
11. Representations of compact Lie groups

11.1. Integration on compact groups. In the simplest examples like
Rn and the torus Tn we have the classical Lebesgue measure which defines
a translation invariant integration of functions on the group. The first
task in building a theory of representations of Lie groups is to construct
a translation invariant measure.

On a manifoldM of dimension n integration measures are constructed
out of volume forms which are n-forms on M . If ω is a volume form and
ω = wdx1∧ . . .∧dxn in local coordinates, then the corresponding measure
µ is defined as follows: for any function g with support inside the open
set where the chart (xi) is valid we have

∫

gdµ =

∫

g(x1, . . . , xn)|w|dx1 . . . dxn

The classical change of variable formula in calculus sows that this formula
does not depend on the choice of coordinates. For a function g whose
support, although compact, is not confined to a chart, one uses a partition
of unity to write it as a sum of functions whose supports are contained in
charts and then apply the above formula to define the integral as the sum
of the integrals of the functions whose supports are confined to charts.
If M = G is a Lie group it is obvious that we can define a volume form
invariant under all left translations; we start with a nonzero element ωe ∈
Λn(Te(G)) and define ωx = dℓx(ωe). The corresponding measure is called
Haar measure or left Haar measure. There is a corresponding right Haar
measure defined by a right translation invariant volume form. The volume
forms are unique up to a multiplicative constant. If G is not commutative
the right and left invariant forms need not coincide but differ by a real
character . Thus if the group does not admit a non trivial real character,
for example, if it is its own commutator subgroup, or if it is compact, then
the left and right invariant Haar measures coincide. We denote a left Haar
measure by dx.

The construction of left or right invariant measures on Lie groups is
thus extremely simple. What Haar did was to prove that left or right in-
variant measures exist on every locally compact group while Von Neumann
showed that such a measure is unique up to a multiplicative constant. In
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particular, if G is a compact group there is a unique measure dx which is
both left and right translation invariant and is normalized by

∫

G

dx = 1.

We shall call it the Haar measure on G. Thus

∫

G

u(x)dx =

∫

G

u(yxz)dx =

∫

u(x−1)dx.

From now on we shall assume that G is compact and second count-
able. The second countability restriction is really not necessary but avoids
unnecessary generality. We recall the theorem of Urysohn that any sec-
ond countable Hausdorff space is metric.We introduce the Hilbert space
H = L2(G) associated with the measure dx. It is separable when G is
second countable.

11.2. Representations of the group. If G is a finite group the repre-
sentation theory of G (over C) is quite well known. The elementary theory
of representations of compact groups proceeds along similar lines without
much trouble. A representation of a compact G is a continuous homomor-
phism L of G into some GL(V ) where V is a complex finite dimensional
vector space; if V is a Hilbert space and the L(x) are unitary for all x ∈ G
we say that L is a unitary representation. The notions of sub and quotient
representations, irreducibility, direct sums of representations, and tensor
products of representations, are all as in the finite case. The first crucial
point is that we need consider only unitary representations.

Theorem 1. If L is a representation in V , we can find a scalar product
on V that makes the representation unitary.

Proof. Let (·, ·)0 be any scalar product for V and define

(u, v) =

∫

G

(L(x)u, L(x)v)0dx.

It is easy to see that (·, ·) is again a scalar product. But it is now invariant
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under L:

(L(y)u, L(y)v) =

∫

G

(L(x)L(y)y, L(x)L(y)v)0dx

=

∫

G

(L(xy)u, L(xy)v)0dx

=

∫

G

(L(z)u, L(z)v)0dz

= (u, v).

Here we have used the invariance of the integral. Thus the L(y) are all
unitary with respect to (·, ·).

It follows from this that all representations are direct sums of irreducible
ones and hence that we need only determine the irreducible ones.

Theorem 2. Any representation is a direct sum of irreducible ones.

Proof. We may assume that the representation is unitary. If V is the
representation space and W is an invariant subspace, i.e., a subspace in-
variant under all L(x), then the unitarity of the L(x) shows that L⊥ is
also invariant under all L(x). So V splits as the direct sum W ⊕W⊥ of
subrepresentations and the result follows by induction on dim(V ).

