
3. The concept of a manifold

3.1. Concepts of space and ringed spaces. For over two thousand
years the only geometry for space was the Euclidean geometry, until Non
Euclidean geometry was created by the efforts of Bolyai , Lobachevsky , and
Gauss. However only after Riemann was it possible to think about geom-
etry, and the geometry of the space we live in, in a clear and fundamental
manner. In his famous Inaugural lecture of 1854 Riemann advanced cer-
tain view points that were revolutionary in his time, and are, even now,
remarkable. Riemann made the following points1.

1. Space, by itself, has no structure except its topology. The geometry

of space arises from matter filling space and the material phenomena

that take place in space.

2. The geometry of space has to be built from its smallest parts accessible

to observation.

3. The local geometry is to be decided by local observations.

4. In ultra small regions of space, concepts such as a light ray or a solid

body lose their meaning and one has to be prepared for the possibility

that the structure of space in such regions need not be a manifold; in

fact one has to investigate seriously alternative structures.

The discovery of general relativity by Einstein in which the metric of space
time is a dynamic object that varies with the matter filling space time,
and the ideas of the high energy physicists leading to the creation of new
super symmetric models for space time, show how prophetic Riemann’s
vision was.

In order to start the process of translating some of these views into
mathematics the first step is to axiomatize the idea that one has to build
space from its smallest parts. The correct way to do this, at least in the
first approximation, is by the concept of a sheaf of functions. Let X be a
topological space. By a sheaf of functions on X we mean an assignment

O = OX : U 7−→ O(U) (U ⊂ X open )

1 Riemann’s lecture was published after his death in his Collected Papers. There

are English translations, one by Clifford (se his Collected Papers) and by Spivak (Vol

II of his books on Differential Geometry, pp. 132–153).
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such that

(i) O(U) is a commutative ring of functions on U with numerical values
(say in a field k), and containing the constant function 1

(ii) If V ⊂ U is open, the restriction map from U to V takes O(U) into
O(V )

(iii) If Ui ⊂ X are open and U =
⋃

i Ui, and if fi ∈ O(Ui) are given such
that fi and fj coincide on Ui ∩ Uj , there is a f ∈ O(U) such that f
coincides with fi on Ui.

Elements of O(U) may be thought of as the results of measurements in
U . The pair (X,O) is a ringed space; for any open Y ⊂ X the assignment
OY : U 7−→ O(U) when U varies over open subsets of Y , gives us a ringed
space (Y,OY ) which is called the open subspace of (X,OX). Once we
decide what the structure of the ringed spaces OY is for small Y we have
the notion of space. We refer to the ringed spaces Y for small Y as local

models. If (U,OU ) is a ringed space, a ringed space (X,OX) has (U,OU )
as a local model if we can cover X by open sets Ui such that (Ui,OUi

) is
isomorphic to (U,OU ).

3.2. Manifolds with various types of smoothness. We look at some
examples.

Manifolds of class Cr(0 ≤ r ≤ ∞). Here k = R and the local model
is (U, Cr) where U ⊂ Rm is open and Cr is the sheaf V 7−→ Cr(V ) where
f ∈ Cr(V ) if and only if it has continuous derivatives of order up to and
including r. Here r is finite; for r = ∞, C∞(V ) is simply the class of C∞

functions on V . An equivalent way to define the Cr manifolds is to cover
X by an atlas of charts which are linked by Cr maps.

k-analytic manifolds where k is a complete field with absolute value.

An absolute value on a field k is a function | · | from k into nonnegative
reals with the following properties:

(a) |0| = 0, |1| = 1, |x| > 0 for x 6= 0; moreover there is a ∈ k such that
0 < |a| < 1.

(b) |xy| = |x||y|
(c) |x + y| ≤ |x| + |y|
The condition (a) ensures that the topology of k is non discrete. The
function d(x, y) = |x − y| then converts k into a metric space and we
require k to be complete in what follows. If U ⊂ km is open we write
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A(U) for the space of functions which are analytic on U ; here a function
f defined on U with values in k is analytic if for each x0 ∈ U there is a
convergent power series about the point x0 that represents the function
f in a polydisk around x0. More precisely, let r = (r1, r2, . . . , rm) be a
polyradius (ri > 0 for all i) and

D(r) = {t = (t1, t2, . . . , tm) ∈ km, |ti| < ri};

then
f(x0 + t) =

∑

k≥0

cktk (t ∈ D(r)).

here we abbreviate as usual (k1, . . . , km), ck1,...,km
, tk1

1 . . . tkm

m into k, ck, tk

as usual. Multiplication of convergent series tells us that A(U) is a k-
algebra. The standard argument of translating a power series shows that
if f is given by a convergent power series in D(r), then it is analytic on
D(r).

