
12. Hilbert’s fifth problem for compact groups: Von Neumann’s theorem

12.1. The Hilbert problem. In his address entitled Mathematical
Problems before the International Congress of Mathematicians in Paris
in 1900, David Hilbert proposed a list containing 23 problems varying
over almost all branches of mathematics with the idea that their solutions
would lead to progress in mathematics. To a remarkable extent he was
prophetic. Among these problems the 5th concerns us in this section.
Hilbert’s question was the following:

How far Lie’s concept of continuous groups of transformations is ap-
proachable in our investigations without the assumption of the differ-
entiability of the functions defining the transformations of group.

More precisely, let G be a topological group acting continuously on a
topological space M by the action

(g, x) 7−→ g[x] = F (g, x) (g ∈ G, x ∈M).

The functions
F : G×M −→M

are continuous and the functional equations

F (g1, g2, x) = F (g1, F (g2, x)), F (e, x) = x (∗)

summarize completely the action. Suppose now that both the group and
the space have the property that their elements can be described by a finite
number of real parameters. In terms of these parameters the functions
F become numerical functions of several real variables; Hilbert’s question
then asks if we can change the parameters in such a way that the functions
F become differentiable or analytic when expressed in terms of the new
parameters.

Let us call a topological space locally Euclidean if each point of it
has a neighborhood that is homeomorphic to a cell in a Euclidean space.
Here, by an n-cell or a cell in Rn we mean a subset I1×I2× . . .×In where
each Ij is a nonempty open interval in R. Then in modern terminology,
Hilbert’s question becomes the following.

Let the topological group G and the topological space M be both locally
Euclidean. Is it then possible to equip G and M with the structure of
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an analytic group and an analytic manifold, each compatible with its
topology, so that the action becomes analytic?

The case G = M and the action is by left (or right) translations is a
vry important one. The question then becomes

Is every locally Euclidean topological group a Lie group?

It is in this form that the usual formulation of Hilbert’s 5th problem is
customarily given.

The first breakthrough came in 1933 when Von Neumann proved that
for a compact group the answer to Hilbert’s question was affirmative:

Theorem (Von Neumann). A compact locally Euclidean group is a Lie
group.

Partial generalizations were then obtained by Pontryagin (for commuta-
tive G) and Chevalley (for solvable G). But the problem remained un-
solved till the 1950’s when Gleason and Montgomery-Zippin succeeded in
proving that the answer to Hilbert’s question was affirmative without any
restriction. In this section we shall discuss the case when G is compact
and give the proof of Von Neumann’s theorem that that a compact lo-
cally Euclidean group is a Lie group. The proof also yields the case of the
transformation group when the action is transitive.

12.2. Approximation by Lie groups. Since a locally Euclidean com-
pact group can be covered by a finite number of cells it is clear that such
a group always satisfies the second countability axiom. Hence we may
assume that G is second countable and compact. Fix a fundamental se-
quence of decreasing compact neighborhoods (Un) of the identity element
e in G. We have seen earlier that we can find a closed normal subgroup
Nn ⊂ Un such that G/Nn is a Lie group. Now, if H1,H2 are closed normal
subgroups such that G/Hi is a Lie group for i = 1, 2, the imbedding

G/H1 ∩H2 ↪→ G/H1 ×G/H2

shows that G/H1∩H2 is also a Lie group. Hence in the above construction
of the Nn we may assume that the Nn are decreasing.

We can actually arrange matters so that N1 is any preassigned closed
normal subgroup H such that G/H is a Lie group. In fact, given H, we
choose (Nn) as before and note that G/H ∩ Nn is a Lie group for all n.
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Thus (H ∩Nn) is a sequence which satisfies the requirements; we add H
as the first element of the sequence. We thus have

Proposition 1. Let (Un) be a fundamental sequence of compact neigh-
borhoods of e in G. Then we can find closed normal subgroups Nn of G
such that

N1 ⊃ N2 ⊃ N3 ⊃ . . . ,∩nNn = {e}, Nn ⊂ Un

such that G/Nn is a Lie group for all n. Moreover, we can arrange matters
so that N1 = H where H is any given closed normal subgroup such that
G/H is a Lie group.

We say that G is approximated by Lie groups.

Let (Gn) be any sequence of compact groups and for each n let us
assume that there is a surjective morphism of Gn+1 onto Gn. Let G∞ be
the set of all sequences (xn) such that xn ∈ Gn for all n, and for each n,
xn+1 lies above xn. Then G∞ has a natural imbedding in the product of
all the Gn,

G∞ ⊂
∏
n

Gn

and it is immediate that it is a closed subgroup of the product group.
Thus G∞ is a compact group, called the projective limit of the (Gn). Let
us now write

Gn := G/Nn.

It is then clear that we have an injection

G ↪→ G∞.

We claim that this is a surjection. Indeed, if (xn) is a sequence in G∞, we
can find yn ∈ G such that yn lies above xn for all n. Select a subsequence
(ynk

) such that n1 < n2 < . . . and ynk
→ y as k → ∞. It is then easily

seen that y lies above xn for all n. Thus

G = lim
←−

G/Nn.

