
1. CIRCULAR FUNCTIONS

1. The cotangent as an infinite series. As a prelude to the study
of elliptic functions (which are complex functions with two periods) it is
useful to investigate the theory of circular (trigonometric) functions which
are functions with a single period. If f(z) is a function of period ω then
f(ωz) has period 1 and so by a scale change one can restrict oneself to
studying functions of period 1.

Euler was the first mathematician to develop the theory of circular
functions systematically and to extend their definition to complex values
of the argument. He established the central formulae of the theory and
discovered the relation between the circular and the exponential functions
given by

eix = cosx+ i sinx, eiπ = −1

However it was only much later that a completely self contained theory of
the circular functions would be created. Such a theory has several starting
points. The usual way to do it is to begin with the power series expansions

ez = 1 + z +
z2

2!
+ . . . , eiz = cos z + i sin z (z ∈ C)

In such a treatment the periodicity would not be manifest and will have
to be established by some nontrivial argument.

Euler discovered two remarkable expressions of circular functions, one
as an infinite product and the other as an infinite series. For the sine
function he established the formula

sinπx = πx

∞
∏

n=1

(

1− x2

n2

)

= πx

∞
∏

−∞

(

1 +
x

n

)

(1)

By logarithmic differentiation one obtains

π cotπx = PV
∞
∑

−∞

1

x+ n
(2)
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where PV means principal value, namely, that the sum has to be inter-
preted as the limit

lim
N→∞

N
∑

n=N

1

x+ n
=

1

x
+

∞
∑

n=1

[ 1

x+ n
+

1

x− n
]

If we have already available to us the theory of circular functions we
can give a direct proof of (2) instead of starting from the infinite product
of Euler (Euler in fact had several proofs of both of these formulae). The
method is to prove first that the RHS of (2) is meromorphic on C whose
singularities are simple poles at the integers with residues 1, which has
period 1, and which is bounded when |z| → ∞ while ℜ(z) is bounded.
These properties are obvious for the LHS, and so the difference between
the two sides of (2) is an entire function which is bounded, hence a constant
by Liouville’s theorem. But it is immediate that the difference vanishes
at z = 1/2; hence the difference is 0.

It seems to have been Eisenstein who realized that one can use (2)
as the basis of a theory of circular functions and then establish the theory
of elliptic functions along similar but more complicated lines. This work
of Eisenstein, long buried in a series of papers he wrote, was resurrected
by Weil in recent years in his book Elliptic Functions according to Eisen-
stein and Kronecker. It is not our purpose to go in detail into the Weil
treatment but just enough to see the architecture of such an independent
development of the theory of circular functions based on (2). We shall
see that it will be an excellent introduction to the conventional theory of
elliptic functions due to Weierstrass.

2. The functions Ek. If one wants to build functions that have period
1 there are two very simple ways of doing it. In the first approach one
starts with an arbitrary function g and defines the function Sg by

Sg(z) =

∞
∑

n=−∞

g(z + n)

Changing z to z+1 can be realized as a change in the summation variable
from n to n+ 1 and so the sum remains unaltered. The second method is
to define the product Pg by

Pg(z) =
∞
∏

−∞

g(z + n)
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which has period 1 for the same reason. Of course the function g has to
be chosen so that the series and products converge, or at least summable
in some simple fashion. For the choice

g(z) =
1

zk

the summation method gives the functions Ek introduced by Eisenstein
(although they are already in Euler and used by him to derive, among
other things explicit expressions for the sums

∑

n≥1 n
−2k):

Ek(z) =
∞
∑

n=−∞

1

(z + n)k
(k ≥ 1) (3)

For k ≥ 2 the series converges absolutely, but for k = 1 we have to use
the principal value. Following Weil we shall refer to taking the principal
value as Eisenstein summation.

We take up the convergence when k ≥ 2. Let D be any subset of the
set of integers and consider

FD(z) =
∑

n∈D

(z + n)−k

If z is in a compact set K that does not contain any element of D, we have
|z| ≤ A for some constant A and so, for |n| ≥ 2A we have the estimate

|z + n|k ≥ (|n| − A)k ≥ (|n|/2)k (z ∈ K)

so that the series
∑

n∈D

(z + n)−k

converges normally on C \ D. (We recall that a series
∑

k uk(z) is nor-
mally convergent on an open set U if for any compact set K ⊂ U the
series

∑

k supz∈K |uk(z)| is convergent. If the uk are holomorphic on U ,
then the sum

∑

k uk is holomorphic, and its derivatives can be computed
by differentiating term by term. This is a standard result from complex
analysis; the holomorphy of the sum is proved for instance by Morera’s
theorem, normal convergence being used to justify termwise integration;
the possibility of formal differentiation is proved usually by Cauchy’s for-
mula.) If we take D = Z we see that Ek(z) is holomorphic on C \ Z and
that

E′
k = −kEk+1 (4)
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If we take D = Z \ {r,−r}, then we have

Ek(z) = (z + r)−k + (z − r)−k +
∑

n6=±r

(z + n)−k

where the infinite sum on the right side is holomorphic also at z = ±r.
Hence we see that Ek has poles of order k at the points z = ±r.

For k = 1 it is a question of taking principal value and so we write

E1(z) =
1

z
+

∑

n≥1

[ 1

z + n
+

1

z − n
]

=
1

z
+

∑

n≥1

2z

z2 − n2
(5)

The exponent of n in the terms of the series is now 2 and so the earlier
argument works again and shows that E1 is holomorphic on C \ Z and
has simple poles at z = n with residues 1. In particular, the differential
equations (4) remain valid for all k ≥ 1.

The periodicity of the Ek is immediate. For k ≥ 2 it follows by
rearranging the summation, a process that is justified by the absolute
convergence. For k = 1 it follows from the fact that the terms of the series
go to 0; indeed,

N
∑

−N

g(n+ 1) =
N

∑

−N

g(n)− g(−N) + g(N + 1)

and so, if g(n)→ 0 as |n| → ∞, then

PV

∞
∑

−∞

g(n+ 1) = PV

∞
∑

−∞

g(n)

At this stage there are two courses that can be pursued. The first,
which is what is usually done, is to establish the formula

E1(z) = π cotπz (6)

and proceed to obtain a whole series of formulae. The second, and this is
the direction we wish to go, is to use E1 as the basis for a theory of the
circular functions themselves. As was explained earlier, this is not just
an academic or historical exercise; we wish to do it because of the insight
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it offers into our real goal, namely the construction and study of doubly
periodic functions.

3. Relations among the Ek. The differential equation for E1. By
expanding each term (z +m)−k as a power series in z we can obtain the
local expansions of the Ek. The results are

E1(z) =
1

z
−

∞
∑

r=1

γ2rz
2r−1

Ek(z) =
1

zk
+ (−1)k

∞
∑

r=1

(

2k − 1

k − 1

)

γ2rz
2r−k

Here

γ2r = 2

∞
∑

n+1

1

n2r

and the binomial coefficients
(

2k−1
k−1

)

are 0 when 2r < k. To obtain non-
linear relations among the Ek Eisenstein’s method, elaborated in Weil’s
book, is to start with the algebraic identity

1

pq
=

1

pr
+

1

qr
(r = p+ q)

Differentiating with respect to p and q one obtains algebraic identities.
For instance, differentiating once with respect to p and q we have

1

p2q2
=

1

p2r2
+

1

q2r2
+

2

pr3
+

2

qr3

Take now p = z + m, q = ζ + n − m, apply Eisenstein summation with
respect to m for fixed n and then sum with respect to n. The result is

2E3(z+ζ)
[

E1(z)+E1(ζ)
]

= E2(z)E2(ζ)−E2(z)E2(z+ζ)−E2(ζ)E2(z+ζ)

Both sides are functions of ζ having a pole of order ≤ 2 at ζ = 0 for fixed
z /∈ Z, and so one can equate coefficients. Similarly, we can look at the
local expansion at w = 0 for fixed z /∈ Z. In this manner we get relations
among the Ek(z). After some work this leads to the differential equation

E′
1 = −(3γ2 +E2

1)
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Write
V (z) = θ−1E1(θ

−1z) (θ =
√

3γ2 (7)

Then
V ′ = −(1 + V 2) (8)

Here V is holomorphic away from the set Zθ where it has simple poles
with residue θ, and has period θ.

Proceeding formally one can solve the differential equation as the
variables V and z are separated. The equation (8) can be written as

dz = − dV

1 + V 2

giving the solution

z = −
∫ Y

0

dv

1 + v2

However, as the integrand has singularities at ±i, the function z is not
single valued; the value of the integral depends on the path of integration.
Nevertheless let us proceed formally. Writing

−2i
1

1 + v2
=

1

v + i
− 1

v − i
we have

z = log(V + i)− log(V − i) + k1

where k1 is a constant, so that

k2iz =
V + i

V − i
where k is a constant. This suggests the transformation

U =
V + i

V − i

A simple calculation shows that (8) becomes

U ′ = 2iU

from which we conclude that

U = ke2iz
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for some constant k confirming our formal calculation. Now E1(1/2) = 0
gives V (θ/2) = 0 and so U(θ/2) = −1, showing that k = −eiθ. Hence

V (z) = − tan(z + θ/2)

so that
E1(z) = θ tan θ(z + (1/2)) (e2iθ = 1)

One can show that θ is the exact period of e2iz, namely that e2iz = 1 if
and only if z = mθ for some integer m. Hence eiθ = −1 and we have

E1(z) = θ cot θz

Of course
θ = π

but this is a matter of definition. Note that in this approach we automat-
ically get Euler’s formula

∞
∑

n=1

=
π2

6

A little more work is needed to identify 2θ with the length of the unit
circle.
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2. DOUBLY PERIODIC FUNCTIONS

1. Lattices. If f is a meromorphic function on C, the set P of its
periods is an additive subgroup of C; indeed, from f(z + a) = f(z) and
f(z+ b) = f(z) it is immediate that f(z+ma+nb) = f(z) for all integers
m,n. Somewhat less obvious is the fact that if f is not a constant, then
P has to be a discrete subgroup of C. Here if V is a real vector space
and D is an additive subgroup of V , D is said to be discrete if it has no
accumulation point in V . If P has an accumulation point c, we can find
an ∈ P, an → c, an 6= an+1, so that f(z + bn) = f(z), bn = an − an+1 6=
0, bn → 0. For a fixed z0 this means that the point 0 is a zero of the
function g(w) = f(z0 +w)− f(z0) which is not isolated, contradicting the
assumption that f is not a constant.