In the case of finite groups representations can be obtained by de-
composing the regular representation. We use the same technique here
but the problem becomes more interesting because L2(G) is infinite di-
mensional when G is not finite and it is not obvious a priori that it has
finite dimensional invariant subspaces.

Define the right regular representation R of G acting on H = L2(G)
by

(R(x)f)(y) = f(yx) (x, g ∈ G).

Then, as
∫

G

|f(y)|2dy =

∫

G

|f(yx)|2dy

we see that the R(x) are unitary. It is not difficult to see that for any
f ∈ H, the map

x 7−→ R(x)f
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is continuous from G to H. We wish to prove that there are lots of finite
dimensional subspaces invariant under R. If F is one such, the restriction
of R to F will give us a finite dimensional unitary representation of G
acting on F . The central theorem of the subject is the Peter-Weyl theorem.
The following is one version of it.

Theorem 1 (Peter–Weyl). Let F be the algebraic sum of all finite
dimensional subspaces of H invariant under R. Then F is dense in H.

Once this is proved we obtain

Theorem 2. The finite dimensional irreducible representations of G sep-
arate the points of G. More precisely, if x, y ∈ G with x 6= y, there is an
irreducible representation L of G such that L(x) 6= L(y).

Proof. We deduce this from Theorem 1. Suppose this is not true. Then
there are x 6= y in G such that every representation L of G satisfies
L(x) = L(y). If t = xy−1, this means that t 6= e and L(t) = I for every
representation L. Hence for any finite dimensional R-invariant subspace F
of H we have R(t) = I on F . Hence R(t) = I on F and hence, by Theorem
1, R(t) = I on all of H. This is absurd; indeed, select a neighborhood U
of e such that U and tU are disjoint and let f be a continuous function on
G which is 1 around e and supported within U . Then R(t)f is 1 around
t and supported within tU . Clearly R(t)f 6= f .

Theorem 3. If U is a neighborhood of e in G there is a representation L
such that L(x) 6= I for all x ∈ G \U . In particular the kernel H of L will
be contained in U and we have an imbedding

G/H →֒ U(N)

for some integer N ≥ 1, so that G/H is a Lie group.

Proof. For each x ∈ G \ U we can find a representation Lx such that
Lx(x) 6= I, and hence a neighborhood Vx if x such that Lx(y) 6= I for all
y ∈ Vx. Take a finite covering G = ∪1≤i≤rVxi

and let L = ⊕1≤i≤rLxi
.

Remark. This result is often refereed to as the statement that any com-
pact group can be approximated by Lie groups which are closed subgroups
of unitary groups.
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10.3. Digression on integral operators defined by continuous
kernels on a compact space. The idea of Peter and Weyl is to search for
finite dimensional subspaces of H as eigen spaces for integral operators. If
the kernels of the integral operators are invariant under right translations
then the eigen spaces will be invariant under R.

Let X be a compact second countable Hausdorff space with a measure
µ and let k be a complex valued continuous function on X ×X . Then k
is the so-called kernel of the integral operator Ak defined on functions on
X by

(Akf)(x) =

∫

X

k(x, y)f(y)dµ(y) (x ∈ X).

If |k(x, y)| ≤ C then Ak maps |kk := L2(X, µ) into itself and

||Akf || ≤ C||f ||

showing that Ak is a bounded operator on the Hilbert space L2(X, µ)
(which is separable). Historically these were the first operators in infinite
dimensional spaces that were studied because of their very strong analogy
with finite dimensional operators defined by matrices. In particular, for
these operators with k satisfying a hermitian symmetry condition there are
eigen values and the spectral theory is very close to the finite dimensional
theory. However not all operators belong to this class. If X = [0, 1] with
µ Lebesgue measure, the operator A of multiplication by x has no eigen
value and its spectral theory is more subtle to formulate. This was first
done by Hilbert who proved his famous spectral theorem for bounded self
adjoint operators. It was later extended to unbounded operators by Von
Neumann under the impetus of Quantum Theory.

