
troduced by Frobenius, and so we shall call them (as Mackey did) systems
of imprimitivity also. Like Frobenius, Mackey looked at the case when the
action of G on X was transitive, but not necessarily simply transitive as
in the previous setting, and obtained the complete generalization of the
classical Frobenius theorem, what is known as the imprimitivity theorem
[Ma6].

If the action of G is not transitive, the orbit space G\ X enters the
picture, and Mackey’s theory would lead to a complete description when
the orbit space is what he would later call smooth, but in the contrary
case ergodic phenomena would appear, introducing entirely new themes
that were nonclassical.

When the action of G on X is transitive but not necessarily simply
transitive, the stabilizers of points on X are non trivial subgroups of G.
Let zg € X be arbitrary and let H be the stability subgroup of G at the
point zg, so that, when G acts transitively (as we shall assume from now
on), we have the isomorphism of locally compact spaces G/H ~ X given
by gH —— g[zg]. Then for any unitary representation o of H one can
associate a system of imprimitivity (U, P?) which can be viewed as a
unitary representation of the pair (G, X), and the basic theorem is that
the correspondence

FM :0+— (U%,P?)

is an equivalence of categories, from the category of unitary representations
of H to the category of unitary representations of the pair (G, X). We
shall call FM the Frobenius-Mackey functor.

To explain what a great innovating leap it was to go from Weyl-Stone-
von Neumann to Frobenius-Mackey, let me consider the special differential
geometric subcategory where G is a Lie group, X is a smooth manifold on
which the action of G is smooth, and o is finite dimensional. Let us also
assume that there is a G-invariant Borel measure p on X. Then we have
a functor

Vi— BV

from the category of finite dimensional (left) H-modules V' to the category
of vector bundles on X with a G-action (these are the ones for which the
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pull back bundles on G become trivial), and one knows that this is an
equivalence of categories. If we write Dy, for the space of smooth sections
of By with compact support, then G acts on Dy . If we now assume that
V' is unitary with ¢ denoting the corresponding unitary representation of
H, fiber-wise integration using p will give a G-invariant scalar product
on Dy whose completion Hy will be a Hilbert space, namely the Hilbert
space L?(By ) of square integrable sections of By, on which G acts via the
natural action on sections giving a unitary representation U7, and P? is
defined by Pg :s+— xgs (s € L*(By)).

Mackey’s theory went much farther than this differential geometric
special case. In the first place no smoothness is assumed, and the ¢ can be
infinite dimensional, although it must be admitted that in the differential
geometric setting unitarity is not natural and one may allow o to be non
unitary. Mackey constructed a Hilbert space bundle By associated to the
unitary V with U7 as the action on the sections of this bundle and P? as
above. It must be remarked that in the general locally compact case the
bundles are not necessarily locally trivial and one has to operate in the
Borel category as Mackey did. However at the time he did this work he
finessed this issue by going over to G in place of X where the pull back
bundles are trivialized and so the Hilbert space of sections becomes the
subspace of L?(G, V) satisfying

flg&)=0(©)~"fl9) (g€ G, E€H),

and G acts by left translations. One has to make a modification if X has
no G-invariant measure. However there is always a unique G-invariant
measure class and one may use any measure /4 in this class and compensate
for its lack of invariance by introducing the factors

1/2
g d,LL :
This amounts to tensoring by a line bundle. The representation U? is the
representation of G induced by the representation o of H,

U° =Ind$o.

Of course P? is the usual projection valued measure with Pg as mul-
tiplication by xg. The final definitions are, with s a square integrable
section,

U%(g9)s(x) = pg(g [z])g-s(g [z]),  Pgs(z) = xu(z)s(z).
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Thus the Frobenius-Mackey functor is defined on the category of pairs
(G, H) with G a separable locally compact group and H a closed subgroup.
He worked out his theory of induced representations in this generality in
two papers in the Annals [Ma7]| [Mag].

In his Seattle lectures he asserted that a very large part of represen-
tation theory can be brought under the theme of induced representations,
and it was clear when talking to him that he was legitimately proud of
his role and contributions to this theory. Of course it required the genius
of Gel’fand and Harish-Chandra to see that for semi simple G, induction
from a parabolic subgroup is the key to producing irreducible unitary rep-
resentations. Eventually it became clear that this method, with suitable
modifications (holomorphic induction, infinitesimal induction, cohomolog-
ical induction, etc) will give most of the irreducible unitary representations
for semi simple G. This program took a considerable amount of time and
could not even be begun till after Harish-Chandra, in his monumental
series of papers, constructed the discrete series. Nevertheless, it is really
remarkable that at such an early stage of unitary representation theory one
had the foundations for a complete theory of induced representations in
the full locally compact category, due to Mackey’s work. One must remem-
ber that Mackey worked out his theory long before the work of Chevalley,
Gel’'fand, Harish-Chandra, and Weil had shown the importance of doing
the representation theory of Lie groups over p-adic fields and adele rings,
and very few had a clear vision of where representation theory of non
abelian non compact groups was going. When we consider how important
the concepts of systems of imprimitivity and the imprimitivity theorem
have turned out to be in recent generalizations such as the theory of uni-
tary representations of super Lie groups and the p-adic representation
theory of groups, one should say that his feeling of pride and achievement
were well justified, perhaps even too modest.

In the summer of 1962 the International Congress of Mathematicians
met in Stockholm, Sweden. Among the plenary speakers were Selberg and
Gel’fand, and their lectures addressed questions largely concerned with the
decompositions into irreducible pieces of induced representations of semi
simple Lie groups. Gel’fand had been denied permission by the Soviet
authorities to attend the conference, and Mackey delivered his address
instead; if I remember correctly, Mackey mentioned in his speech that
Gel’fand had sent the manuscript through his student Kirillov. I attended
this Congress and therefore had a great opportunity to observe how central
the themes of Mackey were in representation theory.
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3. Semi direct products and the little group method. Repre-
sentations of finite length and orbit schemes. Already (see [Ma6))
at the time of his creation of the theory of induced representations for
the full category of locally compact separable groups in the early 1950’s,
Mackey considered its application to the description of all irreducible uni-
tary representations of semi direct products G = A x’ H where A is abelian
and H acts on A as a group of automorphisms via h,a — h[a]; H is not
necessarily abelain. The group law is

(a1, h1)(az, ho) = (a1 + hilaz], h1h2).

The prototype of this type of group is the Poincaré group, important
in relativistic quantum theory, where A = R* and H is the conneccted
Lorentz group or rather its simply connected two-fold cover isomorphic to
SL(2, C)r where the suffix R means that it is a question of the real group
underlying the complex group. The unitary representations of G can be
viewed as a pair of unitary representations U,V of A, H respectively, with

V(MU ()V(h) =U(hla))  (a€ A he H).