The usual examples are when k = R,C with the standard absolute
values to give us the real and complex analytic manifolds. The complex
analytic manifolds are usually defined differently; the analyticity is defined
through the Cauchy-Riemann equations. But Weierstrass showed that the
method of defining analytic functions through convergent power series will
form a perfectly adequate foundation for the theory of analytic functions
and analytic varieties. For arbitrary fields it is the only method available.

One of the most interesting examples is obtained when k = Qp, the
field of p-adic numbers. The p-adic absolute value |·|p on Q (the rationals)
is defined by

|x|p =

{

0 if x = 0
p−a if p = pa m

n where a, m, n ∈ Z, m, n are prime to p.

We also write
a = vp(x).

It is standard that |·|p is an absolute value on Q which satisfies the triangle
inequality in a sharp form:

|x + y|p ≤ max(|x|p, |y|p).

An absolute value with this property (on any field) is called ultrametric

or non-archimedean. The completion of Q with respect to | · |p is Qp.
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There are two basic results which one has to keep in mind. The first
is that if k is a complete field with absolute value, then either k = R,C or
else k is non-archimedean. The second is that up to replacing an absolute
value by a power of it, any absolute value on Q is either the standard one
or the p-adic for some prime p (Ostrowski’s theorem).

Remark 1. The archimedean axiom says that if a, b are any two non-
zero elements of a field with absolute value, we can find an integer N ≥ 1
such that |Na| > |b|. The real and complex fields are thus archimedean.
The ultrametric fields are not; if |a| ≤ 1, |b| > 1, then |Na| ≤ 1 for all inte-
gers N . In physics the non-archimedean field became interesting when Igor
Volovich, in a famous paper in the late 1980’s, suggested that for studying
fundamental phenomena, one should perhaps explore space times based on
a non-archimedean geometry. His reasoning (roughly speaking) was that
at the Plank scale (10−33 cm.), as no observations are possible, length
measurements make no sense and so the archimedean principle is invalid.
Quantum field theory based on non-archimedean space times (over finite

or p-adic fields) leads to very interesting and open mathematical prob-
lems. On the historical side, Hilbert was the first to construct examples
of non-archimedean geometries.

Remark 2. The topology on Qp is totally disconnected (t.d); this
means that the family of sets which are at the same time open and closed,
forms a basis for the topology. In fact the balls B(t, r) = {x ∈ Qp, |x−t| ≤
r} are compact and open for each t ∈ Qp, r > 0 and form a basis for the
topology. Th Qp are thus locally compact.

The fields Qp have the power of the continuum. Let Zp be the closure
of the ring of integers. the elements of Zp are called p-adic integers and
they form a compact open subring. Let us take a set of residues mod p,
say {0, , 2, . . . , p− 1}. Then the elements of Zp have unique expansions of
the form

x = a0 + a1p + a2p
2 + . . . , (ai ∈ {0, 1, . . . , p − 1}.

So it is obvious that Zp, hence Qp, has the power of the continuum.
One can solve many equations over Qp that cannot be solved over Q;
for instance, we can always solve X2 = A for any integer A if we can
solve it mod p. As an example, consider p ≡ 1 mod 4 and X2 = −1,
which is solvable mod p (Euler), or more generally, X2 = A where A is a
quadratic residue mod p. This is a consequence of Hensel’s lemma. Hensel
was a great non-archimedean analyst, one of a long line of distinguished
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non-archimedean analysts from Germany such as Kummer, Hensel, Witt,
etc.

Remark 3. Over ultrametric fields the principle of analytic contin-

uation fails for analytic functions: the characteristic function of a closed-
open set is analytic. In the 1970’s John Tate overcame this difficulty by
creating a beautiful theory of rigid analytic spaces.

Remark 4. Let us return to the function vp defined on Q earlier:
for a rational number x, vp(x) = a means that x = pa(m/n) where m, n
are prime to p; we define vp(0) = ∞. Then vp has the following properties
that correspond to the properties of the absolute value:

(a) vp(x) is a finite integer for c ∈ Q× and vp(p) = 1

(b) vp(xy) = vp(x) + vp(y)

(c) vp(x + y) ≥ min(vp(x), vp(y)).