The crucial property of the operators Ak is the fact that they are
compact ; more precisely they map bounded sets in H to sets with compact
closure. To see this note first that (recall that X is metric) that the
uniform continuity of k implies that for any ε > 0 there is a δ > 0 such
that

|k(x1, y) − k(x2, y)| < ε (y ∈ X, d(x1, x2) < δ)

where d is the metric on X . Then

|(Akf)(x1) − (Akf)(x2)| ≤ δ||f ||

whenever d(x1, x2) < δ, uniformly in f . In particular, Ak maps bounded
sets of H into equicontinuous subsets of C(X), proving the compactness
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of Ak. Note that Ak is a smoothing operator ; it takes L2-functions and
converts them into continuous functions. In analogy with matrices we say
that k is hermitian if

k(x, y) = k(y, x)conj.

Then the operator is self adjoint in the Hilbert space sense, i.e.,

(Akf, g) = (f, Akg) (f, g ∈ L2(X, µ)).

For compact self adjoint operators A in a separable Hilbert space L
we have the following version of the spectral theorem:

Theorem. All eigen values of A are real and the eigen spaces for the
non zero eigen values are finite dimensional. Moreover eigen spaces for
distinct eigen values are orthogonal. The eigen values form a sequence
(λn) tending to 0 as n→ ∞. Finally

L = L0 ⊕⊕nLλn

where Lλ is the eigen space for the eigen value λ.

Remark. The finite dimensionality of the Lλ for λ 6= 0 is seen as follows.
On Lλ, as A acts as the non zero scalar λ, we see that bounded sets are
compact. This cannot happen if Lλ were infinite dimensional. The reality
of the eigen values and the mutual orthogonality of the eigen spaces are
proved as in the finite dimensional case. So it is a question of showing
that there is at least one non zero eigen value if A 6= 0. Once this is done,
the span of the eigen spaces for the non zero eigen values must be L⊥

0 ;
otherwise we go to the orthogonal complement which is stable under A
and argue that A must be 0 there; if A were not 0, there would be a non
zero eigen value for A within this orthogonal complement. The existence
of the non zero eigen value is a standard argument and not particularly
difficult although it needs some development of Hilbert space theory.

10.4. Proof of Peter-Weyl theorem. We start with the kernel k which
is continuous and hermitian on G × G and consider the operator Ak. It
is immediate that the eigen space for the eigen value λ is invariant under
the right translations R(t)(t ∈ G) if k satisfies

k(xt, yt) = k(x, y) (x, y, t ∈ G).
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This is equivalent to saying that for some function u on G,

k(x, y) = u(xy−1).

If we choose u so that
u(t) = u(t−1)conj

then k will be hermitian; this is the case of u is real and symmetric, namely,

u(t) = u(t−1).

The operator Ak is then convolution by u:

(Akf)(x) =

∫

G

u(xy−1)f(y)dy =

∫

G

u(t)f(t−1x)dt = (u ∗ f)(x)

Given any neighborhood U of e we can find such a u whose support
is contained within U ; indeed, take V = U ∩ U−1, v to be continuous,
supported inside V , and ≥ 0 with

∫

G
vdx = 1 and take

u(t) =
1

2

(

v(t) + v(t−1)
)

.

The eigen spaces (for non zero eigen values) of all the operators Ak

defined by kernels k such that

k(x, y) = u(xy−1)

for real symmetric continuous functions u on G are thus invariant under
the right regular representation R. Suppose that their algebraic sum A
is not dense in L2(G). Let h be a non zero element in the orthogonal
complement of A. Then Akh = 0 for all such k. Thus u ∗ h = 0 for
all u. But if the supports of the sequence (un) are contained in open
neighborhoods (Un) of e such that the Un are decreasing and ∩nUn = {e},
then it is a standard result that

un ∗ ψ → ψ (n→ ∞)

for all ψ ∈ L2(G). Hence un ∗ h = h → 0, showing that h = 0. Since
A ⊂ L we have the conclusion that L is dense in L2(G).
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10.5. Existence of faithful representations for a compact Lie
group G. Suppose now that G is a Lie group. Theorem 3 above leads to
the result that G has a faithful representation. We need a lemma.

Lemma. Let G be a Lie group. Then G has no small subgroups. More
precisely, there is a neighborhood U of e such that if S ⊂ U is a subgroup,
then S = {e}.