- /As<a>dP<s>
A

where P is the spectral measure of U, the above relation between U and
V' becomes

If we write

V(h)PgV(h)™ = Pyg (h € H, E a Borel set C 11)

and h[E] is the transform of E under the action of H on A dual to the
given action of H on A. This is just a system of imprimitivity for the
pair (H, A) but the action of H on A may not be transitive. If we assume
that the original representation is irreducible, then one can prove that
Pr =0 or I for any invariant Borel set E. This last property will be true
if P is supported by an orbit, but experience with ergodic theory shows
that this need not always be the case. Mackey realized that if there is a
Borel cross section for the orbit space H\ A, then all such P are supported
on orbits. P is then essentially transitive, and the theory applies. This
led to his famous theorem that the irreducible unitary representations are
parametrized by (m, o) where the m are points of a Borel set meeting
each orbit exactly once, and ¢ is an irreducible unitary representation
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of the stabilizer H,, of m. For the Poincaré group this leads at once to
the classification of elementary particles by their mass and spin. In this
special case this was already carried out by essentially the same method
by Wigner in 1939 [Wi]; the stabilizers are known to the physicists as little
groups ever since.

When H \E has a Borel cross section, we say that the semi direct
product is regular. There are semi direct products which are not regular,
and these typically involve some ergodicity brought about by arithmetical
aspects. Regularity is the norm in most applications. Verification of
regularity appeared to be a global question till the work of Effros [E]
and Glimm [Gl] showed that it is really local. More precisely, for a pair
(G, X) in the locally compact second countable category, G\ X has a Borel
cross section if and only if every G-orbit is locally closed in X, and that
this is the same as requiring that the Borel structure on G\ X is standard,
or even countably separated.

Of the same genre is the strong suggestion made by Mackey in his
Chicago lectures that a separable locally compact group is of type I if and
only if it has a smooth dual (see below). This was proved by Glimm [GI].

Representations of group extensions. In the case G = A x' H
above, A is normal in GG, and it is natural to ask if one can treat by similar
methods the more general case where we have a group G with an abelian
normal subgroup A, but do not assume that G splits as a semi direct
product. The objective is then to reduce the representation theory of G
to those of A and the subgroups of H = G/A. In this formulation there
is no need to assume that A is abelian. Mackey undertook a study of this
question and the results appeared in his paper [Ma9] although most of
them must have been obtained much earlier, since there is a discussion of
them already in [Ma2]. He assumed that A is of type I in the sense of the
theory of von Numann algebras and that its unitary dual Ais smooth, i.e.,
A is a standard Borel space; actually these properties are equivalent, as
was later shown by Glimm [Gl]. The action of G on itself by inner auto-
morphisms gives an action on A and hence on E, and it is clear that A acts
trivially so that we really have an action of H = G/A on A. If this action
is regular in the sense that H \E is a standard Borel space, then the semi
direct product theory can be extended with an important modification: if
m € A and H,, is the stabilizer of m in H, one requires the knowledge of
projective representations of H,, to construct the unitary representations
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of G. 1 shall discuss projective representations a little later. But, us-
ing the notation therein, the multipliers of the projective representations
of H,, are determined uniquely. While this does not give the inductive
mechanism we need, it turns out that the projective representations with
a multiplier o of G still reduce only to orbits of H in the o-dual of A and
projective T-representations of H,, (m a fixed element in the o-dual of A)
where 7 is determined by ¢ canonically. It is thus clear that we have an
inductive mechanism for understanding the representation theory of G in
terms of those of A and H = G/A.

This procedure, known as the Mackey machine, does indeed succeed
in certain nilpotent groups whose central sequences are of small length,
but the general case becomes very cumbersome. However, very shortly af-
terwards, Kirillov developed a beautiful direct method of inducing by one
dimensional representations of suitable subgroups, to obtain the represen-
tation theory of all nilpotent Lie groups. The architecture of a definitive
theory of unitary representations of solvable groups became clear with the
works of Auslander-Moore, Auslander-Kostant, Pukanszky, and a host of
others. However all these works are in the context of Lie groups, and
Mackey’s dream of doing things in the full locally compact category seems
to have been forgotten.

Representations of finite length and orbit schemes. In covari-
ant (Gupta-Bleuler)quantum electrodynamics one couples the Maxwell
field with the Dirac field, and for this purpose it is very useful to realize
the photon representation as a subquotient of a non unitary but natural
representation associated to the zero mass orbit of the Lorentz group. This
representation was imbedded in a family of deformations by G. Rideau [R].
On the other hand, in his studies of gravity, Nakanishi [N] introduced a
family of representations of the Poincaré group which acted on functions
defined on the light cone but the action depending on the derivatives of
these functions in transverse directions to the light cone. In [CTV] this
situation was examined carefully and representations were constructed on
the sections of the 1-jet bundle on the light cone, the Poincaré action
being completely natural, thus explaining the procedure of Nakanishi as
well as describing the Rideau representations in a canonical manner. This
suggested that there is a theory of representations of the Poincaré group
which are obtained by its natural action on the jet bundles on the light
cone. More generally, if we have a regular semi direct product G = A x' H
where A is a vector group and H a closed subgroup of GL(A), one could
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ask whether the Mackey correspondence between irreducible representa-
tions of G and orbits in A can be extended to a correspondence between
representations of finite length of G whose irreducible constituents are
associated to an orbit O, and representations arising out of the natural
action of G on sections of vector bundles defined on infinitesimal neigh-
borhoods of O (orbit schemes.). This problem was studied in great depth
by A. Guichardet [Guil] [Gui2], his student du Cloux [du C], and later, by
my student Charles H. Conley in [CCH1] [CCh2]. Their work has yielded
many beautiful results in this context. In particular Guichardet showed
that the Rideau phenomenon can arise only if the tangent space to the
orbit (at a point of it) does not admit an invariant complement (as in
the case of the light cone), and completely determined what happens in
the other, complemented case, while du Cloux studied the nilpotent case.
Conley proved that when H is algebraic and the stabilizer at a point of O
has the property that all its finite dimensional representations are ratio-
nal, then all representations of length n+ 1 whose irreducible constituents
arise from the orbit O via the Mackey correspondence, can be obtained as
subquotients of the actions of GG on sections of vector bundles defined on
the n'? order infinitesimal neighborhood of O. It is appropriate to draw
attention to these papers and suggest that these issues be examined again
in other directions.

4. Super Lie groups and their systems of imprimitivity. In the
1970’s, propelled by the urge to create a fully unified theory of all the
fundamental forces, the physicists discovered super symmetry. Super sym-
metry is a generalization of the usual concept of symmetry and plays an
important and very essential role in creating a unified theory of matter
and radiation. Mathematically one needs a generalization of ordinary dif-
ferential geometry, namely super geometry, to define clearly what is meant
by a super symmetry. A super manifold is a topological space M with a
structure sheaf O consisting of Zs-graded algebras that is locally of the
form C*°(z1,x2,...,2p)[01,02,...,04], the 6; being Grassmann variables,
i.e., satisfy
92‘93‘ + 93'91' =0.