A function such as this on a field is called a valuation. Ostrowski’s the-
orem can now be restated as the assertion that the only valuations on Q

are the vp for various primes p. Thus the absolute values or the valuations
determine completely the arithmetic of Q. In the noneteenth century,
even great mathematicians like Dirichlet and Gauss were stuck becasue
of the failure of unique factorization theorem of number theory in more
general number fields. Gauss had studied Q[

√
−1] which admits unique

factorization, but, defining prime numbers in number fields in imitation
of the ordinary numbers leads to unpleasant non uniqueness of prime fac-
torization:

6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5).

It was Kummer who realized that unique factorization can be restored
if one identifies primes with valuations. In a great series of papers he
constructed all the valuations of the cyclotomic fields Q[e2πi/ℓ] and laid
the founations of modern algebraic number theory. Kummer’s theory was
later generalized to include all algebraic number fields by Kronecker and
Dedekind.

The methods of p-adic or more generally, non-archimedean, analysis
offers a more transcendental approach to the study of arithmetical ques-
tions. The great power of this approach is due to the local compactness of
the Qp and their finite extensions, so that one has a full-fledged Fourier
transform theory on them.

Remark 5. The proof that a convergent power series defines an
analytic function inside the polydisk of its convergence goes as follows. I
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give it in one variable, but the proof needs no change in several variables.
Consider a series

f(z) =
∑

n≥0

cnzn

convergent for |z| < r and fix z0 with |z0| < r. Choose r1, r2 with |z0| <
r1 < r2 < r, and write z = z0 + h where |h| < r1 − |z0|. Then

f(z0 + h) =
∑

m≥0

bmhm, bm =
∑

n≥m

cn

(

n

m

)

zn−m
o .

The main argument is that everything converges if we replace all the
quantities by their absolute values, and use |r.1| ≤ r for r = 0, 1, 2, . . .. If
|cn|rn

2 ≤ M then

∑

n≥m≥0

|h|m|cn|
(

n

m

)

|z0|n−m ≤ M
∑

n≥m≥0

r−n
2 |z0|n−m

(

n

m

)

(r1 − |z0|)m

≤ M
∑

n≥0

(r1/r2)
n < ∞.

For the basic aterial on k-analytic manifolds see Serre’s Harvard lec-
ture Notes Lie Algebras and Lie groups.

Problems

1. Prove the analyticity of a function defined by a power series when the
number of variables is > 1.

2. Prove from first principles that if we can solve the equation X2 ≡ A
mod p where p is an odd prime and A is a fixed integer, then we can
find a solution in Qp. (Hint : If there is xn ∈ Z such that x2

n ≡ A mod
pn, show that we can find xn+1 ∈ Z such that xn+1 ≡ xn mod pn

and x2
n=1 ≡ A mod pn+1; then x = limxn exists in Qp and satisfies

x2 = A.)

3. Verify that the expansion in powers of p of p-adic integers does not

give an isomorphism of Zp with a formal power series ring (there is the
“carrying over”phenomenon characteristic of multiplying or adding
numbers in a fixed scale). But if F is a finite field prove that the
formal Laurent series in an indeterminate T with coefficients in F is
a complete field F ((T )) with an absolute value such that |T | < 1.
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4. Show how to construct products in the category of k-analytic mani-
folds.

5. Prove that the Qp as well as F ((T )) are locally compact.

Algebraic (Serre) varieties. The modern foundations of algebraic ge-
ometry were laid by Zariski and Weil. But in the procesxs a large part of
the geometric intuition was lost, and it was Serre who restored it substan-
tially. In a famous paper Faisceaux algbriques cohrents in the Annals in
1955 he showed how an algebraic variety could be defined in a manner very
similar to a differentiable manifold, using the Zariski topology instead of
the usual one. We call these the Serre varieties. They are adequate to
study almost all parts of the theory of linear algebraic groups as well as
large parts of classical algebraic geometry. A little while after Serre’s pa-
per appeared Grothendieck introduced the notion of a scheme that finally
became the definitive foundation for algebraic geometry.

A Serre variety is a ringed space of functions (X,O); the only point
to decide is the choice of the local model. The main departure from
the theory of differentiable or analytic manifolds is the fact that the local
models are not open (even Zariski open) subsets of km but affine varieites.
I shall elucidate this point now.

