
10. The subgroup–subalgebra correspondence. Homogeneous spaces.

10.1. The concept of a Lie subgroup of a Lie group. We have
seen that if G is a Lie group and H ⊂ G a subgroup which is at the same
time a closed submanifold, then H is a Lie group and the inclusion map
ι is a morphism such that dι is injective. The image of h = Lie(H) in
g = Lie(G) is a subalgebra. The natural question is whether every Lie
subalgebra of g arises in this manner.

Formulated in this manner the answer is negative. Consider the torus
T 2 = R2/Z2. Its Lie algebra is R2 and for any X ∈ R2 we can verify
that expX is the image of X in T 2. Suppose h is a line with an irrational
slope, it is clear that the exponential of it is an one-parameter subgroup of
T 2 that winds around the torus in a dense manner and so h cannot arise
from a closed subgroup of G.

To make the subgroup–subalgebra correspondence bijective it turns
out to be sufficient to generalize the notion of a Lie subgroup slightly.
We shall say that a subgroup H ⊂ G is a Lie subgroup if the following
conditions are satisfied:

1. H is a Lie group and the inclusion map ι is a morphism.

2. The differential dι is injective.

It is to be noted that the topology and smooth structure of H need anot
be inherited from those of G and that H need not be closed in G.

With this reformulation one can now prove the following theorem.

Theorem 1 (Chevalley). If h ⊂ g is a subalgebra, there is a unique
connected Lie subgroup H ⊂ G such that dι(Lie(H)) = h. Moreover H is
generated by the elements expX(X ∈ h).

10.2. Involutive distributions on a manifold. If h is one dimensional,
we can choose a basis element X ∈ h and integrate the vector field to get
the one-parameter group t 7−→ exp tX whose topology and Lie structure
are given by those of the parameter t. In the general case we use an
analogous method. However we need some preparation.

At each point x ∈ G we have the subspace hx ⊂ Tx(G) defined as the
space of tangent vectors Xx for X ∈ h. We have an assignment

H : x 7−→ hx

1



of tangent spaces with the following properties.

1. dim(hx) = d is constant for all x ∈ G.

2. The assignment H is smooth in the following sense: if x ∈ G we can
find vector fields Z1, Z2, . . . , Zr such that the tangent vectors (Zi)y

span hy for all y in a neighborhood of x.

3. Suppose U ⊂ G is open and X, Y are vector fields on U such that
Xy, Yy ∈ hy for all y ∈ U . Then [X, Y ]y ∈ hy for all y ∈ U also.

The conditions 1. and 2. make sense for any assignment

L : x 7−→ Lx

of tangent spaces on any manifold; L is then called a distribution of rank
d. If condition 3. is satisfied, we shall say that L is involutive. Thus H is
an involutive distribution of rank equal to dim(h).

The verification of conditions 1. through 3. for H is easy. 1. is trivial.
If X1, . . .Xd is a basis for h, then (Xi)y span hy for all y ∈ G, proving 2.
For 3. we first observe that [Xi, Xj] =

∑

q≤k≤d cijkXk for all 1 ≤ i, j ≤ d,
as h is a subalgebra. It is now easy to show that X and Y can be written
as X =

∑

fiXi, Y =
∑

i giXi wherer fi, gi are smooth functions. The
property 3. is now obvious.

Let M be a manifold and L a distribution on M of rank d. As
mentioned earlier, we try to find submanifolds S ⊂ M with the property
that at each point y ∈ S, we have

Ty(S) = Ly (y ∈ S).

Such an S is called an integral manifold for L. L is called integrable if
through any point of M there is an integral manifold. It is easy to see that
integrability of L implies that L is involutive. Indeed, in the definition
of property 3. above let y ∈ U and let S be an integral manifold of L
through y. Then X and Y are tangent to S at all of its points, and so
[X, Y ] is also tangent to S at all of its points. In particular, [X, Y ]y ∈ Ly.
The famous classical theorem of Frobenius asserts now that conversely, if
L is involutive, then L is integrable.