The main result on discrete subgroups of vector spaces is the follow-
ing.

Theorem 1. Let V be a real vector space of dimension d and L a subgroup
of V . Then L is discrete if and only if there is a basis (ei)1≤i≤d of V and
an integer r (0 ≤ r ≤ d) such that

L =
{

m1e1 + . . .+mrer

∣

∣

∣
mi ∈ Z

}

Proof. We remark that a subgroup L of V is discrete if and only if 0 is
an isolated point of V ; this has been already observed above in the case
of C and the argument is the same in the general case.

If L has the form described in the theorem, we can use the map

x1e1 + . . .+ xded 7−→ (x1, . . . , xd)

to set up an isomorphism of V with Rd in such a manner that L goes over
to Zr × (0) and the discreteness of L is obvious. The converse requires
more effort and we use induction on d to prove it.
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Since L is discrete, any compact set in V has only finitely many
elements of L in it. We claim first that we can choose an element of
smallest norm from L \ (0), i.e., there is an element e1 ∈ L, e1 6= 0 such
that for any x ∈ L \ (0) we have ||x|| ≥ ||e1||. To see this, select some
euclidean norm || · || for V (using an isomorphism of V with Rd) and some
R > 0 such that the open ball of radius R contains nonzero elements of
L; such elements of L form a finite set and any element of minimum norm
from this finite set can be chosen as e1.

We claim first that L ∩Re1 = Ze1. If x = re1 ∈ L for a real number
r, select an integer m such that 0 ≤ s = r − m < 1; then y = se1 =
x−me1 ∈ L and ||y|| < ||e1||, so that y = 0, i.e., s = 0. Hence r = m as
we claimed. This already proves that L = Ze1 if d = dim(V ) = 1.

Let us now assume that d = dim(V ) > 1 and that the theorem has
been proved when the dimension is< d. Let V1 = V/Re1 and L1 the image
of L under the natural map V −→ V1. It is a question of showing that
L1 is discrete in V1. For, suppose that we have done this. Then, by the
induction hypothesis, we can find a basis (e′2)2≤i≤d for V1 and an integer
r ≥ 1 with L = ⊕2≤i≤rZe

′
i. If ei is an element of L that gets mapped onto

e′i it is immediate that (ei)1≤i≤d is a basis of V and L = ⊕1≤i≤rZei.

To prove that L1 is discrete, let us suppose that this is not the case.
The nondiscreteness of L1 means that 0 is not an isolated point of L1 and
so we can find a sequence x′n ∈ L1, x

′
n 6= 0 such that x′n → 0. If xn ∈ L

maps to x′n, then there are rn ∈ R such that xn− rne1 → 0 in V . Writing
rn = r′n + kn where kn ∈ Z and 0 ≤ r′n < 1 and yn = xn − kne1 we
have yn ∈ L, yn − r′ne1 → 0 in V . By passing to a subsequence we may
assume that r′n → r. Then yn → re1 and so yn = re1 for all large n, a
contradiction, since yn lies above x′n 6= 0.

We say that L is a lattice if r = d. This is the same as requiring that
there is an isomorphism of V with Rd that carries L onto Zd. It is also
the same as requiring that V/L is compact. Notice that

Rd/Zd ≃ T d, T = the unit circle

so that Rd/Zd is a torus of dimension d. Notice that this isomorphism is
not only topological but also group theoretic.

We apply these considerations to V = C regarded as a real vector
space of dimension 2. The only discrete subgroups of C are, by the above
theorem, as follows:
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(i) the trivial subgroup (0)

(ii) The subgroup generated by an element a ∈ C \ (0)

(iii) the lattice

L =
{

m1ω1 +m2ω2

∣

∣

∣
mi ∈ Z

}

where ω1, ω2 are two nonzero elements such that ω1/ω2 /∈ R.

The functions with periods in a subgroup of type (ii) above are the
singly periodic functions and they are the circular functions up to a scale
change. The functions with periods from a lattice are the doubly periodic
functions.

For any lattice L in C let M(L) be the set of all meromorphic func-
tions f on C which are periodic with respect to L, i.e., f(z + ω) = f(z)
for all ω ∈ L. It is obvious that M(L) is a field closed under d/dz, a
differential field. The elements of M(L) for various lattices L are called
elliptic functions.

The essential difference between the circular and elliptic functions is
that one cannot go from one lattice to another by a scale change. To see
this more clearly, let us say that two lattices L,L′ are equivalent , L ∼ L′,
if L′ = λL for some λ ∈ C; in this case

f(z) ∈M(L′)⇐⇒ f(λz) ∈ M(L)

To see that this is a highly nontrivial relation, we proceed as follows. By
a Z–basis of a lattice L we mean a pair of elements ω1, ω2 of L such that
ω1/ω2 /∈ R and L = Zω1⊕Zω2. Multiplying L by ω−1

2 we see that L ∼ Lτ

where Lτ = Zτ ⊕ Z1. Changing τ to −τ we may assume that ℑ(τ) > 0.
Let H be the Poincaré upper half plane, i.e.,

H =
{

τ ∈ C
∣

∣

∣
ℑ(τ) > 0

}

Thus any lattice is equivalent to a lattice Lτ for some τ ∈ H. For the
equivalences among the Lτ we have the following result.

Theorem 2. For τ, τ ′ ∈ H, we have

Lτ ∼ Lτ ′ ⇐⇒ τ ′ =
aτ + b

cτ + d
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for some matrix

(

a b
c d

)

where a, b, c, d are integers and ad− bc = 1.

Proof. If L is a lattice with Z–bases (ωi), (ω
′
i), we have, for suitable 2×2

matrices A,A′ with integer entries,

(

ω′
1

ω′
2

)

= A′

(

ω1

ω2

)

,

(

ω1

ω2

)

= A

(

ω′
1

ω′
2

)

Hence
(

ω′
1

ω′
2

)

= A′A

(

ω′
1

ω′
2

)

,

(

ω1

ω2

)

= AA′

(

ω1

ω2

)

It follows from the linear independence of the ωi and ω′
i over R that

A′A = AA′ = I. This means that det(A) = ±1 and A′ = A−1. We now
take L = Lτ with Z–basis (τ, 1). If λLτ ′ = Lτ , then the above remark
leads to

(

λτ ′

λ

)

=

(

a b
c d

) (

τ
1

)

where a, b, c, d are integers with ad− bc = ±1. But then

τ ′ =
aτ + b

cτ + d

and as
ℑ(τ ′) = |cτ + d|−2(ad− bc)ℑ(τ)

we must have ad−bc = 1. Conversely, if τ ′ and τ are related as described,
we can find a λ 6= 0 such that

(

λτ ′

λ

)

=

(

a b
c d

) (

τ
1

)

,

(

τ
1

)

=

(

d −b
−c a

) (

λτ ′

λ

)

Hence λLτ ′ = Lτ .

For any commutative ring R with unit let us write SL(2, R) for the
group of 2× 2 matrices with entries from R and determinant 1. Then the
group SL(2, R) acts on H by

(

a b
c d

)

, τ 7−→ aτ + b

cτ + d
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This is the group of real fractional linear transformations, also known as
the real Möbius group. If we allow the numbers a, b, c, d to be complex, H
is no longer invariant and we have to enlarge it to the extended complex
plane C∪∞. If we restrict the a, b, c, d to be integers, we get the modular
group. Thus, Lτ ∼ Lτ ′ if and only if τ and τ ′ are in the same orbit under
the modular group. Since the modular group is countable, it is clear that
there are continuum many points in H which are mutually inequivalent
under the modular group.

The integers act on the real line by translation and if we take the
interval I = [0, 1], then any real number can be translated by an integer
to belong to I, and the only two elements in I that are equivalent under
the action of Z are 0 and 1. One can ask if we can construct a subset of
H that has a similar property with respect to the action of the modular
group. The following theorem answers this question. We shall prove it
later.

Theorem 3. Let

D =

{

τ ∈ H
∣

∣

∣
|ℜ(τ)| ≤ 1

2
, |τ | ≥ 1

}

Then D contains a representative from each orbit of the modular group
acting on H; and the only pairs (τ, τ ′) of points of D which lie in the
same orbit under the modular group are

ℜ(τ) = −1

2
, τ ′ = τ + 1, |τ | = 1, τ ′ =

−1

τ

In particular, two distinct points of the interior of D are never in the same
orbit.

2. Theorems of Liouville. Let L be a lattice in C and let M(L) be
the field of meromorphic functions on C that are periodic with respect to
L. Then one can prove some general theorems about the zeros and poles
of elements of M(L). For any nonconstant f ∈ M(L) let Z(f) be the
set of its zeros and P (f) the set of its poles. Both Z(f) and P (f) are
discrete sets and are invariant under translations by elements of L. For
any a ∈ C let ma(f) be the order of f and Res a(f) the residue of f at a.
A sum written as

∑

a∈C/L means that summation is over a complete set
of elements that are mutually incongruent mod L.
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Theorem 4. Let f be a nonconstant meromorphic function on C with
period lattice L. Then Z(f) and P (f) are finite sets mod L. Moreover we
have the following.

(i) f has at least one pole

(ii)
∑

a∈C/L Res a(f) = 0

(iii) Z(f) and P (f) have the same number of elements mod L, count-
ing multiplicities. More precisely,

∑

a∈C/L

ma(f) = 0

(iv)
∑

a∈C/Lma·a ≡ 0( mod L)

Proof. First of all it is clear that any element of C is congruent mod L
to an element of the parallelogram

P0 =
{

a1ω1 + a2ω2

∣

∣

∣
) ≤ a1, a2 ≤ 1

}

P0, and more generally, any translate P of P0 is called a fundamental
parallelogram (with respect to L). Any f ∈M(L) is determined completely
once it is known on any fundamental parallelogram. Given f ∈ M(L) one
can choose a fundamental parallelogram P such that the boundary ∂P of
P does not contain any zero or pole of f ; in this case, the zeros or poles of
f within P is a complete set of representatives mod L for Z(f) and P (f).
In particular, as there can be only finitely many zeros and poles within P,
it is clear that Z(f) and P (f) are finite sets mod L, and the summations
in the assertions of the theorem can be taken to be sums over the finite
sets of zeros and poles within P. In what follows P is a fundamental
parallelogram whose boundary does not contain any zero or pole of f .

Proof of (i): If f is holomorphic, it is bounded on P, hence bounded
on C, hence a constant by Liouville’s theorem.