It is important to note that when the odd variables (which cannot be
seen) are made 0, the sheaf reduces to that of the classical manifold M
which is a submanifold of the super manifold. Super manifolds are thus
objects similar to the schemes of Grothendieck, and are studied by similar
techniques. Super symmetries are automorphisms of super manifolds. The
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simplest example is RY? with O(U) = C*(U)[61, 65]. The automorphism
defined by

t— t+ 610, 91'—>91’(i:1,2)

is a typical super symmetry. A super Lie group is a group object in the
category of super manifolds. It can also be viewed as a group valued func-
tor on the category of super manifolds. All the fundamental results of
classical Lie theory extend to the super Lie groups (with suitable modifi-
cations) and there is now a well understood theory of super Lie groups and
their super homogeneous spaces [Val]. In particular the physicists have
constructed the super Poincaré groups as super symmetric extensions of
the classical Poincaré groups (in arbitrary dimension), and it is natural to
ask if one can classify the unitary representations of the super Poincaré
groups in a manner similar to the classical case. It must be mentioned
that because a super Lie group is not a group but a group valued functor,
the concept of its unitary representations is more subtle to define, but
this can be done. Indeed, a super Lie group G gives rise to the underlying
classical Lie group G as well as to a super Lie algebra g, with an action
of Gy on g; such a pair is called a Harish-Chandra pair. The assignment
G — (Gy, g) is an equivalence of categories from the category of super
Lie groups to the category of Harish-Chandra pairs. We may therefore de-
fine a unitary representation 7 of G as a pair (7, p) where 7 is a unitary
representation of GGy and p a representation of g, with suitable covariance
conditions. Now the operators of p are typically unbounded but one can
prove the fundamental theorem that they are essentially self adjoint and
that therefore there is a uniqueness in their definition. One can then prove
the imprimitivity theorem for a super homogeneous space G/H where G
is a super Lie group and H is a closed super Lie subgroup, at least when
X = G/H is purely even, i.e., a classical manifold. This leads as in the
classical theory to a complete description of irreducible unitary represen-
tations of super semi direct products (not just the super Poincaré groups)
Ax"H (A is a super abelian group) which are regular at the classical level
(when all odd coordinates are put to 0) [CCTV1]. In turn this leads to
the classification of super particles and the elucidation of the concept of
super multiplets. The physicists had already worked out the classification
of super particles and super multiplets in the 1970’s, but their methods
assumed as an article of faith that the method of little groups could be
extended to the super context; moreover these results were confined to
the super Poincaré groups and did not touch the full semi direct products
in the super category, nor did they treat the case of infinite spin in the
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massless case for the super Poincaré groups. It must also be mentioned
that whereas all orbits of A contribute representations classically, in the
super symmetric case only those with positive energy appear.

The restriction that G/H is purely even is just for convenience. The
theory can be extended to the general case [CCTV2].

5. Intertwining numbers, double coset decompositions, and irre-
ducibility of induced representations. Let G, H be as above. Then
we have the functor of induced representations

o +— U’ =IndGo.

We have omitted P and so this can no longer be expected to be an
equivalence of categories. In particular

Hom(U°*,U°?)
will in general be much bigger than
Hom(oq, 09),
and it is clearly crucial to determine
Hom (U, U%?).

More generally, if H;(i = 1, 2) are two closed subgroups and o; is a unitary
representation of H;, then one is interested in determining

G G
Hom (Ind%, o1, Ind, 02).

The condition
Hom(Indga, Indga) =C

is necessary and sufficient for the irreducibility of the induced representa-
tion.

The structure of the induced representations for finite groups became
important in the 1930’s in Artin’s work on L-functions associated to Ga-
lois representations, especially the question of how the general represen-
tation may be constructed in terms of representations induced from one
dimensional representations (monomial representations). However not ev-
ery irreducible representation of GG is monomial. In order to prove that the
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Artin non abelian L-functions are meromorphic over the whole s-plane it
would be enough to prove that every irreducible representation of G is at
least a wvirtual linear combination

Z niIndgi o;

i

where the n; are integers which are not necessarily positive, and the o;
are one dimensional. This is what Brauer did.

Mackey’s approach to the determination of
G
Hom (I:adH1 o1, Indg, 02)

was very direct. When G is finite the elements of the Hom space, called
intertwining operators by him following a suggestion of Kneser, may be
identified with linear operator valued functions on G with suitable trans-
formation properties under translations from left by H; and right by Ho.
Hence they are determined by the double coset space

H\G/H,.

Using this Mackey [Mal0] determined the dimension of the Hom space, the
so-called intertwining number I, as a sum over the double coset space of
intertwining numbers associated to pairs of representations corresponding
to the elements of a general double coset. For z,y € G let I(z,y) denote
the intertwining number of the representations s — o(xsz™1),s —
oo(ysy~1) of the subgroup 2~ *Hyx Ny~!Hoy. Then I(z,y) depends only
on the double coset D = Hyzy ' Hy and so we may write it as I(D). If D
is the space of double cosets H1\G/Hz, then

I=> I(D).

DeD

In particular, if H; = Hy = H and 07 = 09 = o, this formula yields the
following sufficient condition for the irreducibility of Indga. Foranyx € G
let o, be the representation s — o(zsz™!) of z71 Hz, and let us suppose
that for each x ¢ H the restrictions to =1 Hx N H of the representations
0.,0 have no irreducible in common; then Indga is irreducible. These
results of Mackey included all known results on induced representations
for finite groups, and more importantly, set the stage for determining the
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Hom space and intertwining numbers when G is no longer assumed to be
finite.

When G is arbitrary, the spaces on which the induced representa-
tions act are Hilbert spaces, and the linear operators between them have
a more complicated structure than in the finite case. So the method of
Mackey has to be supplemented by a systematic use of analysis of linear
operators between function spaces. At that time Schwartz had just pub-
lished his epoch-making books on distribution theory and had proved a
theorem (kernel theorem) from which it followed that general linear maps
between function spaces on manifolds X;(i = 1,2) can be represented by
distributions on X7 X X5. Bruhat, who was in Paris as a student and was
interacting with Schwartz, realized that the kernel theorem of Schwartz
offered the exact tool to carry out the Mackey analysis when G is a Lie
group. Using the theory of distributions he determined the Hom space
by an almost exact analogue of Mackey’s formula in the case when G is
a connected semi simple real Lie group, H = P is a minimal parabolic
subgroup, and o is a finite dimensional irreducible unitary representation
of H trivial on the unipotent radical of H (the so-called principal series
representations). The double coset space P\G/P is now finite, an instance
of the famous Bruhat decomposition, and Bruhat’s variant of the Makey
criterion becomes the following sufficient condition: if for all elements w
of the relative Weyl group with w # 1, the transform o* is not equivalent
to o, then Indga 18 1rreductble. Bruhat’s debt to Mackey is very clear.
Bruhat subsequently extended his work to include the principal series for
p-adic semi simple Lie groups [Brl] [Br2].