Proof. Let g = Lie(G) and let ||·|| be a norm on g. Let na = {X ∈
g | ||X || < a}. We choose a > 0 such that the exponential map is a
diffeomorphism of na onto Ga := exp(na). Let 0 < b < a/2. We claim
that U = Gb fulfills the requirements. Let S 6= {e} be a subgroup with
S ⊂ U . Let x 6= e be an element of S and let x = expX for some
X ∈ nb. Clearly we can find an integer r ≥ 1 such that X, 2X, . . . , rX are
all in nb, but (r + 1)X /∈ nb. However (r + 1)X = rX + X ∈ na. Now
exp(r+1)X = xr+1 ∈ S ⊂ Gb and so exp(r+1)X = expY for some Y ∈ nb.
Thus both Y and (r+1)X are in na and have the same exponential. Hence
Y = (r + 1)X , showing that (r + 1)X ∈ nb, a contradiction to the choice
of r.

Theorem 1. Let G be a Lie group. Then G has a faithful unitary repre-
sentation. Thus for some N , we have G →֒ U(N).

Proof. Choose U as in Lemma and find a representation L such that the
kernel of L is contained in U . Then this kernel must be trivial and so L
must be faithful.

10.6. Variants of the Peter-Weyl theorem. Orthogonality re-
lations. Characters. The orthogonality relations, between the matrix
elements and also between the characters, of irreducible representations
go over without change in the compact case. If L is an irreducible unitary
representation of G and we select an ON basis in the representation space,
then

L(x) = (aij(x))

is a unitary matrix and the aij(1 ≤ i, j ≤ dim(L)) are continuous functions
on G. They are the so-called matrix elements of L. The subspace inside
L2(G) spanned by them is independent of the choice of the ON basis and
depends only on the equivalence class ω of L. We write it as F(ω).
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Theorem 1. We have the orthogonality relations

(aij , akℓ) =

{

0 if (i, j) 6= (k, ℓ)
1

dim(L)
if (i, j) = (k, ℓ).

Moreover if ω, ω′ are two distinct classes of irreducible representations,
then

F(ω) ⊥ F(ω′).

Finally, we have the orthogonal decomposition

L2(G) = ⊕ωF(ω).

For any representation L of G, irreducible or not, we define its char-
acter ΘL by

ΘL(x) = tr(L(x)) (x ∈ G).

If L is irreducible, its character is an element of F(ω). It is a class function
on G, namely it is constant on the conjugacy classes of G:

ΘL(xyx−1) = Θ(y) (x, y ∈ G).

The character ΘL depends only on the equivalence class ω of L and de-
termines L up to equivalence and we have

Theorem 2. The irreducible characters Θω satisfy the orthogonality re-
lations

(Θω,Θω′) = δωω′ .

Moreover the (Θω) form an ON basis for the subspace of L2(G) of class
functions.

In both Theorem 1 and Theorem 2 the last statements are called complete-
ness of the irreducible representations. The completeness at the L2-level
can be sharpened. Namely

Theorem 3. The algebraic sum of the F(ω) is precisely F , is a subalgebra
of C(G) closed under complex conjugation, and is dense in C(G) in the
uniform topology. The linear span of the Θω is also an algebra closed
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under complex conjugation and is dense in the uniform topology of the
subspace of C(G) of class functions.

Sketch of proof. For the first statement it is enough to prove that
if S is a finite dimensional subspace of L2(G) invariant under the right
regular representation R and on which R acts as a representation in the
equivalence class ω, then S ⊂ F(ω). Let (si) be an ON basis for S. Then

sj(xy) =
∑

i

aij(y)si(x)

for each y for almost all x. By Fubini this relation is then true for almost
all (x, y) and hence for some x0 for almost all y. If λ is left translation by
x−1

0 we then have

λ(sj) =
∑

i

si(x0)aij

in L2(G) and so sj is continuous and is in F(ω). That F is an algebra
closed under complex conjugation is immediate by considering conjugates
and tensor products of representations. It separates the points of G by
the Peter-Weyl theorem and so is dense in C(G) by the Stone-Weierstrass
theorem. To prove the second part we need to know that Θω is the unique
element (up to a scalar multiple) of F(ω) invariant under all inner auto-
morphisms, i.e., the unique class function. We have a projection operator
P from C(G) to C(G)cl given by

(Pf)(y) =

∫

G

f(xyx−1)dx (y ∈ G).

