12. Hilbert’s fifth problem for compact groups: Von Neumann’s theorem

12.1. The Hilbert problem. In his address entitled Mathematical
Problems before the International Congress of Mathematicians in Paris
in 1900, David Hilbert proposed a list containing 23 problems varying
over almost all branches of mathematics with the idea that their solutions
would lead to progress in mathematics. To a remarkable extent he was
prophetic. Among these problems the 5" concerns us in this section.
Hilbert’s question was the following;:

How far Lie’s concept of continuous groups of transformations is ap-
proachable in our investigations without the assumption of the differ-
entiability of the functions defining the transformations of group.

More precisely, let G be a topological group acting continuously on a
topological space M by the action

(9,z) — glz] = F(g,2) (9 € G,z e M).

The functions
F:GxM-—M

are continuous and the functional equations

F(g1,92,%) = F(g1,F(92,7)), Fle,z)=x (*)

summarize completely the action. Suppose now that both the group and
the space have the property that their elements can be described by a finite
number of real parameters. In terms of these parameters the functions
F become numerical functions of several real variables; Hilbert’s question
then asks if we can change the parameters in such a way that the functions
F become differentiable or analytic when expressed in terms of the new
parameters.

Let us call a topological space locally Euclidean if each point of it
has a neighborhood that is homeomorphic to a cell in a Euclidean space.
Here, by an n-cell or a cell in R™ we mean a subset I; X I3 X ...x I,, where
each I; is a nonempty open interval in R. Then in modern terminology,
Hilbert’s question becomes the following.

Let the topological group G and the topological space M be both locally
FEuclidean. Is it then possible to equip G and M with the structure of
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an analytic group and an analytic manifold, each compatible with its
topology, so that the action becomes analytic?

The case G = M and the action is by left (or right) translations is a
vry important one. The question then becomes

Is every locally Fuclidean topological group a Lie group?

It is in this form that the usual formulation of Hilbert’s 5" problem is
customarily given.

The first breakthrough came in 1933 when Von Neumann proved that
for a compact group the answer to Hilbert’s question was affirmative:

Theorem (Von Neumann). A compact locally Fuclidean group is a Lie
group.

Partial generalizations were then obtained by Pontryagin (for commuta-
tive G) and Chevalley (for solvable G). But the problem remained un-
solved till the 1950’s when Gleason and Montgomery-Zippin succeeded in
proving that the answer to Hilbert’s question was affirmative without any
restriction. In this section we shall discuss the case when G is compact
and give the proof of Von Neumann’s theorem that that a compact lo-
cally Euclidean group is a Lie group. The proof also yields the case of the
transformation group when the action is transitive.

12.2. Approximation by Lie groups. Since a locally Euclidean com-
pact group can be covered by a finite number of cells it is clear that such
a group always satisfies the second countability axiom. Hence we may
assume that G is second countable and compact. Fix a fundamental se-
quence of decreasing compact neighborhoods (U,,) of the identity element
e in G. We have seen earlier that we can find a closed normal subgroup
N,, C Uy, such that G/N,, is a Lie group. Now, if Hy, Hs are closed normal
subgroups such that G/H; is a Lie group for ¢ = 1,2, the imbedding

G/H1 ﬂHg — G/H1 X G/H2

shows that G/H;NHs is also a Lie group. Hence in the above construction
of the N,, we may assume that the N,, are decreasing.

We can actually arrange matters so that /N is any preassigned closed
normal subgroup H such that G/H is a Lie group. In fact, given H, we
choose (N,,) as before and note that G/H N N,, is a Lie group for all n.
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Thus (H N N,,) is a sequence which satisfies the requirements; we add H
as the first element of the sequence. We thus have

Proposition 1. Let (U,) be a fundamental sequence of compact neigh-
borhoods of e in G. Then we can find closed normal subgroups N,, of G
such that

N13N23N33...,ﬂnNn:{e}, NnCUn

such that G/Ny, is a Lie group for alln. Moreover, we can arrange matters
so that Ny = H where H is any given closed normal subgroup such that
G/H is a Lie group.

We say that G is approximated by Lie groups.

Let (G,) be any sequence of compact groups and for each n let us
assume that there is a surjective morphism of G,, 11 onto G,,. Let G, be
the set of all sequences (z,,) such that z,, € G,, for all n, and for each n,
ZTp41 lies above z,,. Then G, has a natural imbedding in the product of

all the G,,,
Goo C[[ G

and it is immediate that it is a closed subgroup of the product group.
Thus G, is a compact group, called the projective limit of the (Gy,). Let
us now write

G, := G/N,.

It is then clear that we have an injection
G — Gy.

