5. Matrix exponentials and Von Neumann’s theorem

5.1. The matrix exponential. For an \(n \times n \) matrix \(X \) we define

\[
e^X = \exp X = I + X + \frac{X^2}{2!} + \ldots = \sum_{n \geq 0} \frac{X^n}{n!}.
\]

We assume that the entries are complex so that \(\exp \) is well defined on \(\mathcal{A} \), the algebra of \(n \times n \) matrices. We denote by \(|\cdot| \) a norm on \(\mathcal{A} \) with the property that \(|XY| \leq |X||Y| \). Such norms are easy to construct: if \(|\cdot| \) is a norm on \(\mathbb{C}^n \) we can take

\[
|X| = \sup_{u \in \mathbb{C}^n, |u| \leq 1} |Xu|.
\]

Since \(|X^n| \leq |X|^n \), the series for \(\exp X \) is majorized in norm by the numerical series for \(e^{|X|} \). This shows that the series for \(\exp X \) is absolutely convergent everywhere and uniformly on compact (=bounded in norm) subsets of \(\mathcal{A} \). Hence \(\exp X \) is a holomorphic matrix valued function on \(\mathcal{A} \). Its properties resemble closely those of the ordinary exponential function.

(i) \(\exp 0 = I \)
(ii) \(\exp(X + Y) = \exp X \exp Y \) if \(X \) and \(Y \) commute
(iii) \(\exp X \exp -X = I \). In particular \(\exp \) takes values in \(\text{GL}(n, \mathbb{C}) \).
(iv) \(\frac{d}{dt} \exp tX = X \exp tX = (\exp tX)X \).
(v) If \(X_n \to X \), then

\[
\exp X = \lim_{n \to \infty} \left(I + \frac{X_n}{n} \right)^n.
\]

The proofs of these are very similar to the corresponding proofs in the scalar case except that (ii) requires a little more care. In fact, it is only when \(X \) and \(Y \) commute that we can write

\[
(X + Y)^n = \sum_{0 \leq r \leq n} \binom{n}{r} X^r Y^{n-r}
\]
so that
\[\frac{(X + Y)^n}{n!} = \sum_{0 \leq r \leq n} \frac{X^r}{r!} \frac{Y^{n-r}}{(n-r)!}. \]

Then, with \(X \) and \(Y \) commuting,
\[\exp(X + Y) = \sum_{n \geq 0} \sum_{0 \leq r \leq n} \frac{X^r}{r!} \frac{Y^{n-r}}{(n-r)!} = \sum_r \frac{X^r}{r!} \sum_s \frac{Y^s}{s!} = \exp X \exp Y. \]

For (v) we proceed as in the scalar case and write
\[\left(I + \frac{X_n}{n} \right)^n = \sum_{0 \leq r \leq n} \frac{n^r}{r^r} = \sum_{r \geq 0} u_r(n) \]
where
\[u_r(n) = \begin{cases} \frac{X^r}{r!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \ldots (1 - \frac{r-1}{n}) & \text{if } r \leq n \\ 0 & \text{if } r > n. \end{cases} \]

We may assume that \(|X_n| \leq C\) for some constant \(C \) for all \(n \); then we have the estimate
\[|u_r(n)| \leq \frac{C^r}{r!} \]
for all \(r \) uniformly in \(n \), so that
\[\lim_{n \to \infty} \left(I + \frac{X_n}{n} \right)^n = \lim_{n \to \infty} \sum_{r \geq 0} u_r(n) = \sum_{r \geq 0} \lim_{n \to \infty} u_r(n) = \sum_{r \geq 0} \frac{X^r}{r!} = \exp X. \]

Besides these we have two less obvious limit formulae. The first one is a special case of the Trotter product formula valid in vastly greater generality, in the setting of Hilbert spaces and exponentials of unbounded self adjoint operators.

Proposition 1. We have the following.

(i) \(\exp(X + Y) = \lim_{n \to \infty} \left(\exp\left(\frac{X}{n} \right) \exp\left(\frac{Y}{n} \right) \right)^n \)

(ii) \(\exp[X, Y] = \lim_{n \to \infty} \left(\exp\left(\frac{X}{n} \right) \exp\left(\frac{Y}{n} \right) \exp\left(-\frac{X}{n} \right) \exp\left(-\frac{Y}{n} \right) \right)^n \)
Proof. For (i) we use \(\exp \left(\frac{X}{n} \right) = I + \frac{X}{n} + O \left(\frac{1}{n^2} \right) \) to find that

\[
\left(\exp \left(\frac{X}{n} \right) \exp \left(\frac{Y}{n} \right) \right)^n = \left(I + \frac{X + Y}{n} + O \left(\frac{1}{n^2} \right) \right)^n
\]

and the limit of the right side is \(\exp(X + Y) \). For (ii) we need to expand the exponentials to the third order. We have

\[
\exp \left(\frac{X}{n} \right) = I + \frac{X}{n} + \frac{X^2}{2n^2} + O \left(\frac{1}{n^3} \right).
\]

It is then an easy calculation to find that

\[
\exp \left(\frac{X}{n} \right) \exp \left(\frac{Y}{n} \right) \exp \left(-\frac{X}{n} \right) \exp \left(-\frac{Y}{n} \right) = I + \frac{[X,Y]}{n^2} + O \left(\frac{1}{n^3} \right)
\]

from which (ii) follows at once.