10.3. The local Frobenius theorem. Locally, on any manifold M we
can construct distributions which are involutive and integrable as follows.
We take coordinates xi(1 ≤ i ≤ m on M on an open set U and define Ly
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as the span of ∂/∂xi(1 ≤ i ≤ p) for y ∈ U . Then L is integrable on U
since the submanifolds defined by making the xi(i ≥ p = 1) constant are
integral manifolds. L is also obviously involutive. The local frobenius is
the assertion that every involutive distribution looks locally like this L.
Let M be a smooth manifold with dim(M) = m and L an involutive dis-
tribution of rank p on M . Then L is integrable and we have the following
precise version of the local Frobenius theorem.

Theorem (Frobenius). Let L be an involutive distribution of rank p on
a manifold. Then for any x ∈ M , there is an open set U containing x
coordinates (xi)1≤i≤m on U , and an a > 0 such that

y 7−→ (x1(y), . . . , xm(y))

is a diffeomorphism of U with the cube (or polydisk if M is a complex
manifold) Im

a = {|ti| < a∀i}, and for each y ∈ U , Ly is the span of

(∂/∂xi)y, 1 ≤ i ≤ p.

If y ∈ U we write

U [y] = {z ∈ U
∣

∣xj(z) = xj(y), p+ 1 ≤ j ≤ m},

and call it the slice through y. We refer to (U, (xi), a > 0) as adapted to L.
Now slices are usually only small pieces and our goal is the construction
of integrable manifolds which are as big as possible. The technique is the
obvious one of piecing together small slices, but as we do it, we shall find
that the integrable manifold may return again and again to the same part
of M , so that in the end the integrable manifold acquires a topology that
may be different from the ambient one. This situation was first analyzed
carefully by Chevalley who constructed the global integrable manifolds for
the first time. In the succeeding pages we shall give a brief presentation
of Chevalley’s treatment.

10.4. Immersed and imbedded manifolds. A manifold N is said to
be immersed in M is (a) N ⊂ M and (b) the inclusion i : N −→ M is a
morphism having an injective differential for all n ∈ N . Notice that the
topology of N is not required to be induced by M , i.e., i is not assumed to
be a homeomorphism of N onto its image i(N) with its topology induced
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from M . N is said to be imbedded if i is a homeomorphism onto its image
in M . From basic manifold theory we know that for N to be immersed
the following is necessary and sufficient: if n ∈ N , there are open neigh-
borhoods U in M and V in N of n and a diffeomorphism ψ of U with
Ip
a × Im−p

a such that ψ takes n to (0, 0), V to Ip
a × {0}, and i to the map

x 7−→ (x, 0). For N to be imbedded in M the condition is the same with
the extra requirement that V = U ∩N .

Proposition 1. If N ⊂M is imbedded and P is any smooth manifold, a
map f(P −→ N) is a morphism if and only if it is a morphism of P to
M . If N is only immersed, this is still so provided f is a continuous map
of P to N .

Proof. Fix p ∈ P, f(p) = n. Take U, V, ψ, a > 0 as above. Assume N is
immersed and that f is a continuous map into N . Then P1 = f−1(V ) is
open in P with f(P1) ⊂ V . It is obvious that if f is a morphism into U
it is a morphism into V . In the imbedded case we define P1 = f−1(U).
Once again P1 is open in P ; but now, as V = U ∩N , f maps P1 into V
and it is clear that f is a morphism into V .

An immersed manifold is universally immersed if for any P , the mor-
phisms P −→ N are precisley the morphisms P −→ M with image con-
tained in N . Imbedded manifolds are universally immersed, and some
nonimbedded manifolds are also universally imbedded. The classical ex-
ample is R immersed in T 2 = R2/Z2 through the map

ψ : t 7−→ [(t, ξt)]

where ξ is an irrational number and [(a, b)] is the image of (a, b) under the
natural map R2 −→ T 2. The proof that R is universally immersed in T 2

is left as an exercise.