At the risk of some digression I shall try to give a partial explana-
tion of the remarkable fact that in spite of the huge technical difference
between the finite and Lie theoretic cases, the criterion for irreducibility
of the induced representation (in the context of parabolic induction for
semi simple groups) takes essentially the same form. The situation is the
following. We have a Lie group H acting on a manifold X and we are
interested in determining, for a given H-module F, all the invariant E-
distributions. There are two cases: when there are finitely or countably
many orbits, and when there are “moduli” for the orbits; only the first
case occurs for the irreducibility problem and there the orbit space is fi-
nite. The filtration by dimension of the orbit space gives rise to a filtration
on the space of invariant E-distributions, and the corresponding graded
spaces are (roughly) the spaces of invariant E-distributions supported by
a given orbit O C X. Unlike what happens in the finite or the p-adic case,
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the transversal differentiations can in principle produce invariant distri-
butions supported by and not living on the orbit O. The key now is to
replace the E-distributions 7" supported by O to the F' ® E-distributions
o(T) that live on O, o(T) being the transverse symbol of T, F being the
dual of the transverse jet bundle of O in X. Because we are now dealing
with distributions living on O, the transitivity of H on O now allows the
space of F' ® E-distributions to be identified with the space of invariants
of the fiber at at a single point on the orbit O which is determined by a
simple calculation. The fiber modules however are very different in the
higher transversal directions from the module on E (roughly speaking, F
is pure imaginary while F', being geometric, is real); and this forces the
conclusion that no transversal differentiation can produce invariants. In
this manner transversal invariants are ruled out which gives the result.
For details see [KV].

One final personal remark may not be out of order. I first heard
of Bruhat’s theorem on the irreducibility of the principal series from
Mackey’s 1961 Seattle lectures and the idea came to me at that time that
one could attack it infinitesimally. I went to India in 1962 and started to
work on the infinitesimal theory, first with Varadhan, and after he left for
the Courant Institute, with Ranga Rao and Parthasarathy. We obtained
the full criterion of irreducibility for all spherical principal series (unitary
or not) for compler semi simple groups and published it in [PRV]. It was
my first paper on semi simple Lie groups and its genesis can directly be
traced to the inspiration I received from Mackey’s lectures. The problem
of irreducibility from the infinitesimal point of view has since been taken
to great heights-by Wallach for the complex groups (not just spherical
series alone as in our work), by Kostant—Rallis and Kostant for spherical
series for real groups, by Enright—Wallach for the fundamental series, and
SO on.

If G is a semi simple group, its representations come in various series,
following the terminology first invented by Gel’fand and Naimark. Harish-
Chandra eventually succeeded in proving that the induced representations
corresponding to the various Cartan sbgroups have finite length and gener-
vcally irreducible. Later on he obtained a more general irreducibility the-
orem where the parabolic subgroup from which the induction is made is
arbitrary, and the inducing representation has a real infinitesimal charac-
ter (real in a suitable sense). To prove this he used a variant of Bruhat’s
method [Hal]. For a discussion of this question see again [KV].

One should not assume that the finite case is just an exercise. The
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theory of unitary representations of semi simple groups defined over a finite
field requires very deep applications of algebraic geometric methods. For
an interesting view see [Ha2|. See also the article of Vogan in this volume.

6. Projective representations, Borel cohomology of groups, and
the metaplectic representation. If GG is a standard Borel group, a
projective representation of G is a Borel map into the projective unitary
group PU(H) of a separable Hilbert space H. Since there is a Borel cross
section for the map U(H) — PU(H) it can also be thought of as a Borel
map L of G into U(H) such that

L(zy) = m(z,y)L(x)L(y)  (z,y€G), L) =1L

Here m is a Borel map of G x G into S! satisfying the following identities
derived from the associativity of the group multiplication:

(a) m(z,1) =m(l,z) =1 (z € G)

(b) m(zy, z)m(z,y) = m(z,yz)m(y, 2) (z,y,z € G).
It is called the multiplier of L. The set of all functions(multipliers) satis-
fying these identities form an abelian group C(G). It can be shown that
any element of C(G) can be the multiplier of a projective unitary repre-
sentation of G if GG is separable locally compact; if m is the multiplier,
representations with multiplier m are called m-representations. Changing
L to L' = aL where a is a Borel map of G into St with a(1) = 1 results
in the change

— m/(z,y) = m(x _alzy)
m(z,y) (z,y) = m( ,y)a(x)a(y)~

We say m and m/ are equivalent. The m that are equivalent to 1 are called
trivial and form a subgroup B(G) of C(G). The quotient group M (G) =
C(G)/B(G) is called the multiplier group of G. It may be regarded as
a Borel version of the cohomology group H?(G, S!), with the multipliers
being just the Borel measurable cocycles.

Projective representations go back a long time. Already Schur had
determined the projective representations of the symmetric and alternat-
ing groups. Then Weyl encountered them in his fundamental work on
quantum kinematics. As we have seen earlier, he expressed the equations
of quantum kinematics as a pair of unitary representations U, V' of abelian
groups A, B in duality by a bicharacter y such that

U(a)V(b) = x(a,b)V(b)U(a) (a € A,b € B).
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He then regarded
(a,b) — U(a)V(b)

as a projective representation of the abelian group A x B, and formulated
quantum kinematics as the additional structure provided by a projective
representation of A x B which in applications is the affine phase space
P = A® A where A is a finite dimensional real euclidean space, the affine
configuration space. Actually, if we use von Neumann’s refinement, we
can define

W(a,b) = e~ **2U(a)V (D)  (a,be A)

where a-b is the scalar product of a and b, then W is a projective repre-
sentation of P with multiplier

O'((G,’ b), (a/, b/) — ei(a’~b—a~b’)/2 — eiﬂ((a,b),(a/,b/))/Q

wherer

B((a,b),(a’,b")) =a'-b— ab

is the natural symplectic structure on P. The uniqueness of Schrédinger
representation is the statement that P has a exactly one (up to equiv-
alence) irreducible o-representation, namely the Schrédinger representa-
tion, and that every representation is a multiple of this.