We have thus proved

Proposition 2. With (Nn) as earlier

G = lim
←−

G/Nn.
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12.3. Lifting of one-parameter groups and cells. By a compact
n-cell of a topological space X we mean a subset of X homeomorphic to
a cube J1× . . . Jn where the Ji are nonempty compact intervals of R. We
want to prove the following.

Proposition 1. Let G be a compact group and H a closed normal sub-
group such that G/H is a Lie group. If a(t) is an one-parameter subgroup
of G/H we can find an one-parameter subgroup b(t) in G such that b(t)
lies above a(t) for all t.

Proof. We use approximation. Let (Nn) be as above with N1 = H. Write
Gn = G/Nn. Suppose we have found an one-parameter subgroup (an(t))
in Gn. Since Gn+1 is a Lie group and Gn+1 −→ Gn is surjective, the map
Lie(Gn+1) −→ Lie(Gn) is surjective, and so we an find an one-parameter
subgroup (an+1(t)) in Gn+1 such that an+1(t) lies above an(t) for all t.
So by induction we have one-parameter subgroups (an(t)) in Gn for all n
such that an+1(t) lies above an(t) for all n. Since G = lim←−Gn we have
unique b(t) ∈ G for each t such that for each n, b(t) lies above an(t). It is
immediate that (b(t)) is an one-parameter subgroup in G and lies above
(an(t)) for all n.

Proposiiton 2. Let m = dim(G/H). Then we can find a compact neigh-
borhood C of the identity in G/H and a compact subset D of G such
that C nd D are compact m-cells and the natural map G −→ G/H is a
homeomorphism of D onto C.

Proof. By using canonical coordinates of the second kind for G/H we
can find one-parameter groups a1(t), a2(t), . . . , am(t) in G/H such that
the map

ϕ : (t1, t2, . . . , tm) 7−→ a1(t1)a2(t2) . . . am(tm)

is a homeomorphism of the compact unit cube J ⊂ Rm onto a compact
neighborhood C of the identity e in G/H. Let (bj(t)) be an one-parameter
group in G above (aj(t)) and let us cnsider the map

ψ : (t1, t2, . . . , tm) 7−→ b1(t1) . . . bm(tm)

of J into G; let D be the image of J under ψ. If π is the natural map
G −→ G/H, we have π ◦ ψ = ϕ. Since ϕ is a homeomorphism, it follows
that ψ is also a homeomorphism, hense also the restriction of π to D.
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12.4. Proof of Von Neumann’s theorem. We need the following
Lemma which is a consequence of dimension theory of compact spaces.

Lemma. If A (resp. B) is a compact m-cell (resp. n-cell), and n > m,
B cannot be homeomorphic to a subset of A.

We start with the approximation

G = lim
←−

Gn, Gn = G/Nn.

The proof depends on the following facts.

Proposition 1. If G has a neighborhood of the identity that is an m-
cell, then dim(Gn) ≤ m for all n, and we have dim(Gn) is constant for
all sufficiently large n. In particular Nn/Nn+1 is finite for all sufficiently
large n.

Proof. Otherwise we can find n such that dim(Gn) = k > m. We can
then find a compact k-cell inside G, hence a compact k-cell D containing
the identity element of G. If E is a compact m-cell in G which is a
neighborhood of the identity, then E∩D is a compact neighborhood of the
identity in D and so there is a compact k-cell F such that F ⊂ E∩D ⊂ E.
This contradicts the Lemma.

We shall henceforth assume that the conditions of the Proposition are
satisfied for all n. In particular dim(Gn) = k for all n. It will turn out
that k = m but this is not needed at this time.

Proposition 2. Let C be a compact k-cell which is a neighborhood of the
identity in G1 and let D ⊂ G be a compact set such that the natural map
π : G −→ G/N1 is a homeomorphism of D onto C. Then the map

f : D ×N1 ×N1 −→ DN1, f(x, y) = xy

is a homeomorphism and DN1 is a compact neighborhood of the identity
in G.

Proof. The first statement follows at once from the fact that π is a
homeomorphism on D. Since DN1 = π−1π(D), it is immediate that DN1

is a neighborhood of the identity in G.
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Proposition 3. N1 is totally disconnected.

Proof. We have noted already that the N1/Nn are all finite. Hence

N1 = lim
←−

(N1/Nn)

is a closed subgroup of a product of finite groups and so is totally discon-
nected.

Proposition 4. We have k = m, N1 is finite, and G itself is a Lie group.

Proof. Let E be a compact m-cell which is a neighborhood of the identity
element e in G. By shrinking this cell we may assume that E ⊂ DN1.
Since DN1 ' D×N1 we may speak of the projection of E on N1. Let E′

be this projection. ThenE′ is a connected compact neighborhood of the
identity in N1. Since N1 is totally disconnected, it follows that E′ = {e}.
Hence E ⊂ D. But then E ∩N1 = {e}, showing that H is discrete. Hence
N1 is finite and so G −→ G/N1 has finite kernel. This proves that G is a
Lie group and m = dim(G) = dim(G/N1) = k.
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