Proof of (ii): Let P have vertices A,B,C,D and let the boundary be
described in the order ABCD. Then

∮

ABCD

f(z)dz = 2πi(sum of residues of f inside P)
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On the other hand, the integrals over pairs of parallel sides of P cancel by
periodicity of f , so that

∮

ABCD

f(z)dz = 0

This proves that the sum of the residues inside P must be 0.

Proof of (iii): Let g = f ′/f ; clearly g ∈M(L). It is easy to see from
the local expression for f at a zero or pole that the poles of g are precisely
the points in R = Z(f)∪P (f), and the residue at a point a ∈ R is ma(f)
(write f(z) = (z − a)mah(z) where h is holomorphic at a and h(a) 6= 0;
then g(z) = (ma/(z − a)) + k(z) where k is holomorphic at a). By (ii)
applied to g we get (iii) immediately.

Proof of (iv): We take now g(z) = zf ′(z)/f(z). g is meromorphic
but is not in M(L) because of the factor z. Nevertheless we can proceed
as before but with greater care in evaluating the integral of g over ∂P.
We need the result which we formulate as a lemma below. Let P−P0 +a
so that the vertices of P are a, a+ ω2, a+ ω1 + ω2, a+ ω1. We have

∮ b+ω1

b

z
f ′(z)

f(z)
dz =

∮ a+ω1+ω2

a+ω2

(u− ω2)
f ′(u)

f(u)
du

so that
∮

BC

z
f ′(z)

f(z)
dz −

∮

AD

z
f ′(z)

f(z)
dz = ω2

∮

BC

f ′(u)

f(u)
du

Similarly

∮

AB

z
f ′(z)

f(z)
dz −

∮

DC

z
f ′(z)

f(z)
dz = −ω1

∮

DC

f ′(u)

f(u)
du

Now the residue of g at a point a is ma·a. Hence

2πi
∑

a∈C/L

ma·a =

∮

∂P

g(z)dz = −ω1

∮

DC

f ′(u)

f(u)
du+ ω2

∮

BC

f ′(u)

f(u)
du

So to prove (iv) it is enough to show that

1

2πi

∮

BC

f ′(z)

f(z)
dz,

1

2πi

∮

DC

f ′(z)

f(z)
dz
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are both integers. Now, as f is nowhere 0 on the line segments BC and
DC, we can find small rectangles containing these line segments on which
f has no zero. The required conclusion then follows from the following
lemma.

Lemma. Let U be a simply connected domain in C and p : [a, b] −→ U a
continuous map. Suppose that f has no zero in U and f(p(a)) = f(p(b)).
Then

1

2πi

∮

p

f ′

f
dz ∈ Z

Proof. Since U is simply connected, we can find a holomorphic u on U
such that u′ = f ′/f . Locally on U we can define log f and hence for such
a choice we have (log f)′ = f ′/f . Thus u = log f + constant locally, and
so eu = constantf locally, hence globally on U . But then, as

∮

p

f ′

f
dz = u(p(b))− u(p(a))

and

eu(p(b))−u(p(a)) =
f(p(a))

f(p(b))
= 1

we see that
1

2πi

∮

f ′

f
dz

must be an integer.
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3. THE WEIERSTRASS FUNCTION

1. The function ℘(z). We begin with

Lemma 1. Let L be a lattice in a real euclidean vector space of dimension
d. Then the series

∑

0 6=ℓ∈L

1

||ℓ||k <∞

if and only if k > d.

Proof. Let α1, . . . , αd form a Z–basis for L. Let

Q(x) = ||x1e1 + . . .+ xded||2 (x = (x1, . . . , xd) ∈ Rd)

We wish to determine when the seies

∑

x∈Zd\{0}

1

Q(x)k/2
<∞

Now Q is a positive definite quadratic form in the xj and so its matrix
is symmetric and has only positive eigenvalues. Since this matrix can be
diagonalised by an orthogonal matrix, it is clear that if m and M are its
least and greatest eigenvalues,

m(
∑

i

x2
i ) ≤ Q(x) ≤M(

∑

i

x2
i ) (x = (x1, . . . , xd) ∈ Rd)

Hence it is a question of determining when

∑

x∈Zd\{0}

(x2
1 + . . .+ x2

d)
−k/2 <∞

But for x ∈ Zd \ {0},

1

d

(

∑

i

|xi|
)2

≤
∑

i

x2
i ≤ d

(

∑

i

|xi|
)2

16



and hence it comes to determining when

∑

x∈Zd\{0}

(|x1|+ . . .+ |xd|)−k <∞

We may clearly restrict the sum to integers xi ≥ 0. The number of x ∈ Zd

with xi ≥ 0 and
∑

i |xi| = r is ∼ Crd−1 as r → ∞ for some constant
C > 0, and so it comes down to when

∑

r≥1

rd−1

rk
<∞

and this is clearly the case if and only if k > d.

We are now interested in constructing meromorphic functions over C
with period lattice L. Let ω1, ω2 be a Z–basis of L. Following the method
discussed in the case of circular functions (it is precisely to motivate this
construction that we treated the circular case earlier) let us define

Wk(z) =
∑

ω∈L

1

(z + ω)k
(k ≥ 3) (1)

For any A > 0 and |z| ≤ A, we have, for ω ∈ L with |ω| ≥ 2A,

|z + ω|k ≥ (|ω| − |z|)k ≥ (|ω|/2)k

and so the series
∑

ω∈L,|ω|>2A

1

(z + ω)k

converges normally on C \ {ω ∈ L||ω| ≥ 2A} when k ≥ 3 by Lemma 1.
Hence, for any subset D of L the function

∑

ω∈D

1

(z + ω)k

is holomorphic away from D and its derivatives can be calculated by
termwise differentiation. This shows first of all, taking D = L, that Wk is
holomorphic on C \ L; and secondly, taking D = L \ {ω0} where ω0 ∈ L,
that

Wk(z) =
1

(z + ω0)k
+H(z)

17



where H is holomorphic in a small neighborhood of ω0. Hence Wk is
meromorphic on C, with singularities only at the elements of L where it
has poles of order −k, the principal part at ω0 being

1

(z + ω0)k

Moreover we have

dWk

dz
= −kWk+1 (k ≥ 3) (2)

We cannot take k = 2 in the above argument as the series will not
converge normally since the series

∑

ω∈L\{0}

1

ω2

is not convergent. However if we subtract this infinite sum, we will obtain
a renormalized sum that will define an elliptic function. This is the famous
Weierstrass ℘–function.

Theorem 2. The function

℘(z) =
1

z2
+

∑

ω∈L\{0}

( 1

(z + ω)2
− 1

ω2

)

is well defined, even, and meromorphic on C with period lattice L. Its
degree is 2, and it has double poles at ω ∈ L with principal parts (z+ω)−2

and no other singularities.

Proof. We have

( 1

(z + ω)2
− 1

ω2

)

=
2ωz − z2

ω2(z + ω)2

For |z| ≤ A and |ω| ≥ 2A where A > 1 is fixed, we have

|(z + ω)2| ≥ (|ω| − |z|)2 ≥ (|ω|/2)2

so that
∣

∣

∣

2ωz − z2

ω2(z + ω)2

∣

∣

∣
≥ B|ω|−3
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for some constant B > 0 independent of ω. This proves the normal con-
vergence. This defines ℘ as a meromorphic function with singulatiries at
the points of L and nowhere else, the points of L being double poles with
principal parts (z + ω)−2. Sice the sum over L \ {0} is unchanged when
we change z to −z and ω to −ω, it follows that ℘ is an even function.

The periodicity needs a little more care. The normal convergence
allows us as usual to differentiate termwise and so we get

℘′ = −2W3

So ℘′ has period lattice L. So, if µ ∈ L, the function ℘(z + µ)− ℘(z) has
vanishing derivative and so must be a constant, say c(µ):

℘(z + µ)− ℘(z) = c(µ)

If µ/2 /∈ L, we can take z = −µ/2 in the equation above and get, remem-
bering that ℘ is even, we get

c(µ) = ℘(µ/2)− ℘(−µ/2) = 0

Taking µ = ω1, ω2 we see that ω1 and ω2 are periods of ℘, and so ℘ has
period lattice L. Finally, the degree of ℘ is 2 since it has only one pole
mod L, namely 0, and that has order −2.

2. The properties of the ℘–function. We shall now discuss some
basic properties of the function ℘.

Theorem 3. We have the following.

(i) ℘′ has exactly three zeros mod L, namely z = ω1/2, ω2/2, ω3/2
where ω3 = ω1 + ω2. These are all simple.

(ii) For any a ∈ C \ (1/2)L, ℘(z) − ℘(a) has exactly two zeros mod
L, namely at z = a and z = −a, and these are simple.

(iii) If a ∈ (1/2)L \L, i.e., if a ≡ ωi(i = 1, 2, 3), then ℘(z)−℘(a) has
exactly one zero mod L, namely z = a, and it is a double zero.

Proof. Since ωi/2 ≡ −ωi/2 mod L, we have, as ℘′ is an odd function,
−℘′(ωi/2) = ℘′(−ωi/2) = ℘′(ωi/2) and so ℘′(ωi/2) = 0. Since ℘′ has a
pole of order 3 at z = 0 and no ther singulatities mod L, the degree of

19



℘′ is 3. As we have found 3 distinct zeros, it must be that these are all
simple and there are no other zeros. This proves (i).

Let now a /∈ (1/2)L, i.e., a 6≡ −a mod L. For such a, ℘(z) − ℘(a)
has a zero at z = a, hence by evenness a zero at z = −a which is distinct
from z = a mod L. Since the degree of ℘(z)− ℘(a) is 2, z = ±a are both
simple zeros and there are no other zeros. This proves (ii).

If a ≡ −a mod L, i.e., a ≡ ω/2, then ℘(z)−℘(a) must have a double
zero at z = a since ℘′(a) = 0. Again there is no other zero because the
degree of ℘(z)− ℘(a) is 2.

Theorem 4. We have the following.

(i) The field of even elements of M(L) is generated by ℘, i.e., if f
is inM(L) and is even, there is a rational function k of a single
variable such that f = k(℘).

(ii) The field C(℘, ℘′) of all rational functions of ℘ and ℘′ is precisely
M(L).