Remark. All the above results are true if we replace \(\mathbb{C} \) by \(\mathbb{R} \).

5.2. Proof of Von Neumann’s theorem.

Von Neumann’s theorem is the following.

Theorem (Von Neumann). Let \(G \) be a closed subgroup of \(\text{GL}(n, \mathbb{R}) \). Then \(G \) is a submanifold whose connected components all have the same dimension. In particular \(G \) is a Lie group.

Proof. We introduce

\[
g = \{ X \in \mathfrak{gl}(n, \mathbb{R}) \mid \exp tX \in G \text{ for all } t \in \mathbb{R} \}.
\]

Select a matrix norm \(|\cdot| \) on \(\mathfrak{gl}(n, \mathbb{R}) \). It is immediate from Proposition 1 that if \(X, Y \in g \), then \(cX, X + Y, [X,Y] \) are all in \(g \) for \(c \in \mathbb{R} \). Hence \(g \) is a Lie algebra. We select a linear space \(a \subset \mathfrak{gl}(n, \mathbb{R}) \) such that \(g \oplus a = \mathfrak{gl}(n, \mathbb{R}) \). Let \(E \) be the map \(g \times a \to \text{GL}(n, \mathbb{R}) \) defined by

\[
E(X,Y) = \exp X \exp Y.
\]

It is immediate that \(E \) is analytic and its differential is bijective at \((0,0) \).

In fact

\[
dE_{(0,0)}(X,Y) = dE_{(0,0)}(X,0) + dE_{(0,0)}(0,Y) = X + Y
\]
so that $dE_{(0,0)}$ is surjective, hence bijective. Hence E is a diffeomorphism at $(0,0)$. So there is a number $a > 0$ such that E maps $g_a \times a_a$ diffeomorphically onto an open neighborhood G_a of I in $\text{GL}(n, \mathbb{R})$; here, for any subspace $m \subset \mathfrak{gl}(n, \mathbb{R})$ we write m_a for the open ball of center 0 and radius a in m. Thus any element $x \in G_a$ can be written uniquely a $x = \exp A \exp B$ where $A \in g_a, B \in a_a$; if $x \to 1$, then $A, B \to 0$.

We claim that for some $b > 0$ with $0 < b < a$, E maps g_b onto $G_b \cap G$. If this were not true, we can find $x_n \in G_a, x_n \to 1$ but $x_n = \exp A_n \exp B_n$ where $A_n \in g_a, B_n \in a_a$ with $A_n, B_n \to 0$ and $B_n \neq 0$ for all n. If $y_n = \exp(-A_n)x_n$, then $y_n \in G, y_n \to 1, y_n = \exp B_n$ where $B_n \in a, B_n \neq 0, B_n \to 0$. The B_n are very small and so we want to blow them up to look more closely at them. Since $B_n \neq 0$ we can find an integer $r_n \geq 1$ such that

$$|r_nB_n| \leq 1, \quad (r_n + 1)|B_n| > 1.$$

The sequence $(r_n B_n)$ must have a convergent subsequence, and so, replacing it by this subsequence we may assume that

$$X = \lim_{n \to \infty} r_n B_n$$

exists. Clearly $|X| \leq 1$; on the other hand, $|r_n B_n| \geq |(r_n + 1)B_n| - |B_n| \geq 1 - |B_n|$ and so, letting $n \to \infty$, we have $|X| \geq 1$ also. Hence $|X| = 1$, in particular, $X \neq 0$.

We claim that $\exp tX \in G$ for all $t \in \mathbb{R}$. It is enough to show this for all rational $t > 0$. Writing $t = c/k$ where c, k are integers ≥ 1, it is enough to show that $\exp((1/k)X) \in G$ for all integers $k \geq 1$. We use the argument that if $y_n^{m_n}$ has a limit where the m_n are integers ≥ 1, then this limit must be in G. Certainly $\exp(r_n B_n) = y_n^{r_n} \in G$ for all n and so $\exp X = \lim_{n \to \infty} y_n^{r_n} \in G$. Write $r_n = ks_n + t_n$ where $0 \leq t_n < k$. Then

$$\exp \left(\frac{r_n}{k} B_n \right) = \exp(s_n B_n) \exp \left(\left(\frac{t_n}{k} \right) B_n \right).$$

Since $|(t_n/k)B_n| \leq |B_n| \to 0$, it follows that

$$\lim_{n \to \infty} \exp(s_n B_n) = \lim_{n \to \infty} y_n^{s_n} = \exp \left(\frac{1}{k} X \right)$$

and so $\exp((1/k)X) \in G$ as we wanted.
E is thus a diffeomorphism of $g_b \times a_b$ with G_b and we have in addition that $G_b \cap G$ corresponds to g_b under E. It is immediate that $G_b \cap G$ is a submanifold of G_b. This finishes the proof of the theorem.

Remark. The result is false for complex groups; just consider the unitary groups $U(n) \subset \text{GL}(n, \mathbb{C})$. But if we can prove that g as defined above is closed under multiplication by $i = \sqrt{-1}$, then the proof will go through and establish that G is a complex submanifold, hence a complex Lie group.

We call g the *Lie algebra of* G and denote it by $\text{Lie}(G)$.

Problems

1. Determine $\text{Lie}(G)$ for the classical groups.