We claim that this is a surjection. Indeed, if (z,) is a sequence in G, we
can find y,, € G such that y,, lies above x,, for all n. Select a subsequence
(Yn,,) such that ny < ng < ... and y,, — y as k — oo. It is then easily
seen that y lies above x,, for all n. Thus

G =lim G/N,,.
We have thus proved
Proposition 2. With (N,,) as earlier

G =1lim G/N,,.
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12.3. Lifting of one-parameter groups and cells. By a compact
n-cell of a topological space X we mean a subset of X homeomorphic to
a cube Ji X ... J, where the J; are nonempty compact intervals of R. We
want to prove the following.

Proposition 1. Let G be a compact group and H a closed normal sub-
group such that G/H is a Lie group. If a(t) is an one-parameter subgroup
of G/H we can find an one-parameter subgroup b(t) in G such that b(t)
lies above a(t) for all t.

Proof. We use approximation. Let (V,,) be as above with N; = H. Write
G, = G/N,. Suppose we have found an one-parameter subgroup (a,(t))
in G,,. Since G411 is a Lie group and G,,+1 — G, is surjective, the map
Lie(Gp41) — Lie(G,,) is surjective, and so we an find an one-parameter
subgroup (a,+1(t)) in G411 such that a,11(t) lies above a,(t) for all ¢.
So by induction we have one-parameter subgroups (a,(t)) in G, for all n
such that a,,4+1(t) lies above a,(t) for all n. Since G = lim._ G,, we have
unique b(t) € G for each t such that for each n, b(t) lies above a,,(t). It is
immediate that (b(t)) is an one-parameter subgroup in G and lies above
(an(t)) for all n.

Proposiiton 2. Let m = dim(G/H). Then we can find a compact neigh-
borhood C of the identity in G/H and a compact subset D of G such
that C nd D are compact m-cells and the natural map G — G/H is a
homeomorphism of D onto C'.

Proof. By using canonical coordinates of the second kind for G/H we
can find one-parameter groups ai(t),as(t),...,a,(t) in G/H such that
the map

@ (ti,ta, .. tm) — a1(tr)az(tz) . .. am(tm)

is a homeomorphism of the compact unit cube J C R™ onto a compact
neighborhood C of the identity e in G/H. Let (b;(t)) be an one-parameter
group in G above (a,;(t)) and let us cnsider the map

’QD . (tl,tg, . ,tm) [— bl(tl) .. bm(tm)

of J into G; let D be the image of J under 1. If 7w is the natural map
G — G/H, we have m o1 = ¢. Since ¢ is a homeomorphism, it follows
that v is also a homeomorphism, hense also the restriction of 7 to D.
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12.4. Proof of Von Neumann’s theorem. We need the following
Lemma which is a consequence of dimension theory of compact spaces.

Lemma. If A (resp. B) is a compact m-cell (resp. n-cell), and n > m,
B cannot be homeomorphic to a subset of A.

We start with the approximation

G=1imG,, G,=G/N,.

The proof depends on the following facts.

Proposition 1. If G has a neighborhood of the identity that is an m-
cell, then dim(G,,) < m for all n, and we have dim(G,,) is constant for
all sufficiently large n. In particular N, /Np+1 is finite for all sufficiently
large n.

Proof. Otherwise we can find n such that dim(G,) = k > m. We can
then find a compact k-cell inside GG, hence a compact k-cell D containing
the identity element of G. If F is a compact m-cell in G which is a
neighborhood of the identity, then END is a compact neighborhood of the
identity in D and so there is a compact k-cell F' such that ' C END C E.
This contradicts the Lemma.

We shall henceforth assume that the conditions of the Proposition are
satisfied for all n. In particular dim(G,) = k for all n. It will turn out
that &k = m but this is not needed at this time.

Proposition 2. Let C' be a compact k-cell which is a neighborhood of the
vdentity in G and let D C G be a compact set such that the natural map
7w : G — G /Ny is a homeomorphism of D onto C. Then the map

f:Dx Ny x Ny — DNy, flz,y) =zy

is a homeomorphism and DNy is a compact neighborhood of the identity
in G.

Proof. The first statement follows at once from the fact that 7 is a
homeomorphism on D. Since DN; = 7w~ 17(D), it is immediate that DN,
is a neighborhood of the identity in G.
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Proposition 3. N s totally disconnected.
Proof. We have noted already that the N7/N,, are all finite. Hence

is a closed subgroup of a product of finite groups and so is totally discon-
nected.

Proposition 4. We have k = m, N; is finite, and G itself is a Lie group.

Proof. Let E be a compact m-cell which is a neighborhood of the identity
element e in G. By shrinking this cell we may assume that £ C DNj.
Since DN; ~ D x N7 we may speak of the projection of E on N;. Let E’
be this projection. ThenFE’ is a connected compact neighborhood of the
identity in N;. Since Nj is totally disconnected, it follows that E' = {e}.
Hence E C D. But then ENN; = {e}, showing that H is discrete. Hence
N is finite and so G — G/Nj has finite kernel. This proves that G is a
Lie group and m = dim(G) = dim(G/N1) = k.