10.5. The global Chevalley-Frobenius theorem. Let L be an in-
volutive distribution on M . A leaf is a connected manifold L which is
immersed in M with Ty(L) = Ly for all y ∈ L, i.e., L is an integral man-
ifold for L. A slice is an imbedded leaf. A maximal leaf is a leaf L with
the following property: if L1 is another leaf with L∩L1 6= ∅, then L1 ⊂ L,
and L1 is an open submanifold of L. The topology and smooth structure
of a slice are uniquely determined by M . Any leaf is a union of slices
which are open in it and so the topology and smooth structure on a leaf
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are uniquely determined. The point is that these may not coincide with
the structures inherited from M .

Global Frobenius theorem. Through every point x of M passes a
unique maximal leaf. Any two maximal leaves are either identical or dis-
joint. All leaves are universally immersed.

The idea of the proof is very simple. We shall introduce the leaf
topology for M for which the leaves are form a basis. The leaf topology is
finer than the given topology of M . The maximal leaves are the connected
components of M in the leaf topology. The proofs are quite simple and
follow from the local structure of involutive distributions. The only subtle
point is to prove that the connected components in the leaf topology are
second countable. Once this is done, the connected components are leaves
and are obviously maximal.

10.6. The Lie subgroup corresponding to a Lie subalgebra. Let
us return to the context of a Lie group G with Lie algebra g and let h ⊂ g

a subalgebra. We introduced the involutive distribution H earlier and so
we have the maximal leafs for it.

Theorem 1. The leaf through e is the unique Lie subgroup with Lie
algebra h.

10.7. Homogeneous spaces Let G be a Lie group and H a closed Lie
subgroup. Then G acts transitively on G/H. The fundamental question
in the theory of Lie groups is to view G/H as a smooth manifold (smooth
being in the C∞, real analytic, or complex analytic categories) on which
the natural action of G is morphic.

Let
X = G/H, π : g 7−→ gH (g ∈ G),

and let us give X the quotient topology; this means that U ⊂ X is open if
and only if π−1(U) is open. We assert that π is an open map; indeed, if V
is open in G, π−1(π(V )) = V H =

⋃

ξ∈H V ξ is open. We also observe the
fact that X is Hausdorff if and only if H is closed (this is true when G is
only locally compact). To see this, suppose first that H is closed and let
g, k ∈ G be such that π(g) 6= π(k). Then g−1k /∈ H and so there is open
V ⊂ G containing g−1k such that V ∩ H = ∅. By continuity there are
open neighborhoods V2, V3 of g, k respectively such that V −1

2
V3 ∩H = ∅.
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This means that for x ∈ V2, y ∈ V3, x
−1y /∈ H or π(x) 6= π(y). Thus π(V2)

and π(V3) are disjoint open neigborhoods of π(g), π(k) respectively. In
the reverse direction, if x /∈ H, select an open neighborhood X1 of π(x)
not containing π(1); then π−1(X1) is an open neighborhood of x disjoint
from H.

Theorem. Let H be a closed Lie subgroup of G. Then there is a unique
structure of a smooth manifold on X = G/H such that the natural map
π : g 7−→ gH of G onto X is a submersion. The action of G on X is
morphic.

Comments on the proof of the theorem. Let OG be the structure
sheaf of G. It is natural to start with the sheaf OX where, for U an open
subset of X ,

f ∈ OX(U) ⇔ f ◦ π ∈ OG(π−1(U)).

It is trivial to verify that the action of G on X is morphic. The point
to show is that X becomes a smooth manifold when equipped with this
structure with the property that π is a submersion. The uniqueness of
the smooth structure under the requirement that π is a submersion is a
standard fact.

Let us introduce some standard terminology. Let M be a smooth
manifold and N,P submanifolds. Suppose m ∈ N ∩ P . We say that N
and P meet transversally at m if the tangent spaces Tm(N), Tm(P ) are
complementary, i.e.,

Tm(M) = Tm(N) ⊕ Tm(P ).