Suppose now f is in C(G)cl. Then there is a sequence (gn) from F such
that gn → f in C(G). So Pgn → Pf = f in C(G). But Pgn is in the
linear span of the Θω.

Suppose that G is Lie group. We then have a faithful representation.
Let L1, . . .Ln be its irreducible constituents.

Theorem 4. Let G be a Lie group. The irreducible representations ob-
tained by decomposing the tensor products

M1 ⊗M2 ⊗ . . .⊗Mr
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where each Mj is either an Li or is equivalent to a conjugate of some Li,
exhaust all the irreducibles of G.

Sketch of proof. If there is some irreducible L which is not in the
collection defined in the theorem, its matrix elements will be orthogonal
to the matrix elements of all the irreducibles in the collection. Now the
linear span of these matrix elements is an algebra closed under complex
conjugation and separates the points of G. It is thus dense in C(G). This
is a contradiction.

Remark. The classical groups SU(n), SO(n), Sp(n) are defined as sub-
groups of unitary groups and so Theorem 4 implies that their irreducible
representations cal all be obtained by decomposing the tensor algebra over
the defining representation. This problem is a beautiful one and leads to
a beautiful theory. It was first carried out by Hermann Weyl in his great
classic The Classical groups: their invariants and representations.

10.7. Determination of the irreducible characters. If a compact
group G is concretely given, such as one of the classical groups, there arises
the problem of explicit determination of all the irreducible characters. This
problem was first solved by Hermann Weyl in a series of papers in the mid
1920’s that many regard as his greatest work. I cannot go into it here but
give an idea of it by discussing the group SU(2). Let G = SU(2). If Θ is
any character, we have

∫

G

ΘΘconjdx = 1 ⇐⇒ Θ is an irreducible character (∗).

Weyl’s method is to use this result in the determination of all the irre-
ducible characters.

In the first place, let

u(θ) =

(

eiθ 0
0 e−iθ

)

.

Let T be the diagonal subgroup of all the u(θ):

T =
{

u(θ)
}

.

Then by the spectral theorem any element of G is conjugate to an element
of T and so to determine a class function it is enough to know its restriction

11



to T . Moreover, the intersection of a conjugacy class of G with T consists
precisely of u(θ) and u(−θ) for some θ. Hence the restriction of a class
function to T is symmetric, i.e., invariant under θ −→ −θ:

f(u(θ)) = f(u(−θ)).

If L is any representation of G, irreducible or not, the restriction of L
to T can be decomposed as a direct sum of characters of T . Hence the
character Θ of L has the following form

Θ(u(θ)) =
∑

n

cne
inθ

where the cn are integers ≥ 0 and the sum is finite. In order to make use
of the relation (∗) it is now necessary to reduce the integration to one on
T . This is done by the famous Weyl integration formula. Let

∆(u(θ)) = eiθ − e−iθ.

Then, for any continuous class function f on G, we have

∫

f(x)dx =
1

2

∫

T

f(u(θ))∆(u(θ))∆(u(θ))conjdθ.

Here we write dθ for the Lebesgue measure on T normalized to give mea-
sure 1 for T . Let

ϕ = (Θ
∣

∣

T
)∆.

Then Φ is skew symmetric, is a finite Fourier series with integer coeffi-
cients, and (∗) becomes, by the integration formula,

∫

T

ΦΦconjdθ = 2 (∗∗)

for irreducible characters. Now the functions

ϕn := ei(n+1)θ − e−i(n+1)θ (n = 0, 1, 2, . . .)

are skew symmetric, and any finite Fourier series which is skew symmetric
and has integer coefficients is an integral linear combination of the ϕn.
Hence

Φ =
∑

n

dnϕn
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where the sum is finite and the dn are uniquely determined integers. Now
the ϕn are orthogonal in L2(T ) and