Proof. Let f be even. Let f be an even element of M(L) and non
constant. We first observe that if a ∈ C with a /∈ (1/2)L and z = a is
a zero (resp. pole), then z = −a is also a zero (resp. pole) and of the
same order. For, if m is the order of z = a, then f(z) = (z − a)mg(z)
for z near z = a where g is holomorphic at z = a and g(a) 6= 0. Then
f(z) = (−1)m(z + a)mh(z) where h(z) = g(−z) is holomorphic at z = −a
and h(−a) = g(a) 6= 0. Next we observe that if a ∈ (1/2)L \ L and
z = a is a zero (resp. pole) of f , its order is even. For, we again write
f(z) = (z − a)mg(z) where g is holomorphic at z = a and g(a) 6= 0. If
F (z) = f(z + a), then F (−z) = f(−z + a) = f(z − a) = f(z + a) = F (z)
so that F is even. Clearly the order of F at z = 0 is even, and this order is
m. If we write k(a) for m(a) or (1/2)m(a) according as a 6≡ −a or a ≡ −a,
then f(z) and (℘(z)− ℘(a))k(a) has the same order of zero at z = ±a. A
similar result is valid when we deal with a pole at z = a.

This said, let a1, . . . , ar be the zeros of f with the following properties:
no aj is in L, aj 6≡ ±ak if j 6= k, and if z = a is a zero of f not in L, there
is some j such that a ≡ ±aj . It is then immediate that

h(z) =

∏j=r
j=1(℘(z)− ℘(aj))

k(aj)

∏k=s
k=1(℘(z)− ℘(bk))k(bk)
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has the same zeros and poles wiht the same orders as f on C \ L, and
hence without this restriction also, in view of Liouville’s theorems. So f
is a constant multiple of h. This proves (i).

To prove (ii) let f be odd. Then f℘′ is even and so lies in C(℘). But
then f ∈ C(℘, ℘′).

We shall now show that ℘ and ℘′ are not algebraically independent,
i.e., there is a polynomial relation between ℘ and ℘′. To describe this
relation, let us define

Gk = Gk(L) =
∑

ω∈L\{0}

1

ω2k
(k ≥ 2)

Note that the corresponding sums of odd powers are 0. The Gk are anal-
ogous to the lattice sums

∑

n∈Z\{0}

1

n2k

whose computation dates back to Euler. TheGk however are not constants
but depend on the lattice. We have

Gk(λL) = λ−2kGk(L) (λ ∈ C \ {0})

Theorem 5. Let
g2 = 60G2, g3 = 140G3

Then we have
℘′2 = 4℘3 − g2℘− g3

Proof. This will be done by looking at the local expansion of ℘ and ℘′

at z = 0. We have

℘(z) =
1

z2
+

∑

ω∈L\{0}

( 1

(ω − z)2 −
1

ω2

)

Since (1− t)−2 = 1 + 2t+ 3t2 + . . .+ (r + 1)tr + . . . for |t| < 1, we have,

1

(ω − z)2 =
1

ω2

1

(1− z
ω
)2

=
∑

r≥0

(r + 1)zr

ωr+2
(|z| < α)
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where α is the minimum value of ω| as ω varies over L \ {0}. Substituting
this in the expression for ℘ and rearranging the sum we get the local
expansion for ℘. This can be justified of course by checking that the double
series converges in the indicated region for z if everything is replaced by
its absolute value (see problems below). So we have

℘(z) =
1

z2
+

∑

k≥1

(2k + 1)Gk+1z
2k

We see that the Gk are the coefficients of the local expansion of ℘.

We now differentiate and multiply this local expansion to get the
following:

℘ =
1

z2
+ 3G2z

2 + 5G3z
4 + . . .

℘′ =
−2

z3
+ 6G2z + 20G3z

3 + . . .

℘′2 =
4

z6
− 24G2

z2
− 80G34 + . . .

℘3 =
1

z6
+

9G2

z2
+ 15G4 + . . .

A simple calculation then shows that

℘′2 − 4℘3 + 60G2℘+ 140G3

has no pole at z = 0 and no constant term, and so, being inM(L), must
be a constant, and thus 0. This finishes the proof.
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4. COMPLEX TORI

1. Complex manifolds of dimension 1. In elementary complex func-
tion theory one knows that it is conceptually worthwhile to introduce the
extended complex plane C ∪ (∞), which is topologically the sphere S2

of real dimension 2. The rational functions are then precisely the mero-
morphic functions on C ∪ (∞). The starting point of Riemann’s more
profound theory of complex functions is the recognition that one has to
consider other spaces than the sphere on which one can make sense of
analytic functions. From this point of view the elliptic functions appear
as meromorphic functions on a torus in the same way as the rational func-
tions are meromorphic functions on C ∪ (∞). The basic notion here is
that of a complex manifold of dimension 1, or a Riemann surface. This
was the central concept in Riemann’s epoch–making theory; however its
true scope was not completely understood immediately because in Rie-
mann’s work the Riemann surfaces seemed to be only a device to study
multi–valued functions. It was Klein who recognized that Riemann sur-
faces have to be treated as objects of independent study, and that they
are the true domains on which complex function theory should be studied.
Klein did not complete his program, and in particular did not completely
clarify the notion of a Riemann surface. This was left to Weyl who clearly
understood what the conceprual basis of the theory of Riemann surfaces
should be and codified it in his famous book Die Idee der Riemannschen
Fläsche. It was in Weyl’s book that the notion of what is meant by a
complex manifold of dimension 1 first found its clearest formulation.

We shall give a brief treatment of the notion of a complex manifold.
For our purposes we need only the cases when the dmension of the manifold
is either 1 or 2. We start with the case of dimension 1. To say that X is
a complex manifold of dimension 1 we should have the following data.

(i) X should be a Hausdorff topological space; we assume that X is
connected and satisfies the second axiom of countability.

(ii) X should be covered by open sets Xi and for each i there should
be a homomorphism zi of Xi with an open set Di of the complex
plane C; zi is called the local coordinate on Xi.
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(iii) If the indices i, j are such that Xij = Xi∩Xj is nonempty, and if
Dij and Dji are the images under zi and zj respectively of Xij,
then the function

fij : Dij −→ Dji

defined by
zj = fij ◦ z−1

i

is holomorphic. By interchanging i and j we see that fij is in-
vertible (as a map) and fji is the inverse function to fij.

With this data it becomes possible to speak, for any open set Y ⊂ X , of
holomorphic functions on Y : a function f(Y −→ C) is holomorphic if for
any index i, the restriction of f to Y ∩Xi is of the form fi ◦ zi where fi

is a holomorphic function on zi(Y ∩Xi).

The above notion of holomorphic function has all the properties that
are familiar to us from elementary function theory. The essential new
ingredient is that unlike the case of C, there is no distinguished analytic
function that can serve as a local coordinate everywhere. Indeed, this is
not true even for the extended complex plane C ∪ (∞) as we shall see
below. However even for C, at a given point p of a complex manifold X ,
there are many possible local coordinates. Let z be a local coordinate at
p with z(p) = 0; then, a function ζ, defined and holomorphic around p, is
of the form

ζ(q) = Z(z(q)) (q ∈ U)

where U is an open neighborhood of p and Z is an analytic function on the
complex plane, defined in a neighborhood of the origin. ζa local coordinate
if and only if

(∂Z

∂t

)

t=0
6= 0

The necessity of the condition is clear because from t = t(Z), Z = Z(t)
we get (∂t/∂Z)(∂Z/∂t) = 1 which implies that (∂Z/∂t)t=0 6= 0. The
sufficiency for example can be established by using power series. If c =
(∂Z/∂t)t=0 6= 0, we can replace Z by c−1Z and assume that

Z = t+ a2t
2 + . . .+ ant

n + . . .

where the power seires converges on some disk |t| < ρ. To invert this
equation let us write

t = Z + b2Z
2 + . . .+ bnZ

n + . . .
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and it is a question of showing that this defines the bn uniquely and the
series above converges in a disk |Z| < δ. Substituting for t in this power
series we get a formal powewr series in Z all of whose powers higher than 1
must have vanishing coefficients. For the coefficient of Z2 we have b2 + a2

and so

b2 + a2 = 0

which determines b2 as −a2. Equating the coefficient of Zn to 0 we get
an equation

bn + Pn,2a2 + . . .+ Pn,n−1an−1 + an = 0

where the Pn,j are universal polynomials in b2, . . . , bn−1 with nonnegative
integer coefficients. This shows that the bn for n ≥ 2 are uniquely deter-
mined by the a’s; moreover it can be shown by the so called method of
majorants that the power series z + b2z

2 + . . .+ bnz
n + . . . has a positive

radius of convergence (see problem #1).

Let us now discuss a few examples.

C: Here X = C and z is a coordinate at all points. The same applies
to any open subset of C.

X = C∪ (∞): The neighborhoods of∞ are the sets {|z| > A}∪ (∞).
X is covered by X0 = C and X∞ = X \ (0). On X0 the coordinate is z;
on X∞ the coordinate is t which is defined as 0 at ∞ and z−1 everywhere
else. On the overlap X0 ∩X∞ = C \ (0), the relation between z and t is
given by

t =
1

z
, z =

1

t

The complex manifold thus defined is compact. For, if (Ui) is a covering
of X by open sets, ∞ must be in one of them, say Ui0 , so that for some
A > 0 we must have {|z| > A} ⊂ Ui0 ; then we can find i1, . . . , ik such
that {|z| ≤ A} ⊂ Ui1 ∪ . . .∪Uik

, so that X is covered by Uir
, (0 ≤ r ≤ k).

As one knows from elementary fumction theory, the rational functions are
precisely the meromorphic functions on X .