Let k be an algebraically closed field of arbitrary characteristic. WE
define an algebraic set to be a subset of some km defined as the set of zeros
of a set of polynomial functions on km. The functions on the algebraic sets
are the restrictions to the set of the polynomials on the ambient space.
On km we have the Zariski topology a basis of which consists of the sets
of the form {x ∈ km | P (x) 6= 0} where P is a polynomial. An algebraic
set in km inherits the relative Zariski topology. One can use Hilbert’s
Nullstellensatz to defiine the algebraic sets with theor Zariski topology
in a coordinate-independent manner as follows. We start with an affine

algebra A, namely a finitely generated k-algebra which is reduced in the
sense that it has no nonzero nilpotents. Then Spec(A) as the set of its
homomorphisms into k,

XA := Spec(A) := Hom(A, k).

For each a ∈ A we define

â(χ) = χ(a) (χ ∈ Spec(A)),

thus allowing us to view each a as a function on Spec(A), namely the
function χ 7−→ χ(a). The map a 7−→ â is a homomorphism of A into the k-
algebra of all functions on Spec(A); the fact that A is reduced implies that
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this map is injective. On Spec(A) we have the weak or Zariski topology ,
namely the topology whose open sets are unions of sets of the form Ωa :=
{χ | â(χ) 6= 0}. For any open U ⊂ XA the elements f of O(U) are the
functions f 7−→ k such that for each χ ∈ U there is some a ∈ A with the
property that Ωa ⊂ U and f(χ) = b̂(χ/ân(chi) for a suitable b ∈ A and
integer n ≥ 0. It can be shown that this is a sheaf and converts XA into
a ringed space, called the affine Serre variety. . A Serre variety is then
a ringed space such that for some finite covering (Ui), each of the open
subspaces defined by the Ui is isomoprhic to an affine Serre variety (plus
a separation axiom)2

The notion of a ringed space of functions needed to be generalized
before the definitive treatment of algebraic geometry was possible. This
was achieved by Grothendieck who replaced the sheaf of rings of functions
by an abstract sheaf of rings. The ringed space is now a pair (X,O) where
for each open U , O(U) is a commutative ring with unit; the restriction
maps O(U) −→ O(V ) have now to be specified as part of the data defining
the ringed space. In defining the morphisms the pull-back maps have also
to be specified as part of the data defining the morphisms.

Super manifolds. In the 1970’s the physicists, propelled by a desire
to build divergence-free quantum field theories, began the exploration of
new models for space time based on the newly discovered concept of super

symmetry. A super symmetric manifold, or a super manifold for short,
ias a new type of manifold whose local cooedinates include, ina ddition to
the usual ones, a set of Grassmann variables. The Grassmann variables
were intended to encode the fermionic structure of matter. The point here
is that matter is composed of fermionic particles like the electrons, pro-
tons, neutrons and so on, which obey the so-called exclusion principle of

Pauli : no two fermions occupy the same quantum state. Mathematically,
a super manifold is a ringed space (X,O) where X has the structure of
a smooth manifold in the classical sense and the rings |oo(U) are mildly
non-commutative, of the form C∞(U) ⊗ Λ[ξ1, ξ2, . . . , ξn], the ξj being in-
determinates satisfying

ξrξs + ξsξr = 0 (r, s = 1, 2, . . . , n).

2 For a very nice treatment of Serre varieties see Volume 2 of J. Dieudonne’s beau-

tiful little book Cours de géometrie algébrique; the first volume of this book gives a

nice historical perspective on algebraic geometry.
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Notice that the local rings O(U) = C∞(U) ⊗ Λ[ξ1, ξ2, . . . , ξn] are non-
commutative. Moreover, the Grassmann variables become 0 when evalu-
ated so that the ringed space is not a ringed space of functions. So the
techniques of working with super manifolds have to borrow quite a bit
from the Grothendieck theory of schemes.

Problems

1. Explicitly construct projective space Pm(k) as a Serre variety.

2. Explicitly describe the curve y2 = x3 + x as an affine variety in k2

and as a projective variety in P2(k).

3. If k is a field with absolute value, show that a rational function is
analytic. Can you construct analytic functions which are not rational?

4. Show that the ringed space Rm|n := (Rm,Om|n) is a super manifold
if Om|n(U) = C∞(U) ⊗ Λ[ξ1, . . . , ξn].
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