In this case we have of course dim(M) = dim(N) + dim(P ). The key to
the proof is the following lemma.

Lemma 1. Suppose that we can find a submanifold W of G such that

a. 1 ∈W, W ∩ wH = {w} for all w ∈W

b. W and wH meet transversally at w for all w ∈W .

Then (X,OX) is a smooth manifold, π is a submersion, and the action of
G on X is morphic.

Proof. We set up the map

ψ : W ×H −→ G, ψ(w, ξ) = wξ.
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The image of dψw,1 is the span of Tw(H) and Tw(W ), and so dψw,1 is
bijective. If Rη is right translation by η ∈ H, we have Rηψ = ψ(id×Rη)
so that

(dRη)wdψw,1 = dψw,ηd(id ×Rη)w,1

showing that dψ is bijective everywhere on W × H. Moreover ψ is also
bijective; for, if wη = w′η′, then w′ ∈ W ∩ wH so that w′ = w and
thence η = η′. Hence U = WH is open in G and ψ is a diffeomorphism.
In particular π(W ) is open in X . It follows from this that for any open
subset V of W , a smooth function f on V H is right H-invariant if and
only if (f ◦ ψ)(w, ξ) is dependent only on w and is a smooth function
of w on V . In other words the restriction to π(W ) of the sheaf OX is
isomorphic to OW . This proves that π(W ) is a smooth manifold and that
π is a submersion from WH onto π(W ). Using the G-action on X the
rest of the lemma is clear.

To finish the proof of the theorem it is enough to construct such a W .
Let h = Lie(H) and let L be the involutive distribution on G defined by
h. The maximal leaves of L are H and the cosets gH. Let (U, (xi), a > 0)
be adapted to L with a ∈ U and xi(1) = 0. For 0 < b ≤ a write Ub for the
preimage of the cube Tm

b under the map y 7−→ (x1(y), . . . , xm(y)). Since
H is closed we can find an open subset T of G such that U [1] = T ∩ H
and hence we can find a1 such that 0 < a1 ≤ a and Ua1

∩H = Ua1
[1].

Lemma 2. We can find b with 0 < b ≤ a1 such that for all y ∈ Ub, Ub ∩
yH = Ub[y]. In particular W = {y ∈ Ub

∣

∣x1(y) = . . . = xp(y) = 0} has the
properties described in Lemma 1.

Proof. Select a2, 0 < a2 < a1 such that Ua2
Ua2

⊂ Ua1
and a3, 0 < a3 < a2

such that U−1

a3
Ua3

⊂ Ua2
. We claim that b = a3 has the required property.

Let y ∈ Ub. Since yH is the maximal leaf containing y it is clear that
Ub[y] ⊂ yH and so we need only show that Ub ∩ yH ⊂ Ub[y]. Now
Ua2

∩H = Ua2
[1] and so

Ua3
∩ yH = y(y−1Ua3

∩H) ⊂ y(Ua2
∩H) = yUa2

[1].

Now, yUa2
[1] is a leaf contained in Ua2

Ua2
⊂ Ua1

and so xj(p+1 ≤ j ≤ m)
are constant on it, showing that they are also constant on Ua3

∩yH. Hence
Ua3

∩ yH ⊂ Ua3
[y]. This proves the lemma.
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The proof of the theorem is now clear. From the proof we have the
following corollary which asserts that the fibration of G over G/H as a
principal H-bundle is locally trivial.

Corollary 3. If H is a closed Lie subgroup of G, there is a connected
open neighborhood S of π(1) and a map γ : S −→ G such that

a. γ(π(1)) = 1, π ◦ γ = id

b. γ(S)H is an open subset of G and the map

ψ : S ×H −→ γ(S)H, ψ(s, ξ) = γ(s)ξ

is a diffeomorphism commuting with right translations by ele-
ments of H.
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