The complex structure on X can also be defined using stereographic
projection. We start with X = S2, the unit sphere in R3. Let N be
the north pole, the point (0, 0, 1). Then we can project X \ (N) onto C
bijectively by sending the point P to the unique point on the x1x2–plane
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in which the line joining P and N meets this plane. If (x1(P ), x2(P )) are
the coordinates of this point, we put

z(P ) = x1(P ) + ix2(P )

We use z as a local coordinate on X \ (N). We replace N by S, the
south pole with coordinates (0, 0,−1), and define the local coordinate t
on X \ (S) by

t(P ) = t1(P )− it2(P )

where (t1(P ), t2(P )) are the coordinates of the unique point of the x1x2–
plane in which the line joining S and P meets it (note the change in sign).
It is an easy verification that if P is different from both N and S, we have

t(P=
1

z(P )
, z(P ) =

1

t(P )

X = CP1: This is the complex projective line. It is defined as the
set of lines through the origin in C2. Any point p of C2 \ (0, 0) lies on a
unique line and so we have a surjective map

π : C2 \ (0, 0) −→ CP1, π(z1, z2) := [(z1, z2)], the line containing (z1, z2)

We give CP1 the quotient topology; a subset U of CP1 is open if and only
if π−1(U) is open in C2 \ (0, 0). It is easy to verify that CP1 is Hausdorff,
connected, and satisfies the second axionm of countability. Since every
line contains a point (z1, z2) with |z1|2 + |z2|2 = 1, we see that CP1 is the
image under π of the unit sphere in C2 and so CP1 is compact. If the
line in C2 does not lie in the plane z2 = 0, its points have z2 6= 0 and so
any such line contains a unique point of the form (z1, 1); thus we have a
bijection

[(z, 1)]↔ z

from the open set X2 of lines not on the plane z2 = 0; (this set is the
image under π of the open set {z2 6= 0} in C2 \ (0, 0), hence open as π is
an open map) to C; we use z as a coordinate on X2. There is only one
line outside X2, namely the line whose points are (a, 0). We call this ∞.
Thus we see that CP1 is obtained from C by adding a point at infinity.
Let X1 be the set of lines that are not in the plane z1 = 0; we have a
bijection

[(1, t)]↔ t
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and so we can use t as a coordinate on X1. X is the union of X1 and X2;
on X1 ∩X2 we have

[(z1, z2)] = [(z1/z2, 1)] = [(1, z2/z1)]

so that the coordinates z and t are related by

t =
1

z
, z =

1

t

So X is just the extended complex plane defined earlier.

X = C/L: We now come to the example that is most important for
us, namely the torus. Let L be a lattice in C. Since C and L are additive
abelian groups we can define the group X = C/L. The topology of X is
the quotient topology with respect to the natural map

π : C −→ C/L

Since X is the image under π of any fundamental parallelogram we see
that X is compact. If {ω1, ω2} is a Z–basis of L, we have an isomorphism
(C, L) with (R2,Z2) so that

X ≃ R2/Z2 ≃ R/Z×R/Z

Thus X is a torus in the topological sense. Actually this isomorphism is
C∞. The local coordinates on X are defined naturally. If x is any point of
X and a is a point of C above x (so that x = a+ L), we can find a small
disk Da = {|z − a| < δ} around a such that the map π is one to one on
Da so that we can use z − a as a local coordinate on π(Da). This defines
C/L as a compact complex manifold of dimension 1.

Any function on X or on an open subset of X can be lifted to a func-
tion on C or an open subset of C that is invariant under translations by
elements of L, and conversely any such function arises from a function on
X . Hence the elements ofM(L) can be viewed as meromorphic functions
on X . Thus we have a clear analogy with the case of CP1. However,
function theory on C/L differs in mnay ways from function theory on
CP1. For instance we know that in constructing rational functions with
given zeros and poles there are no restrictions on the locations of the zeros
and poles, but this is no longer true on C/L; indeed, we have seen that
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if a1, . . . , ar are the zeros and B1, . . . ,br are the poles for a meromorphic
function on C/L, counting multiplicities, then

a1 + . . .+ ar + b1 + . . .+ br = 0

in C/L. It is a deep result that we shall prove later that if this condition is
satisfied, then there is a meromorphic function on C/L which ahs precisely
these zeros and poles (Abel’s theorem).

Recall that in defining a complex manifold we started with a topolog-
ical space. It is a little easier to start with a manifold of class C1 which is
defined in the same way as a complex manifold, except that the transition
between different local coordinates is only required to be continuously dif-
ferentiable. Then one can define the structure of a complex manifold by
selecting a subset of allowable local coordinate systems with the property
that the transitions are holomorphic (the possibility of being able to make
this selection is an assumption). The question, first studied by Riemann,
is whether there is more than one way of making this further choice of
local coordinates, i.e., whether there is more than one complex structure
compatible with the structure of X as a C1–manifold. It turns out that
this is not so for S2. The complex structure defined on S2 above is the
only one upto isomorphism.

Theorem 1. Let X be a complex manifold that is C1–ismorphic to S2.
Then X is complex analytically isomorphic to CP1.

The case of the torus is more interesting. For any lattics L in C we
have seen that C/L is C∞–isomorphic to the standard torus R2/Z2 so
that for any two lattices L,L′ in C we have a C∞–isomorphism

C?L ≃ C/L′

In fact, if (ωi), (ω
′
i) are Z–bases for L,L′, then the map T : x1ω1+x2ω2 7−→

x1ω
′
1 + x2ω

′
2 is a real linear isomorphism of C onto itself, and t(L) = L′.

Then t induces a real analytic isomorphism

t∼ : x+ L −→ t(x)x+ L′

But in general we cannot choose a complex analytic isomorphism of C/L
with C/L′. In fgactw e have the following theorem.
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Theorem 2. Let L,L′ be lattices in C.a complex manifold that is C1–
ismorphic to S2. Then C/L and C/L′ are complex analytically isomorphic
if and only if L ≃ L′,i.e., there is a number c ∈ C \ (0) such that L′ = cL.
Moreover, if X is a complex analytic manifold whose underlying smooth
manifold is a torus, then X is complex analytically isomorphic to C/L for
some lattice L in C.

We have already seen that lattices viewed up to complex multipli-
cation are parametrized by H/SL(2,Z). So there are continuum many
complex structures on a given smooth torus. A similar result is also valid
for annuli. For any 0 < r < R let Ar,R be the annulus {r < |z| < R} with
the usual structure as a complex manifold.

Theorem 3. Let X be a complex manifold that is C1–ismorphic to an
annulus. Then X is complex analytically isomorphic to some Ar,R. More-
over Ar,R and Ar′,R′ are complex analytically isomorphic if and only if
r/R = r′/R′.

The proofs of these theorems are not trivial and we shall not discuss
them at this stage.
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5. COMPLEX TORI AS NONSINGULAR

PLANE CUBIC CURVES

1. Complex manifolds of dimension 2. The definition of a complex
manifold of dimension 2 is exactly the same as for a manifold of dimension
1 except that there are two local coordinates instead of one. To say that
X is a complex manifold of dimension 2 we should have the following data.

(i) X should be a Hausdorff topological space, connected and satis-
fying the second axiom of countability.

(ii) X should be covered by open sets Xi and for each i there should
be a homomorphism hi = (zi1, zi2) of Xi with an open set Di of
the complex space C2; hi is called the local coordinate system on
Xi.

(iii) If the indices i, j are such that Xij = Xi∩Xj is nonempty, and if
Dij and Dji are the images under hi and hj respectively of Xij,
then the function

fij : Dij −→ Dji

defined by
fij = hj ◦ h−1

i

is a holomorphic function of two variables. By interchanging i
and j we see that fij is invertible (as a map) and fji is the inverse
map to fij .

The space C2 or any open connected subset of it is a complex manifold of
dimension 2 according to this definition with (z1, z2) serving as a system of
coordinates everywhere. The complex projective plane CP2 is an example
of a compact complex manifold of dimension 2 which is very important for
us. It is defined as the set of all complex lines through the origin of the
3–dimensional vector space C3. We have a map

π : C3 \ (0) −→ CP2, π((a1, a2, a3)) = [(a1, a2, a3)]

where [(a1, a2, a3)] is the line containing (a1, a2, a3). If ℓ is a line in C3

viewed as a point of CP2 and if (a1, a2, a3) is a nonzero point of ℓ, we call
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(11, a2, a3) the homogeneous coordinates of ℓ; if k 6= 0, then (ka1, ka2, ka3)
are also the homogeneous coordinates of ℓ. We give to CP2 the quotient
topology: a subset of CP2 is open if and only if its preimage under π is
open in C3 \ (0). It is easy to show that π is an open map, that CP2

is connected, Hausdorff, and second countable. Although a function f on
C3 does not make sense on CP2, it will do so if it is homogeneous of
degree 0; more generally, if f is homogeneous of some degree d, the set of
points where f is nonzero is the preimage of a subset of CP2, and this
set will be defined by abuse of language as the subset of CP2 where f is
nonzero. Similarly, we can speak of the subset of CP2 where f is zero. If
Xi(i = 1, 2, 3) are the sets where xi 6= 0, then each Xi is open and

CP2 = X1 ∪X2 ∪X3

On each Xi we have coordinates that take Xi to C2; thus the coordinates
on X1 are z1 = x2/x1, z2 = x3/x1. The transformations between the
overlaps are holomorphic. For instance, if (z1, z2) and (w1, w2) are the
coordinates of a point in X1 ∩X2, then

w1 =
1

z1
, w2 =

z2
z1
, z1 =

1

w1
, z2 =

w2

w1

We thus have a complex manifold of dimension 2. It can be viewed as
being obtained by adding to C2 a line at infinity, with C2 identified with
any one of the Xi.

In a general complex manifold X , if p is a point and z1, z2 are local
coordinates at p, then for a pair w1, w2 of functions defined and holomor-
phic around p, the necessary and sufficient condition that w1, w2 be also a
system of local coordinates at p is that the jacobian determinant between
the wi and zi be nonzero at p:

(∂(w1, w2)

∂(z1, z2)

)

P
6= 0

The manifold CP2 is the stage on which the geometric theory of plane
curves takes place. Originally curves were studied only on affine space
C2. But it was soon realized that the theory takes a simpler and more
harmonious form if points at infinity were added and the curves treated as
curves in the projective plane. Topologically, adding points at infinity is
equivalent to compactifying the space and it is clear on topological grounds

31



that such a process will result in a simplification and streamlining of the
theory.

2. Nonsingular cubic curves. We are interested in cubic curves in
CP2. As a preliminary to this topic let us consider a curve defined by an
equation

F (X, Y,W ) = 0

where F is a homogeneous polynomial of degree N ; the above equation is
then said to define a curve of degree N and we denote th curve by CF . If
P is a point of CF with homogeneous coordinates (p1, p2, p3), P is said to
be a nonsingular point of CF if one of the three numbers

(∂F/∂X)P , (∂F/∂Y )P (∂F/∂W )P

is nonzero. The geometrical meaning of this condition is easy to under-
stand. Suppose that

(∂F/∂X)P 6= 0

Then first of all either p2 or p3 is different from zero. For, otherwise, P
is the point (1, 0, 0), and the condition that P lies on CF means that the
term XN does not enter F ; but then ∂F/∂X has to vanish at P . If p3

(for instance) is different from 0, we may take W = 1 and consider CF in
the neighborhood of P as the affine curve

F (X, Y, 1) = 0

where (∂F/∂X)(P ) 6= 0. If we write U = F, V = Y , then

∂(U, V )

∂(X, Y )
=
∂F

∂X
6= 0

at P and so (U, V ) is a system of local coordinates at P . In this coordinate
system, the curve appears locally as U = 0 and so has the structure of a
complex manifold of dimension 1. If every point of CF is nonsingular, CF

is called a nonsingular or smooth curve. A nonsingular curve can thus be
viewed as a compact complex manifold of dimension 1.