∫

ϕnϕ
conj
n dθ = 2

It is then immediate that
∑

n

d2
n = 1

showing that
(Θ

∣

∣

T
) = ±ϕn

for some n. Hence

Θ(u(θ)) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

Here we have chosen the plus sign because the value of Θ at e must be
a positive integer. This is the famous Weyl character formula. We must
have that for integers n ≥ 0 the right side of the formula must represent an
irreducible character. For if some n is missing, the function defined above
on T , which is a symmetric finite Fourier series, extends uniquely to G as
a class function, and that class function ill be orthogonal to all irreducible
characters (by the integration formula again!), which is impossible. By
taking the limit as θ → 0 we see that

Θ(e) = (n+ 1).

We thus have

Theorem 1 (Weyl character and dimension formulae). The ir-
reducible characters of G = SU(2) are precisely all the functions whose
restrictions to T are given by

Θn(u(θ)) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

The corresponding representation has dimension n+ 1.

Remark 1. It is an interesting question to describe explicitly the rep-
resentation whose character is Θn. From the action of G on C2 we get
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a representation of G on the symmetric tensors of degree n over C2. If
{e1, e2} is the standard basis for C2,

er
1e

n−r
2 (0 ≤ r ≤ n)

form a basis for the space of symmetric tensors, and the character of this
representation is easily computed to be Θn.

Remark 2. In his great papers already referred to, Weyl obtained the
character and dimension formulae for irreducible representations of all
compact Lie groups G. The role of T is played by a maximal torus of
G, and the role of the symmetry θ −→ −θ is played by a finite group W
known as the Weyl group. There is a skew symmetric function analogous
to ∆ in the general case and the integration formula contains this function
in exactly the same way. For instance, if G = SU(n+1), T is the diagonal
subgroup, W is the permutation group in n letters acting by permutation
of the diagonal entries, and

∆(diag
(

eiθ1 , . . . , eiθn+1)
)

=
∏

i<j

(eiθj − e−iθj ).

The general case requires the development of the structure theory for com-
pact Lie groups which Weyl obtained from the theory of complex semi
simple Lie algebras that was developed by E. Cartan.

Remark 3. The physicists became interested in unitary representations
because they were the means of expressing the covariance of a quantum
system. The need to go beyond compact groups became clear since the
space-time symmetry groups are non-compact, for example the Poincaré
or the Galilean groups. In 1939 Wigner obtained a classification of free
elementary particles in terms of their mass and spin by determining the
unitary irreducible representations of the Poincaré group. Then in 1943,
Gel’fand and Raikov proved that any locally compact group had enough
irreducible unitary representations to separate its points. The physicist
Bargmann, then Gel’fand and Naimark, and finally Harish-Chandra, be-
gan the deep study of unitary representations of the semi simple Lie
groups. Harish-Chandra finally obtained a character formula for certain
irreducible representations of a semi simple Lie group which was an exact
analogue of the Weyl character formula. The Harish-Chandra character
formula proved to be as decisive for the representation theory of and har-
monic analysis on all semi simple Lie groups as the Weyl formula was for
compact Lie groups.
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In the above discussion I have referred to the characters of representa-
tions. As long as the representation is finite dimensional this is the usual
character. However, for a real simple Lie group which is not compact, typ-
ically all unitary irreducible representations are infinite dimensional and
it is not clear how to define the character of such a representation. Harish-
Chandra was able to define a notion of character for infinite dimensional
unitary irreducible representations of any semi simple Lie group, nowa-
days called the Harish-Chandra character. If H is the Hilbert space of the
representation and (en) is an ON basis for H, and π is the representation,
the series

∑

n

(π(x)en, en),

although hopelessly divergent if considered pointwise, nevertheless con-
verges as a series of distributions (in the sense of Laurent Schwartz). This
distribution is the Harish-Chandra character of π. Harish-Chandra proved
the fantastic result that this distribution is a locally integrable function
which is analytic at te generic points of the group. Thus one can speak of
character formulae and he showed that the most fundamental irreducible
unitary representations of a semi simple Lie group are determined by a
formula which is an almost exact analogue of the Weyl character formula.
This is what I have referred to as the Harish-Chandra character formula.
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