
6. Matrix Lie groups

6.1. Definition and the basic theorem. A topological group is
called a matrix Lie group if it is homeomorphic to a closed subgroup
of some GL(n,R). By Von Neumann’s theorem a matrix Lie group is a
Lie group/We want to prove the basic theorem that the Lie structure is
uniquely determined by the topology. More precisely we want to prove:

Theorem 1. let Gi ⊂ GL(ni,R)(i = 1, 2) be closed subgroups and
f(G1 −→ G2) a continuous homomorphism. Then f is analytic.

The proof requires several steps and will be given in the following para-
graphs.

The special case when G1 = R. We write G1 = R and G2 = G.
Let g = Lie(G). Then for any X ∈ g the map

hX : t 7−→ exp tX

is an analytic homomorphism of R into G: hX is analytic, hX(0) = I, and

hX(t + t′) = hX(t)hX(t′) (t, t′ ∈ R).

We now have

Proposition 1. Any continuous homomorphism of R into G is of the
form hX for a unique X ∈ Lie(G).

Proof. We can take G to be GL(n,R). For if we can prove this special
case, then the X we have is automatically in Lie(G) by definition of Lie(G).
On GL(n,R) we have the function log defined for elements u with |u−I| <

1 by

log u =
∑

n≥1

(−1)n−1
(u − I)n

n
.

We have the functional equation

log(uv) = log(u) + log(v) (uv = vu)
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valid if u, v are sufficiently close to I and commute with each other. Sup-
pose now h is a continuous homomorphism of R into GL(n,R). Then

H(t) = log h(t)

is defined for |t| sufficiently small. Moreover, as the h(t) commute with
each other we see that

H(t + t′) = H(t) + H(t′) (|t|, |t′| << 1).

Each entry of the matrix H(t) satisfies this equation and is continuous.
The classical argument of Hamel shows now that there is a matrix X such
that

H(t) = tX

for |t| sufficiently small. hence

h(t) = hX(t)

for |t| sufficiently small, and so for all t.

Exponential coordinates of the second kind. Let {X1, . . . , Xm}
be a basis for g. Then we have an analytic map of Rm into G given by

E : (t1, . . . , tm) 7−→ exp(t1X1) . . . exp(tmXm).

It follows easily that this map has a bijective differential at the origin
0 = (0, . . . , 0) and so is a diffeomorphism in a neighborhood of 0. In other
words every element x ∈ G sufficiently close to the identity in G can be
expressed as a product exp(t1X1) . . . exp(tmXm) where the ti are uniquely
determined by x and are analytic functions of x. The ti are often called
exponential coordinates of the second kind for G.

Proof of theorem. Let f be a continuous homomorphism of G1 into G2.
We use exponential coordinates of the second kind for G1, say, (t1, . . . , tm).
In these coordinates the map f becomes

(t1, . . . , tm) 7−→ f(exp t1X1) . . . f(exp tmXm).

Now for any i = 1, 2, . . . , m, the map t 7−→ f(exp tXi) is a continuous
homomorphism of R into G2 and so there is Zi ∈ Lie(G2) such that
f(exp tXi) = exp tZi for all t. Hence f becomes

(t1, . . . , tm) 7−→ exp t1Z1) . . . exp tmZm).
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which is obviously analytic.

Uniqueness of the Lie structure. Suppose that G ⊂ GL(ni,R)
for i = 1, 2 and the identity map of G is a homeomorphism. Then by
Theorem 6.1 it is analytic in both directions and hence is an analytic
isomorphism. Ths is the uniqueness of the analytic structure.
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