Consider now a curve in affine C2 with equation

Y 2 = P (X), P (X) = a0X
3 + a1X

2 + a2X + a3 (a0 6= 0) (1)
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For a point (X0, Y0) of the curve to be singular the condition is

Y0 = 0, P (X0), P
′(X0) = 0

so that if P has no multiple roots, the affine curve is nonsingular. Let us
now examine if the curve is nonsingular in the projective plane when P
has no multiple roots. In this case, in the projective plane the equation of
the curve is

Y 2W = P (X,W ), P (X,W ) = a0X
3+a1X

2W+a2XW
2+a3W

3 (1′)

Since the degree of P is 3, the coefficient of X3 in P is nonzero and so the
points at infinity of the curve are given by X3 = 0. In other words, there
is exactly one point at infinity on the curve, namely (0, 1, 0). To analyse
the curve near (0, 1, 0) we take Y = 1, so that the point (0, 1, 0) reduces
to (0, 0) and the curve to the affine curve in the (X,W )–plane

W = a0X
3 + a1X

2W + a2XW
2 + a3W

3

It is immediate that (0, 0) is a nonsingular point. Thus the projective
cubic curve (1’) is nonsingular if and only if P has 3 distinct roots.

Let us take the cubic curve in the form

Y 2 = 4X3 − a2X − a3 (2)

The nonsingularity is equivalent to the fact that the polynomial on the
RHS has 3 distinct roots. Let us write down the condition for this. This
condition is equivalent to saying that the polynomial and its derivative
have no root in common. The derivative is 12X2−a2 whose roots are x =
±a2/2

√
3. So the condition is x(4x2−a2) 6= ±a3, i.e., x2(4x2−a2)

2 6= a2
3.

This simplifies to
∆ := a3

2 − 27a2
3 6= 0 (3)

3. The isomorphism of complex tori with nonsingular plane
curves. Recall that if L is a lattice in C, the Weierstrass function

℘ = ℘L

satisfies the equation

℘′2 = 4℘3 − g2℘− g3 = 0 (4)
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where

g2 = g2(L) = 60
∑

0 6=ω∈L

ω−4, g3 = g3(L) = 140
∑

0 6=ω∈L

ω−6 (5)

Theorem 1. We have the factorization

4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3) ei = ℘(ωi/2)

where ω1, ω2 is a Z–basis for L and ω3 = ω1 + ω2. Moreover the ei are
distinct. In particular,

∆(L) := g3
2 − 27g2

3 6= 0 (6)

Proof. Since ℘ is of order 3, the function 4℘3− g2℘− g3 is of order 6 and
0 is its sole singularity, a pole of order 6. Now ℘′ vanishes at ωi/2 and as
the order of ℘′ is 3, these are simple zeros of ℘′. So z = ωi/2 is a double
zero for ℘− ei, and the ei are distinct as ℘ has order 2. Hence

℘′2 = 4(℘− e1)(℘− e2)(℘− e3)

So
4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3)

showing that

4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3)

The condition (6) is immediate from the criterion (3). This finishes the
proof.

The point (℘(z), ℘′(z)) is thus on the cubic curve

Y 2 = P (X), P (X) = 4X3 − g2X − g3

If ΓL is the corresponding projective curve, the map

F : z + L 7−→ [(℘(z), ℘′(z), 1)] (7)
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is well defined and holomorphic from C/L \ (0) to ΓL.

Theorem 2. The map F extends holomorphically to all of C/L and is
a complex analytic isomorphism of C/L with the nonsingular cubic curve
ΓL.

Proof. The map F is clearly holomorphic from C/L \ (0) into CP2 and
goes into ΓL. So it is a holomorphic map into ΓL. Close to 0 we can also
write it as

F (z) = [(℘(z)/℘′(z)), 1, (1/℘′(z))]

which is of the form

F (z) = [(az + . . . , 1, bz3 + . . .)]

This shows that if we extend F to 0 by setting

F (0) = [(0, 1, 0)]

then F is holomorphic also at z = 0 and takes z = 0 to [(0, 1, 0)], the point
at infinity of ΓL. Since ℘ takes all values, it follows that F is surjective;
indeed, if (x, y) lies on the curve, we first find z such that ℘(±z) = x, and
then y = ±℘′(z) = ℘′(±z). Let us show that this map is bijective. Since
only 0 goes to the point at infinity, it is enough to check bijectivity on
C/L\ (0). If we exclude the points ωi/2, ℘ is 2−−1 on the remaining set,
and ℘′ distinguishes between the pairs of points where ℘ takes the same
value; but the three points ωi/2 are distinct and the ℘–values there are
also distinct and different from those of ℘ at the other points. This proves
the bijectivity.

This is already enough to finish the proof. An analytic map be-
tween complex manifolds of dimension 1 which is bijective, is an ana-
lytic isomorphism, i.e., the inverse map is also analytic (see problem #
1). But in this case we can explicitly verify this also. First consider a
point P0 = (℘(z0), ℘

′(z0)) of the affine cubic. If z0 /∈ (1/2)L, ℘′(z0) 6= 0
and so z is an analytic function of X = ℘ in a neighborhood of P0. If
z0 ∈ (1/2)L \ L, then z0 = ωi/2 for some i = 1, 2, 3, and then ℘′′(z0) 6= 0,
so that z is an analytic function of Y = ℘′(z) in a neighborhood of P0.
Finally, let z0 = 0. The image point is the point P0 = (0, 1, 0) at infinity.
The function X/Y is well defined and analytic on the curve around P0

and coincides with ℘/℘′ on the torus. The derivative

( ℘

℘′

)′

=
(℘′)2 − ℘℘′′

(℘′)2
= 1− ℘℘′′

(℘′)2
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is nonzero at z = 0; in fact, as z → 0, this expression tends to −1/2. Hence
z is an analytic function of X/Y around P0. This finishes the proof.

4. The inversion problem. The theorem proved just now raises the
following question: is it true that every nonsingular cubic curve in CP2 is
isomorphic to some torus C/L? This is the inversion problem in the the-
ory of elliptic functions. The answer is affirmative and for that reason the
nonsingular plane cubic curves are called elliptic curves. There are many
different ways to prove this, and each method illustrates some profound
aspect of the theory of elliptic functions. The simplest is the method of
modular functions and we shall take it up first.

The functions g2 and g3 are defined on the space of all lattices in C
and change as follows under the map L 7→ λL (λ 6= 0):

g2(λL) = λ−4g2(L), g3(λL) = λ−6g3(L) (7)

From this it is easy to construct functions on lattices that are invariant
under these maps (we refer to this action L 7−→ λL of C× = C \ (0) on
the space of lattices as complex multiplication). The discriminant ∆(L)
defined by (6) is one such. Classically the following function plays a big
role:

J(L) :=
g2(L)3

∆(L)
=

g2(L)3

g2(L)3 − 27g3(L)2
(8)

Clearly J is invariant under L 7→ λL. Recall now the fact that any lattice
is equivalent to a lattice Lτ (= Zτ ⊕ Z1) under complex multiplication, τ
being in the upper half plane H. So functions on the space of lattices that
are invariant under complex multiplication of lattices may be viewed as
functions on H that are invariant under the action of the modular group
Γ. Here the modular group Γ is the group of all matrices

(

a b
c d

)

, a, b, c, d ∈ Z, ad− bc = 1

and the action is
(

a b
c d

)

, τ 7−→ aτ + b

cτ + d

We put

j(τ) = J(Lτ ) (9)
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The functions
Gk(τ) =

∑

(0,0)6=(m,n)∈Z2

(mτ + n)−2k

are holomorphic in τ (we shall see this later) and so j is holomorphic.
Since J is invariant under complex multiplication, we have

jBigl(
aτ + b

cτ + d

)

= j(τ)

(

a b
c d

)

) ∈ Γ)

If L = Li, the lattice with Z–basis {i, 1}, then iLi = Li and so

g3(Li) = g3(iLi) = i−6g3(Li) = −g3(Li)

hence
g3(Li) = 0 (8)

A similar argument can be used to show that

g2(Lρ) = 0,
(

ρ = −1

2
+ i

√
3

2

)

In fact, ρLρ is the lattice spanned by ρ and ρ2 = −1 − ρ and so is Lρ.
Hence

g2(Lρ) = g2(ρLρ) = ρ−4g2(Lρ) = −ρ−1g2(Lρ)

as ρ3 = 1. Since −ρ−1 6= 1, we are done. So

g2(Lρ) = 0

Thus
j(i) = 1, j(ρ) = 0 (10)

The basic theorem on the j–function is the following.

Theorem 3. The function j takes all values in C

We shall prove this in the next chapter. For now we shall complete the
proof of the inversion theorem on the basis of this result.

Proof of inversion assuming Theorem 3. Let a2, a3 be complex num-
bers such that ∆ = a3

2 − 27a2
3 6= 0. We must show that there is a lattice

37



L such that g2(L) = a2, g3(L) = a3. Clearly both a2 and a3 cannot be
zero as ∆ 6= 0. If a3 = 0, we know that g3(Li) = 0 and so, as g2(Li) 6= 0
we can choose λ 6= 0 such that g2(λLi) = λ−4g2(Li) = a2. If a2 = 0
we can likewise choose λ 6= 0 such that g3(λLρ) = λ−6g3(Lρ) = a3. We
may therefore assume that both a2 and a3 are different from 0. This is
equivalent to saying that ∆ 6= 0, 6= 1. By Theorem 3 there is a τ ∈ H such
that j(τ) = ∆. Write A2 = g2(Lτ ), A3 = g3(Lτ ). Thus

A3
2

A3
2 − 27A2

3

=
a3
2

a3
2 − 27a2

3

= k 6= 0, 1 (11)

It is enough to prove that there is a λ 6= 0 such that

a2 = λ−4A2, a3 = λ−6A3 (12)

for then we would have a2 = g2(L), a3 = g3(L) for L = λLτ . From (11)
we get

A3
2

A2
3

=
a3
2

a2
3

Choose µ such that a2 = µ−4A2; this is possible, and together with µ,
±µ,±iµ are also valid choices. Then we get a2

3 = µ−12A2
3 so that a3 =

±µ−6A3. If we have the plus sign here we can take λ = µ and obtain (12);
if we have the minus sign here, we take λ = iµ to get (12). This finishes
the argument.