The Weyl-Wigner point of view asserts that the covariance of a quan-
tum system with respect to a symmetry group G is expressed by the speci-
fication of a projective unitary representation of GG in the quantum Hilbert
space, and so it is appropriate that quantum kinematics is described by the
essentially unique irreducible projective representation of the phase space
(it can be shown that multipliers of P are of the form e*” where 7 is a skew
symmetric bilinear form on A x A, and so generically reduce to the one
given above). Later on, Wigner proved [Wi] that for the simply connected
Poincaré group the multiplier group is trivial and so relativistic covariance
is always expressed by ordinary representations of the Poincargroup; the
situation is very different for the Galilean group, as Bargmann showed in
a seminal paper on projective representations of Lie groups [Ba].

The simply connected Galilean group is an example where simple
connectivity does not ensure that all projective representations can be
renormalized to be ordinary representations, in other words H?(G,T) can
well be non trivial for simply connected G. For any given multiplier m we
have a central extension H,, of G by T,

1—T—H, —G—1

21



such that m-representations of GG correspond one-one to ordinary repre-
sentations of H,, which map t € T to tI for all ¢ (see below). However,
as m-varies, the extension H,, will vary, and it is natural to ask if there
is a wuniversal central extension that will work for all multipliers of G.
Such a universal extension was constructed by Moore [Moo2]. If G is a
Lie group, which we may assume to be simply connected, a more explicit
construction of the universal central extension G of G, which will also be
a Lie group, can be found in [CDLL] where many examples are discussed.
The group G is a central extension of G:

1 —K—G—G—1

with
K = H*(G,R) = H?*(Lie(G),R).

(The last cohomology is a finite dimensional vector space.) The main re-
sult is that there is a natural bijection between physical equivalence classes
of irreducible unitary representations of G that are scalars on K and the
physical equivalence classes of projective irreducible representations of G
(physical equivalence is coarser than unitary equivalence and requires only
an equivalence implemented by an operator which is either unitary or an-
tiunitary). The Galilean group in the 2 + 1 dimensional case is important
in the treatment of genuine two dimensional systems.

The existence and explicit construction of G allows us to replace sym-
metry actions of G by actions via unitary representations of G which are
scalars on K. It can be shown that for the Lie group G with Lie algebra
g, the condition [g, g] = g is sufficient to ensure that H?(G,T) = 0 [Di].
But it is not necessary; the result is true for the Galilean groups in space

times of dimension > 4 which do not satisfy the above sufficient condition
[De].

Brauer groups and Borel cohomology. Mackey’s theory of rep-
resentations of group extensions led him to the notion of projective rep-
resentations, and, for any multiplier o, the o-dual of a separable locally
compact group, namely the set of equivalence classes of the irreducible
o-representations of the group in question. The multiplier group is a spe-
cial case of the group H?(G, A) of A-valued multipliers where A is an
abelian separable locally compact group. Classically, when the groups are
finite, the group H?(G, A) for arbitrary G and abelian A is an example
of a Brauer group and its elements classify the central extensions of G
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by A, namely the groups H such that A is central in H and H/A ~ G.
Mackey discovered that this interpretation remains valid even in the locally
compact category. The first point is that H/A does not in general have
continuous sections but always has Borel sections and so one can associate
an element of H2(G, A) to the extension H; this shows the naturalness
of working in Borel categories. In the reverse direction, given a A-valued
multiplier m, the classical Brauer construction gives a group structure on
H,, = G x A dependent on m such that H is an extension with multi-
plier m. But, since m is only Borel, H,, will not be locally compact in
the product topology unless m is continuous, which it seldom is. If m is
locally continuous near the identity, we can use the product topology near
the identity of G and then use translations by group elements to give the
topology of the group; this will lead to the cases where H is a locally trivial
bundle over H/A and thus take care of all Lie groups. In the general case
this construction yields only a Borel group. But Mackey noticed that it
has an invariant measure, namely the product of the Haar measures on GG
and A. Now, Weil had shown that given an invariant measure on a group
one can give it what we now call the Weil topology and the completion of
the group in its Weil topology is locally compact. Mackey observed that
when the group has an invariant measure and its Borel structure is stan-
dard, it is already locally compact in its Weil topology, thus realizing H,,
as a locally compact separable group. The construction of Brauer groups
in the Borel category is one of his beautiful achievements [Mall].

It became clear from Mackey’s work that Borel cohomology of locally
compact separable groups is something that should be explored systemat-
ically and in all degrees. His student Calvin Moore did precisely that in a
series of papers; in particular he linked this theory with classfield theory
of arithmetic fields [Moo].

Metaplectic representation. Let us go back to the Weyl formula-
tion of quantum kinematics for a configuration space R? so that we have
a pair of unitary representations of U,V of R? such that

U(a)V(b) = eV (b)U(a).

So
(a,b) — W(a,b) = U(a)V(b)

is a projective representation of P = R? @ R? with multiplier m where
m((a,b), (a',b)) = €.
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If we now go to the equivalent projective representation
(a,b) — e~ Dby (g b)
the multiplier is changed to
m™((a,b), (a,b')) = /D" bmat’],

Motivated by this we shall define for any separable locally compact abelian
group A the multiplier o for the group G = A x A by

{d’,€)
(a, &)

It is easy to verify that o induces a perfect pairing of G x G with itself
and so it is natural to call the multiplier o symplectic; moreover any auto-
morphism of the group G that leaves ¢ invariant will be called symplectic
also. Let Sp(G) be the group of symplectic automorphisms of G.

o((a,§), (&) =

Suppose that A has the property that z —— 2z is an automorphism of
A; the same is then true for A also and we say that A and A are 2-regular.
Let U,V be unitary representations of A, A respectively such that

Ua)V(§) = (a,§)V(§)U(a)

as in Mackey’s work. We know that any such pair U,V is a diect sum of
copies of a unique irreducible pair. If we write V2(£) = V(2¢) it is then
immediate that the same is true for the pair U, V? which now satisfy

U(a)VZ(€) = (a,26)V*(€)U (a)

Write now
W(a,&) = (a,&) " 'U(a)V?(£).

Then W is a projective representation of G = A @ A with the multiplier
o defined above, and W gives back U,V by W(a,0) = U(a), W(0,¢) =
V2(¢). Thus we can say that when A, hence G also, is 2-regular, every
o-representation of GG is a direct sum of copies of a unique irreducible one,
which we can take in the standard form in H = L?(A).

Mackey’s generalization of the Stone-von Neumann uniqueness of the
Schrodinger representation now shows that to any symplectic automor-
phism s of G there is a unitary operator R(s) in H, unique up to a phase
factor, such that

W(s(a,&)) = R(s)W (a, ) R(s)~".
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The map s — R(s), because of the uniqueness of R(s) up to a phase
factor, determines a projective representation of GG. In other words, asso-
ciated to any 2-regular locally compact separable abelian group we have a
canonical projective unitary representation of the symplectic group Sp(G)
of G=A® Ain L2(A).

