6. Matrix Lie groups

6.1. Definition and the basic theorem. A topological group is
called a matrixz Lie group if it is homeomorphic to a closed subgroup
of some GL(n,R). By Von Neumann’s theorem a matrix Lie group is a
Lie group/We want to prove the basic theorem that the Lie structure is
uniquely determined by the topology. More precisely we want to prove:

Theorem 1. let G; C GL(n;,R)(i = 1,2) be closed subgroups and
f(G1 — G3) a continuous homomorphism. Then f is analytic.

The proof requires several steps and will be given in the following para-
graphs.

The special case when GG; = R. We write G; = R and G, = G.
Let g = Lie(G). Then for any X € g the map

hx :t—exptX
is an analytic homomorphism of R into G: hx is analytic, hx (0) = I, and
hx(t+1t)=hx(t)hx(t) (t,t' € R).
We now have

Proposition 1. Any continuous homomorphism of R into G is of the
form hx for a unique X € Lie(G).

Proof. We can take G to be GL(n,R). For if we can prove this special
case, then the X we have is automatically in Lie(G) by definition of Lie(G).
On GL(n, R) we have the function log defined for elements u with |u—1] <

1 by
logu = Z(—l)”_lL -

n
n>1

We have the functional equation
log(uv) = log(u) + log(v) (uv = vu)
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valid if u, v are sufficiently close to I and commute with each other. Sup-
pose now h is a continuous homomorphism of R into GL(n, R). Then

H(t) = logh(t)

is defined for |t| sufficiently small. Moreover, as the h(t) commute with
each other we see that

H(t+t)=H(t)+ H(t) (It], |t'] << 1).

Each entry of the matrix H(t) satisfies this equation and is continuous.
The classical argument of Hamel shows now that there is a matrix X such
that

H(t)=tX

for |t| sufficiently small. hence
h(t) = hx(t)
for |t| sufficiently small, and so for all .

Exponential coordinates of the second kind. Let {X;,..., X,,}
be a basis for g. Then we have an analytic map of R™ into G given by

E:(ty,...,tm) — exp(t1X1)...exp(tmXm).

It follows easily that this map has a bijective differential at the origin
0=(0,...,0) and so is a diffeomorphism in a neighborhood of 0. In other
words every element x € G sufficiently close to the identity in G can be
expressed as a product exp(t1X1) .. .exp(t,, X,,) where the t; are uniquely
determined by z and are analytic functions of x. The t; are often called
exponential coordinates of the second kind for G.

Proof of theorem. Let f be a continuous homomorphism of GG; into Gs.
We use exponential coordinates of the second kind for Gy, say, (t1,...,tm).
In these coordinates the map f becomes

(t1, ... tm) — flexpt1 X7) ... flexpt,Xm).

Now for any i = 1,2,...,m, the map t — f(exptX;) is a continuous
homomorphism of R into Gy and so there is Z; € Lie(G3) such that
flexptX;) = exptZ; for all t. Hence f becomes

(t1,... tm) — expt1Zy) ...expt;,Zm).
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which is obviously analytic.

Uniqueness of the Lie structure. Suppose that G C GL(n;,R)
for i« = 1,2 and the identity map of G is a homeomorphism. Then by
Theorem 6.1 it is analytic in both directions and hence is an analytic
isomorphism. Ths is the uniqueness of the analytic structure.