The argument for proving Theorem 3 is a deeper one and takes us
through the beginnings of the theory of modular functions and modular
forms. We shall do this in the next chapter. However there is one more
point. This argument proves only that every cubic curve in the special
form (2) arises from a torus. There still remains the question whether
the form (2) exhausts all nonsingular cubic curves. The answer again is
in the affirmative and one can show that we can choose a suitable linear
coordinate system in CP2 so that a given nonsingular cubic has the form
(2). The form (2) is called the Weierstrass normal form of the nonsingular
cubic. This also will be proved later.

It follows from Theorem 3 that the cubic curve (2) is parametrized
by the map

z 7−→ (℘L(z), ℘′
L(z))

for some lattice L. It can be shown that there is no rational parametriza-
tion of (2). For an algebraic proof see the book of Prasolov and Solovyev.
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6. PLANE CUBIC CURVES AS COMPLEX TORI :

PROOF BY MODULAR FUNCTIONS

1. Modular group. We write SL(2,Z) for the group of 2 × 2 matrices
with integer entries and determinant 1. It acts on the upper half plane H
by

(

a b
c d

)

, τ 7−→ aτ + b

cτ + d

Since −1 acts trivially the action is actually of the group

Γ := SL(2,Z)/(±1)

Γ is called the modular group. We shall often describe elements of γ
as matrices but with the understnding that the choice of the matrix is
ambiguous up to a sign. Let

T =

(

1 1
0 1

)

, S =

(

0 −1
1 0

)

Clearly

Tτ = τ + 1, Sτ = −1

τ

Moreover we find

S2 = 1, (ST )3 = (TS)3 = 1 ( in Γ)

H and the action of the modular group are important because H describes
the space L of lattices in C up to complex multiplication. If Lτ is the
lattice with Z–basis (τ, 1) and we denote complex multiplication by ∼,
then any L ∈ L is ∼ to some Lτ , while Lτ ∼ Lτ ′ if and only if there is a
γ ∈ Γ such that τ ′ = γτ . We have

ℑ
(aτ + b

cτ + d

)

=
1

|cτ + d|2ℑ(τ)
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Furthermore. for

(

a b
c d

)

∈ SL(2,Z)), {aτ + b, cτ + d} is also a Z–basis

for Lτ and so

Lτ ′ = (cτ + d)−1Lτ τ ′ =
aτ + b

cτ + d

Finally, let

ρ =
−1 + i

√
3

2

Theorem 1. Let

D =
{

τ ∈ H
∣

∣

∣
|ℜ(τ)| ≤ 1/2, |τ | ≥ 1

}

Then we have:

(i) Every element of H can be moved to an element of D by Γ.

(ii) If τ, τ ′ ∈ D and γ ∈ Γ \ (1) is such that τ ′ = γτ , then τ, τ ′, are
both in the boundary of D and we have

ℜ(τ) = ±1/2, τ ′ = τ ± 1 = T±1τ

|τ | = 1, τ ′ = −1/τ = Sτ

(iii) The stabilizer at ρ (resp. −ρ) is the cyclic group of order 3
generated by ST (resp. TS), the stbilizer at i is the 2–element
group {1, S}, and all other stabilizers are trivial.

(iv) Γ is generated by S and T .

Proof. (See fig 1) Given τ , we have ℑ(τ ′) ≥ ℑ(τ) if and only if |cτ+d|2 ≤ 1
where τ ′ = (aτ + b)/(cτ + d). Now xτ + y = 0 for real x, y if and only if
x = y = 0. Hence

|xτ + y|2 = x2|τ |2 + 2ℜ(τ) + y2

is a positive definite quadratic form in the real variables x and y and so
|mτ+n|2 ≤ 1 only for finitely many pairs (m,n) of integers. Thus there are
points τ ′ in the orbit (under Γ) of τ such that ℑ(τ ′) takes the maximum
possible value for points on the orbit. Changing τ ′ to τ ′ +k where k is an
integer does not change the imaginary part and so we may assume that
the point τ ′ with maximum imaginary part satisfies |ℜ(τ ′)| ≤ 1/2. We
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now claim that τ ′ ∈ D, i.e., |τ ′| ≥ 1. If |τ ′| < 1 and τ1 = Sτ ′ = −1τ ′, then
ℑ(τ1) = |τ ′|−2ℑ(τ ′) > ℑ(τ ′) which is impossible because τ1 is still in the
orbit of τ and its imaginary part exceeds that of τ ′ which by construction
had maximum imaginary part. This proves (i).

Suppose τ, τ,∈ D and τ ′ = γτ where γ ∈ Γ. Write γ =

(

a b
c d

)

.

By interchanging τ and τ ′ we may assume that ℑ(τ ′) ≥ ℑ(τ). Then
cτ + d|2 ≤ 1. But if τ = u + iv where u, v are real, then v ≥ (

√
3/2) as

τ ∈ D, so that

1 ≥ |cτ + d|2 = (cu+ v)2 + c2v2 ≥ c2v2 ≥ (3/4)c2

Hence c2 ≤ (4/3), showing that c ∈ {0,±1}.
(a) c = 0. Then ad = 1 so that by changing the sign of the matrix

representing γ we may assume that a = d = 1. Then γ = T k, τ ′ = τ + k
where k is a non zero integer (as γ 6= 1), and as both τ and τ ′ have real
parts in [−1/2,+1/2] this means that we are in the first set of alternatives
in (ii).

(b) c = ±1. The case c = −1 can be reduced to c = 1 by changing the
sign of the matrix representing γ and so we may suppose that c = 1. Note
that in this case γ 6= 1. Now, with τ = u+ iv as before, cτ + d = τ + d so
that

1 ≥ |τ + d|2 = |τ |2 + d2 + 2du

But d2 + 2du ≥ d2 − |d| as |u| ≤ 1/2 while d2 − |d| ≥ 0. Hence

1 ≤ |τ |2 ≤ |τ |2 + d2 − |d| ≤ |τ |2 + d2 + 2du = |τ + d|2 ≤ 1

which implies the set of relations

|τ | = 1, |τ + d| = 1, d2 − |d| = 0⇐⇒ d ∈ {0,±1}, |d| = −2du (∗)

Since ad− b = 1 and |τ + d| = 1, we have

τ ′ =
aτ + ad− 1

τ + d
= a− 1

τ + d
= a− (τ + d) = a− d− τ

So τ ′ = u′ + iv′ where u′ = a − d − u, v′ = v, and |u| ≤ 1/2, |u′| ≤ 1/2.
Hence a − d = 0,±1. If a − d = 0, then τ ′ = Sτ ; if a − d = 1, then
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u = u′ = 1/2 and so τ = τ ′ = −ρ, while for a − d = −1, we have
u = u′ = −1/2, τ = τ ′ = ρ. The proof of (ii) is finished.

For (iii) the argument is a slight refinement of the preceding. Let
τ ′ = γτ = τ, γ 6= 1 in the above. The treatment of the case c = 0 shows
already that this possibility cannot arise. So we may suppose that c = 1.
Then |τ | = 1, d ∈ {0,±1} and the relation |d| = −2du (cf. (∗)) implies
that for |d| = 1 the only possibilities are

d = 1, τ = ρ; d = −1, τ = −ρ

If a − d = 0, then τ ′ = Sτ = τ so that τ = i; then d = 0 and so γ = S.
If a − d = 1 we have τ = τ ′ = −ρ and d cannot be 1; so we have either

d = 0 and γ =

(

1 −1
1 0

)

= TS, or d = −1 and γ =

(

0 −1
1 −1

)

= (TS)2.

If a− d = −1 we have τ = τ ′ = ρ and d cannot be −1; so we have either

d = 0 and γ =

(

−1 −1
1 0

)

= (ST )2, or d = 1 and γ =

(

0 −1
1 1

)

= ST .

We now prove (iv). Suppose γ ∈ Γ. Let Γ′ be the subgroup of Γ
generated by S and T . We wish to show that γ′ ∈ Γ′. Let τ0 be an
interior point of D. The proof of (i) actually works with Γ′ in place of Γ
and so we can find γ′ ∈ Γ′ such that γ′γτ0 ∈ D. This is impossible by (ii)
unless γ′γ = 1, i.e., γ ∈ Γ′. This finishes the proof.

Remark. If γ ∈ Γ, the domain γ(D) has the same properties as D and D
and γ(D) meet only at their boundaries. Moreover, γ is the only element
of Γ that moves D to a domain meeting γ(D) at some interior point. So
the various domains γ(D) give a paving of H by fundamental domains (see
figure 1).

2. Functions on the space of lattices. Modular forms and func-
tions. We are interested in studying functions on the space of lattices.
To come down to functions on H which parametrizes the lattices up to
complex multiplication it is convenient to restrict ourselves to functions
which behave in a simple manner under complex multiplication. A func-
tion F : L −→ C is said to be of weight 2k if

F (λL) = λ−2kF (L)

If
Gk(L) =

∑

0 6=ω∈L

ω−2k (k ≥ 2)
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then Gk is of weight 2k; this is the motivation behind the definition. In
general, if a space has an action by C×, it is always important to study
functions on that space which are homogeneous of some degree. If F is of
weight 2k we get a function f on H if we set

f(τ) = F (Lτ )

Proposiiton 2. The correspondence f ←→ F is a bijection between the
set of functions on L of weight 2k and the set of functions f on H such
that

f(τ) = (cτ + d)−2kf
(aτ + b

cτ + d

)

,

(

a b
c d

)

∈ SL(2,Z) (1)

Moreover, f satisfies (1) if and only if

f(τ + 1) = f(τ), f(−1/τ) = f(τ) (2)

Proof. If τ ′ = (aτ + b)/(cτ + d), then Lτ ′ = (cτ + d)−1Lτ . So if F
is of weight 2k, f satisfies (1). Conversely, let f satisfy (1). To define
F , let L be a lattice. We can find a Z–basis {ω1, ω2} for L such that
τ = ω1/ω2 ∈ H. We put F (L) = ω−2kf(τ). If we use another such basis

{ω′
1, ω

′
2}, then ω′

1 = aω1+bω2, ω
′
2 = cω1+dω2 where

(

a b
c d

)