The history of the discovery of this projective representation of the
symplectic group is very interesting. It was discovered by Andre Weil,
certainly in the case when A is a vector space over a local field of finite
dimension, or a free finite module over the adele ring of a global (arith-
metic) field; he in fact credits the genesis of this representation to the work
of Siegel on quadratic forms. In a pair of seminal papers, Weil discussed
this representation and its role in arithmetic, casting light on the Siegel
theory [Wel] [We2]. In 1962, when he lectured in Harvard about these
results, it was pointed out to him that at least when the local field was R,
the representation had been discovered independently by Irving Segal, and
that Shale, a student of Segal, had then constructed this representation in
the case when A was not locally compact, in fact when it was the additive
group of a real Hilbert space! [Sha].

In a paper he published in 1965 [Mal2] Mackey treated these matters
in complete generality. He showed that when A is not 2-regular, new
phenomena arise. Let A2 = 24 and let A5 be the kernel of the map
x +—— 2z of A. Then he showed, using his work [Ma9], that there are
more irreducible o-representations and constructed a natural imbedding
of G/A% x A, into the o-dual of G, and further that this imbedding is
a bijection if and only if A? is closed in A. Let G5 be the subgroup of
elements of order 2 in G. Then he showed that, in the case when A? is
closed in A, for each character y of G5 there is a unique irreducible o
-representation WX of G that coincides on G5 with a multiple of y, and
the WX are all the irreducible o-representations of Gj if Wy is the one for
X = xo(a, &) = (a,§), and Spy(G) is the subgroup of the symplectic group
fixing x0, then we have a natural projective representation of Sp,(G) in the
space of W°. In this manner he obtained the complete result involving the
canonical projective representation of the symplectic group of G without
any restrictions on A except that A? be closed in A.

It is possible to describe Mackey’s uniqueness of the Schrodinger rep-
resentation in a more general framework [DV] [Mu]. Let G be any sepa-
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rable locally compact abelian group. If m is a multiplier for G, then

mw(xay) =

can be proved to be a continuous bicharacter (a character in each argu-
ment); we shall say that m is a Heisenberqg multiplier if m™ is symplectic,
i.e., the map from G to G induced by m~ is an isomorphism. If G is
2-regular, there is a unique symplectic multiplier in the cohomology class
of m so that m itself may be assumed to be symplectic. The most natural
and general form of Mackey’s uniqueness theorem without any assumption
on (G is now the following:

Theorem (Mackey) If m is a Heisenberg multiplier for the separa-
ble locally compact abelian group G, then G has a unique irreducible m-
representation, and every m-representation of G is a direct sum of copies
of this unique irreducible one.

This theorem of Mackey has been used by Mumford [Mu |in his Tata
lectures on theta functions quite systematically. The passage from m to
m” is quite natural; in fact, if H,, is the extension of G by the circle group
T so that

1—T7T—H, —G—1

is exact, the commutator map =,y —— zyz 'y~' descends to a map
G x G — T which works out to m~. The Heisenberg condition on m is
that m™ gives rise to a perfect pairing.

Two additional remarks are appropriate here. First, the work of
Shale, although restricted to the real case, is more general because the
groups are no longer locally compact; indeed, the situation is inspired by
quantum field theory, as I have discussed earlier. Here the commutation
rules do not have a unique representation and so it is not immediately clear
how we get the projective representation of the symplectic group; indeed,
if we start with an invariant measure class associated to a real infinite
dimensional Hilbert space (one has to be careful here as the measures are
not defined on the real Hilbert space), a symplectic automorphism will
change the measure class into another one which is often singular with
respect to it. One has to introduce a restricted symplectic group whose el-
ements preserve the measure class. For some good choices of the measure
class Shale proved that the corresponding restricted symplectic group is
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the subgroup of the full symplectic group of maps s such that (8*8)1/ 2 s
of the form I 4+ S where S is of the Hilbert-Schmidt class. Shale’s theory
was later extended to the p-adic case by [Z]. Much remains to be done
here.

The second remark concerns with what Weil did. He did not stop
with the projective representation of the symplectic group; in the local and
adleic cases that he treated, he proved that the projective representation
in question becomes an ordinary representation when we pass to the 2-
fold cover of the symplectic group, the so-called metaplectic group; Shale
had done this for R. The lifted unitary representation is often called the
metaplectic representation. 1 do not know if Mackey had any results on
the order of the multiplier of his representation of the symplectic group in
the case of a general locally compact separable abelian A. This seems to be
an interesting question in the general framework that Mackey initiated.

7. Foundations of Physics: hidden variables and the Mackey-
Gleason theorem. Mackey’s approach to science in general, and physics
in particular, was one of great curiosity combined with great restraint.
Unlike many mathematicians he was not trying to solve all the problems
of the physicists, nor was he trying to tell the physicists what they were or
should be doing. He was very much more modest, content to understand
and interpret the physicists’ conception of the world from a mathemati-
cian’s point of view.

Hidden variables, the Mackey problem of measures on ques-
tions, and Gleason’s theorem. With the development of quantum
theory in the 1920’s it became clear that an entirely novel view of physi-
cal reality had emerged as the foundation of the new theory, a view that
contrasted very sharply with the causal and deterministic view of space-
time events and their description that had been the basis hitherto for all
classical physics. In the quantum theoretic view, in even the most ideal-
ized state of a quantum system, one can in principle determine only the
statistical distributions of the various physical quantities, because of the
inherently uncontrollable interaction between the phenomena that are be-
ing measured and the measuring apparatus. Although it is often possible
to arrange matters (called preparation of state) so that a particular ob-
servable has a sharply defined value (has no dispersion) or at least has
arbitrarily small dispersion, this can be done only at the cost of other
observables having large dispersions. There is no state in which all ob-
servables have sharply defined values or arbitrarily small dispersions. Ob-
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viously this circumstance created a huge amount of discussion of funda-
mental matters, among which discussions in the various Solvay conferences
between Einstein and Bohr figured very prominently [Bo]. The basic ques-
tion became whether the quantum mechanical description of reality was
complete. When von Neumann wrote his great book in 1933 [vN2] he
gave a systematic mathematical and physical discussion of this question
at the most general level.

Like every one who came after von Neumann, Mackey was profoundly
influenced by von Neumann’s great 1932 classic [vN2]. The question
whether the quantum mechanical description of reality is complete can
be made accessible to a mathematical treatment by posing it as the prob-
lem of hidden wvariables in quantum mechanics: is it possible that the
statistical feautures of the usual model for quantum theory are due to
our incomplete knowledge of the state of the system, and arise because of
averaging over a space of parameters (the hidden variables)? In quantum
mechanics the states are unit vectors up to a phase in a Hilbert space, and
it is a remarkable feature of the theory that no matter what the state is,
there are observables which do not have a sharply defined value, or, have
positive dispersion. In other words the states of quantum mechanics are
not dispersion-free. If now there are hidden parameters, the states defined
by specific values of the hidden parameters would define dispersion-free
states (although these would be highly idealized and may not be acces-
sible to any practical technology); the situation would be very much like
in statistical mechanics. The quantum states would then be mixtures of
these idealized dispersion-free states, and so we would be able to write the
quantum states as convex linear combinations of other states. Therefore,
to put to rest the possibility of an explanation by hidden parameters of
the statistics derivable from the standard model of quantum mechanics,
one must answer in the affirmative the following mathematical question:
using the most general definition of a state of a quantum system, is it true
that the quantum states defined by the unit vectors cannot be written as
convex combinations of other states, i.e., they are the extreme points of
the convex set of all states? The answer to this problem of course depends
on the general definition of a state of a quantum system, and clearly one
has to base the argumentation on the widest interpretation of the notion
of the quantum state in order to have the most convincing result. The an-
swer, as von Neumann saw it, was a resounding negative [vN2], and after
many variants and modifications von Neumann’s analysis still remains the
best treatment of this question (see the wonderful reprint collection [WZ]
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where the various articles on this question are reprinted). The approach of
von Neumann was to observe that no matter what models are used—the
usual quantum model, the hidden parameters model, or any other—for
theoretical purposes all one needs to consider are the expectation values
of the observables measured in the various states of the system. Hence
one can identify the state of the system with the expectation value func-
tional on the set of bounded observables in the system. Now, in the usual
model, whose statistics form the object of scrutiny, the set of bounded
observables is Br(H), the set of Hermitian elements of the algebra B(H)
of all bounded operators. Bgr(H) is not an algebra but is a real vector
space and contains the square of each element. The properties that von
Neumann assumed for the expectation functional

E:A— E(A) (A€ Br(H))

were as follows:

(a) E is linear
(b) E(1) =
(c) (AQ) >0 for all A

(d) FE is continuous in the strong operator topology.

He then determined all such functionals, and showed that the pure states,
defined as the extreme points of the convex set of states, are precisely
those given by the usual unit vectors up to a phase of the Hilbert space.
Let us define a density matriz as a bounded positive self adjoint operator
of trace class and having trace 1. Then vonNeumann’s analysis showed
that the expectation functionals are precisely those of the form

U': A Tr(AU) = Te(UY2AU?).

The correspondence
U+— EY

is convex and one-one, and so, as the density matrices form a convex set,
we have only to determine the extreme points of this set. It is not difficult
to see that the extreme points are the one dimensional projections and so
are labeled by unit vectors up to a phase, thus answering the question of
hidden parameters in the negative.

If one wants to make a critical assessment of von Neumann’s analy-
sis, the place to begin with is the axiomatization of the expectation func-
tional. Now, if A and B are quantum observables, von Neumann used the
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ensemble method characteristic of thermodynamics to give an operational
definition of A + B even when A and B are not simultaneously observ-
able. This allowed him to assume that the expectation value is additive:
E(A+ B) = E(A)+ E(B). The assumption of countable additivity for £
is a consequence of the strong continuity and may be regarded as a regu-
larity assumption; we shall temporarily set this aside and concentrate just
on the linearity. If A and B are simultaneously measurable, then there
is no difficulty in measuring A + B and obtaining the additivity of the
expectation value, since A and B are random variables on a single classi-
cal probability space. When A and B are not simultaneously observable,
the definition of A + B as well as the additivity of the expectation value
are less convincing. Indeed, in many instances, the distributions of A, B,
and A + B are such that they cannot be derived from a single probability
distribution on the plane R?. Moreover, this is not some arcane issue as
von Neumann himself observed: the very definition of the Hamiltonian in
the form

1
shows that we are concerned precisely with this type of situation even
in the simplest applications of quantum theory. The p; and ¢; commute
among themselves and so

1
Azi(p%-l-p%-l-...-l-pi), B=V(qi,q, --,qn)

are individually well defined, but H = A+ B requires a stretch of imagina-
tion. Even in the case of the usual model, A and B are defined very simply
as self adjoint operators, but A + B is only symmetric on the intersection
of the domains of A and B; that it has a unique self adjoint extension is
true under very general circumstances, as was first proved by Kato, but
this is not an obvious result.

The starting point of Mackey’s analysis is that one should assume
additivity of the expectation only for commuting observables. To discuss
the structure of the expectation functionals we may restrict ourselves to
what Mackey called questions, namely, observables which take only the
two values 0, 1. These are represented by projections in the Hilbert space.
The expectation value thus defines a function

p: P— p(P)
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on the set of projections and having values in the interval [0, 1] of the
real line. If P and @ are orthogonal projections, then P + @) is again a
projection and it is clear that we have

(P + Q) = pu(P) + u(Q)

so that p is finitely additive. In other words p is a finitely additive prob-
ability measure on projections. If P and @) are projections which are not
orthogonal, P+ () may not be a projection; it is still a bounded observable
and so has an expectation value, but we do not assume that the expec-
tation of P 4 @ is the sum u(P) + p(Q) as part of the data defining the
state. For any bounded Hermitian A with spectral measure P4,

p? o S — p(Pg) (S a Borel set C R)

is a finitely additive probability measure with bounded support on the
real line and we can define the expectation value of A as

EM(A) = /R tdp (t).

(There is no difficulty in defining integrals of bounded functions with re-
spect to finitely additive measures). It is then easy to see that E* satisfies
the properties of von Neumann except that the additivity is asserted only
for commuting operators:

E"(A+ B) = E"(A)+ E*(B)  (AB = BA).

Conversely, any functional £ on Bgr(H) with the properties assumed by
von Neumann except that additivity is assumed only for commuting ele-
ments, arises from a unique pu.

We shall call countably additive probability measures on the lattice of
projections Mackey states. The original states in von Neumann’s analysis
will be called von Neumann states. The finitely additive probability mea-
sures on the lattice of projections are called generalized Mackey states. If
1 is a generalized Mackey state, then for any self adjoint operator A with
spectral measure P4,

EM(A) = /R tdp ().

It is far from obvious that E* thus defined is unrestrictedly linear for a
Mackey state p, generalized or otherwise, nor is it clear why it should be
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strongly continuous. In other words a Mackey state need not be (define)
a von Neumann state.

Mackey states which are von Neumann states exist in abundance. If
U is a density matrix

pl . P— Tr(PU) = Te(UY2PUY?)

is a Mackey state which is even a von Neumann state because of the
linearity and continuity properties of Tr. We thus have three levels of
states of increasing generality:

A. von Neumann states EV, defined by density matrices U

B. countably additive Mackey states, defined by countably additive
probability measures on the lattice of projections of the Hllbert
space 'H

C. the generalized Mackey states, defined by finitely additive prob-
ability measures on the lattice of projections of H.

When he arrived at this point in his analysis, Mackey asked his colleague
Gleason if it could be proved that any countably additive probability mea-
sure on the lattice of projections is of the form puU for a density matrix U.
As he told me in Seattle, Gleason almost immediately reduced this ques-
tion to the case when the underlying Hilbert space is real and of dimension
3 (the result requires the dimension to be > 3, there are counter examples
in dimension 2); very soon afterwards he proved the resut in dimension 3
[Gle]. Thus, in dimension > 3, Mackey states are von Neumann states.

Let us now use Gleason’s result and complete the proof of a sharpen-
ing of Mackey’s analysis, namely that even if we take the state to be the
most general one of level C, there are none which are dispersion-free. It
is first of all easy to see that if a finitely additive u is dispersion-free then
it has to be two-valued, i.e., it takes only the two values 0 and 1; indeed,
if for some projection P we have 0 < pu(P) = p < 1, then the observ-
able P takes just the two values 0 and 1 with respective probabilities p
and 1 — p = q; it is thus a classical binomial variable and its dispersion
is pg > 0. The question therefore becomes the following: are there any
two-valued finitely additive probability measures on the lattice L£(H) of
projections on a Hilbert space? We shall now show that Gleason’s theorem
implies that if dim(H) > 3 then there are no two-valued finitely additive
probability measures on L(H) and hence no dispersion-free states. In fact,
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if 3 < dim(H) < oo, then all finitely additive measures on L(H) are auto-
matically countably additive, and so Gleason’s theorem shows that p = pV
for a density matrix U; if ¢ is a unit vector and P, is the projection on the
one dimensional space spanned by ¢, then uY(P,) = (Ug, ¢), and this, as
a function of ¢ is continuous and takes all values between 0 and 1, thus
certainly not two-valued. If dim(H) = oo, the isomorphism H ~ H @ C?
shows that we can imbed £(C?) inside £(H), and so, if x is two-valued on
L(H), the restriction of x to the image of £(C3) under the above imbed-
ding is a two-valued measure on £(C3) the existence of which we have
just shown to be impossible. Thus the non existence of two valued finitely
additve measures on L£(H) is proved also when dim(H) = oco. Actually
this argument yields the much more general result that if the quantum
logic contains L(C™) as a sublogic for some n > 3, it does not admit any
two valued measures, and hence no dispersion free states.

The reader should note the contrast with Boolean algebras where there
are always two-valued measures. In the Boolean algebra case this result,
going back to Stone, is at the very foundation of set theory and Boolean
logic, indeed, it is equivalent to the axiom of choice when properly formu-
lated; it is therefore remarkable that the Mackey—Gleason analysis led to
the discovery that the logic of quantum mechanics, with its characteristic
feature of the complementarity principle, is at a profound variance with
classical logic.

Unfortunately, by the time these results were obtained, von Neumann
was dead, but one can be sure however that they would have pleased him.
There is also another point, namely, the question of the possible extension
of Gleason’s theorem to the lattice of projections in other von Neumann
algebras. The Gleason theorem has indeed been extended to the case of the
lattice of projections on fairly arbitrary von Neumann algebras with some
mild restriction. The subject is a part of non commutative integration
which was pioneered by von Numann and which has eventually led to the
modern theory of non commutative geometry.

One final remark may be made. In recent years there has been a flurry
of activity and results, both experimental and theoretical, regarding the
hidden variables question. The theoretical results (Bell’s inequality etc)
do not change anything in the von Neumann—-Mackey—Gleason treatment;
they are less general, being dependent on some model or the other. Their
significance lies in the fact that they brought the question of consistency
and completeness of quantum mechanics to the realm of the experimenter,
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and led to some beautiful experiments [AG]. For all these matters see [BL]
[Va2] [WZ].

Quantum field theory. When physicists first started to develop
quantum field theory in the early 1930’s after Dirac’s theory of radiation
(see [vN2]), the idea was to apply the procedure of quantization to a
classical system of infinitely many degrees of freedom, such as the Maxwell
electromagnetic field. The classical description then involved an infinite
dimensional phase space and so one had an infinite number of canonical
variables ¢1,q2,...,p1,P2,.... But after some time people realized that
the commutation rules no longer have a unique representation and so the
procedure of quantization and dynamical evolution became ambiguous. In
the early 1950’s Friedrichs, and somewhat later, Segal, discussed why the
commutation rules have different representations. In his Seattle lectures
Mackey put this problem in a framework closely related to his 1949 paper
[Mal] in a formulation that made it crystal clear why these new phenomen
were coming up. He had two abelian standard Borel groups G and H in
a Borel duality

(,)V:GxH— St

and framed the basic question as the construction of pairs (U, V') where
U,V are unitary representations of G, H respectively, satisfying the Weyl
relation:

U(g)V(h) = x(g,M)V(R)U(g)  ((9,h) € G x H).

The difference from the classical situation is that the groups are G, H
are no longer locally compact, and in fact are usually defined by some
topological data that makes them infinite dimensional, reflecting the fact
that the classical system has infinitely any degrees of freedom. If G has
an invariant measure class under translations, then one can construct an
associated Schrodinger representation; but now it is no longer reasonable
to expect that the invariant measure class is unique, and so one gets dif-
ferent Schrodinger representations corresponding to the different invariant
measure classes.

I do not know if he pursued his way of formulating quantum field
theory beyond these preliminaries, especially as an alternative to the usual
treatments of what is now called constructive quantum field theory. It
would be interesting to see if a general approach along the lines of his ideas
would throw additional light on the problems of quantum field theory.
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His book [Ma4] contains a systematic exposition of an extensive part of
quantum theory from the point of view of unitary group representations.
In his later years he gave some detailed expositions of his approach to the
group theoretic foundations of quantum theory that touched on a variety
of topics, including gauge theory. The interested reader should look up
some of these [Mal3]; the article (a) in this set of references was the one
that I came across when I was a graduate student and it changed my entire
perspective instantly.

6. Concluding remarks. I have restricted myself only to those parts of
Mackey’s work with which I have some familiarity. I have not discussed
his work and ideas in many other areas such as ergodic theory which have
been both profound and influential. In fact, his notion of virtual subgroups
was the first hint that there was a deep theory hidden behind ergodic phe-
nomena. It must be clear to the reader even from my rather selective
discussion of his work that Mackey was a thinker of exceptional depth
and originality, and understood at a very fundamental level the relation
between the theory of representations of groups and homogeneous spaces
and modern physics. Nowadays many people are searching for a true gen-
eralization of the geometry of the physical world that would accommodate
both gravity and quantum theory-which will be non commutative at the
Planck scale and be a very good approximation to the Riemann-Einstein
geometry of spacetime at the ordinary scale. Although he himself did not
seriously participate in these developments I believe that Mackey’s ideas
and themes will find a resonance in this new frontier. It is the task of the
younger generation to discover this and move forward.
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