∈ SL(2,Z);

then, writing τ ′ = ω′
1/ω

′
2, we have, τ ′ = (aτ + b)/(cτ + d), and so,

ω′−2k
2 f(τ ′) = ω′

2
−2k

(cτ + d)2kf(τ) = ω−2k
2 f(τ) (3)

For the last statement it is a question of proving that if f satisfies (2),
then it satisfies (1). Write

θ(γ, τ) = cτ + d γ =

(

a b
c d

)

Then it is an easy check that θ is a cocycle, i.e.,

θ(γ1γ2, τ) = θ(γ1, γ2τ)θ(γ2, τ) (4)

The equation (4) shows that if f satisfies (1) for γi (i = 1, 2), then it
satisfies (1) for γ1γ2. This finishes the proof because (2) is the statement
that f satisfies (1) for T and S and T and S generate Γ.
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Consider now a function f on H satisfying (2). If we set

q = e2iπτ (5)

then the invariance f(τ + 1) = f(τ) implies that f depends only on q.
Moreover the map τ 7−→ q takes H onto the punctured unit disk

D× = {q | 0 < |q| < 1}

So there is a function f∼ on D× such that

f(τ) = f∼(q) (6)

We say that f is meromorphic (resp. holomorphic) at infinity if f∼ is
meromorphic (resp. holomorphic) at q = 0. Notice that if f is meromor-
phic at infinity, then for some r > 0, f∼ has no singularity in 0 < |q| < r;
thus f has no poles in ℑ(τ) > b for some b > 0. We say that f is a modular
form if f is holomorphic everywhere, including infinity. In other words, f
is a modular form of weight 2k if the following are satisfied:

(i) f is holomorphic on H
(ii) f satisfies (1) or equivalently (2)

(iii) f is holomorphic at infinity.

The last condition is equivalent to saying that f∼ is bounded at q = 0 by
Riemann’s theorem on removable singularities. This is also equivalent to
saying that f is bounded on Db = {τ | ℑ(τ) > b} for some b > 0.

Proposition 3. Let (by abuse of notation)

Gk(τ) =
∑

(0,0)6=(m,n)∈Z2

1

(mτ + n)2k
(k an integer ≥ 2) (7)

Then Gk is a modular form of weight 2k. Moreover

Gk(∞) = 2ζ(2k) (8)

where ζ is the Riemann zeta function.

Proof. We shall first show that the series for Gk converges uniformly in
any region of the form

|u| ≤ A, v ≥ v0 > 0 (τ = u+ iv, u, v ∈ R)
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(In particular it will be uniformly convergent on D.) For this, note that

|mτ + n|2 = m2(u2 + v2) + 2mnu+ n2 = Q(m,n)

where Q is the quadratic form corresponding to the symmetric matrix

(

u2 + v2 u
u 1

)

If α ≥ β > 0 are the eigenvalues of this matrix, we have

Q(m,n) ≥ β(m2 + n2)

so that
1

(mτ + n)2k
=

1

Q(m,n)k/2
≤ 1

βk/2

1

(m2 + n2)k/2

and so it is enough to show that there is a constant b > 0 such that

β ≥ b (|u| ≤ A, v ≥ v0)

But
α+ β = 1 + u2 + v2, αβ = v2

Since α ≤ α+ β ≤ 1 + A2 + v2 we get

β ≥ v2

1 + A2 + v2
≥ v2

0

1 + A2 + v2
0

= b > 0

because the function t 7−→ t/(1 + A2 + t) is increasing in t > 0. At
this stage we know that Gk is holomorphic on H. Notice that it would
have been enough to prove uniform convergence on compact subsets of H
to conclude that Gk is holomorphic on H; however we need the sharper
result to examine how Gk behaves when τ →∞.

Since Gk(τ) = Gk(Lτ ) where the Gk on the right is the function on
the space of lattices L 7−→∑

0 6=ω∈L ω
−2k, it is immediate that Gk satisfies

(1). Hence to conclude that Gk is a modular form it is enough to verify
that it is holomorphic at infinity. This would follow from (8) and so it is
enough to prove (8). Since the series for Gk converges uniformly on D we
have

lim
τ∈D,|τ |→∞

Gk(τ) =
∑

lim
τ∈D,|τ |→∞

1

(mτ + n)2k
=

∑

0 6=n∈Z

1

n2k
= 2ζ(2k)
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This finishes the proof.

Let f be a modular form of weight 2k. We define the order function
of f in the usual way; for any p ∈ H, mp(f) is the order of the zero of f
at p. We also define m∞(f) as the order at q = 0 of f∼. Now, for any
holomorphic function g on H and any γ ∈ Γ, the order of g at γp is the
same as the order of g ◦ γ at p (check this). But the function cτ + d never
vanishes on H if (c, d) 6= (0, 0), so that by (1), the order of f at p is the
same as the order of f ◦ γ at p which is, by the remark made just now,
the order of f at γ−1p. Hence

mp(f) = mγp(f) (p ∈ H) (9)

Thus the order stays constant over each orbit. The following is the fun-
damental result we need.

Theorem 3. For any nonzero modular form of weight 2k we have

m∞(f) +
1

3
mρ(f) +

1

2
mi(f) +

∑∗

p∈Γ\H
mp(f) =

k

6
(10)

where
∑∗

means that the sum is over all orbits of Γ in H other than the
orbits of ρ and i.

Proof. The proof is very similar to the proof of the corresponding result
for elliptic functions where we integrated f ′/f over a fundamental paral-
lelogram. By slightly moving that parallelogram we ensured that there
were no zeros or poles on the boundary. Here the fundamental domain D
is fixed and cannot be moved infinitesimally, and so we have to allow for
singularities on the boundary of D. We take a contour C schematically
shown in figure 2. We use the usual semicircular indentations at zeros of f
on the vertical sides of D other than ρ,−ρ, partially circular indentations
around singularities at ρ,−ρ, i and at other points on the circular part
of D. We shall pass to the limit when the indentations shrink to their
centers. The top horizontal line is taken sufficiently high so that there are
no singularities on that line and none beyond that line except at∞. First
of all we have, by Cauchy’s theorem of residues,

1

2iπ

∮

C

f ′

f
dτ =

∑

p∈interior of D

mp(f)
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Let us now compute this integral directly. The integral on a segment of
the vertical line ℜ(τ) = −1/2 cancels with the integral on the correspond-
ing vertical segment on the line ℜ(τ) = 1/2. If p is a zero of f on the
vertical line ℜ(τ) = −1/2 different from ρ, the integral on the semicircu-
lar indentations around p and p+ 1 add up to −mp(f), the negative sign
being taken because the orientation is the reverse of the standard one.
The integral on a partially circular indentation around a singularity p on
the boundary |τ | = 1 (but different from ρ,−ρ) needs a little more care.
We write f(τ) = (τ − p)mg(τ) where m = m+ p(f) and g is holomorphic
around p with g(p) 6= 0. Then

f ′

f
=

m

τ − p +
g′

g

Since the second term is holomorphic at p, the integral on the indentation
tends to 0 in the limit. The integral of the first term is −mθ/2π where θ
is the change of the argument on the boundary which tends to π in the
limit. So the integral of f ′/f tends to −mp(f)/2. If p = i this is the
only contribution. If p is different from i, there are two contributions,
from p and Sp, so that the contribution is −mp(f). The same argument
applies at ρ and ρ, except now the change of the argument along the
indentation is −2π/6 in the limit. So the contribution is −mρ(f)/6 twice,
i.e., −mρ(f)/3.

There remain the integral along the horizontal line segment and the
integral over a circular segment to the left of i where there are no zeros of
f , and the integral over the corresponding segment to the right of i. For
the horizontal segment we use the transformation to q = e2iπτ . We have

f∼(q) = f(τ)

and so
f∼′(q)

f∼(q)
dq =

f ′(τ)

f(τ)
dτ

Since the segment from ℜ(τ) = 1/2 to ℜ(τ) = −1/2 goes over to the circle
|q| = constant with the reverse of the standard orientation, the integral
is −m∞(f). So we are finally left with the integral over a circular arc, say
from B′ to C, both B′ and C being to the left of i and there are no zeros
of f between them. Let C′, D be the images of B′, C respectively under
the transformation S. It is enough to calculate

1

2iπ

(

∮ C

B′

+

∮ D

C′

)f ′(τ)

f(τ)
dτ
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Now, writing w = −1/τ ,

f ′(w)

f(w)
dw =

f ′(−1/τ)

f(−1/τ)
τ−2dτ

On the other hand,
f(−1/τ) = τ2kf(τ)

so that, differentiating with respect to τ ,

f ′(−1/τ)τ−2 = 2kτ2k−1f(τ) + τ2kf ′(τ)

Hence
f ′(−1/τ)

f(−1/τ)
= τ2

(2k

τ
+
f ′(τ)

f(τ)

)

Hence
f ′(w)

f(w)
dw =

(2k

τ
+
f ′(τ)

f(τ)

)

dτ

This gives

1

2iπ

∮ D

C′

f ′(w)

f(w)
dw = − 1

2iπ

∮ C

B′

(2k

τ
+
f ′(τ)

f(τ)

)

dτ

Hence
1

2iπ

(

∮ C

B′

+

∮ D

C′

)f ′(τ)

f(τ)
dτ = −2k

1

2iπ

∮ C

B′

dτ

τ

which equals
k

π
× the angle from C to B′

There are possibly several such arcs from ρ to i and so the total contribu-
tion from these integrals is

k

π

π

6
=
k

6

Hence we finally get

−1

3
mρ(f)− 1

2
mi(f)−

∑

p∈]ρ,i[

mp(f)−m∞(f) +
k

6
=

∑

p∈interior of D

mp(f)

This is just (10).
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LetMk be the space of modular forms of weight 2k. It is a complex vector
space.

Corollary 4. Mk = 0 for k < 0, k = 1 and Mk = C for k = 0.

Proof. For k < 0 this is immediate from (10) as all the orders are ≥ 0. If
k = 1 and some order is > 0 the left side of (10) will be > 1/6 which is not
possible; if all the orders are 0 the left side is 0 which is also impossible.
For k = 0, Mk ⊃ C. If f is a nonzero element ofM0, then all the orders
are 0 so that f is nowhere 0. Then f − f(i) is in M0 and if it is not
identically zero, must have no zero, a contradiction since it vanishes at i.

Theorem 5. We have the following.

(i) The function ∆ = g3
2−27g2

3 is an element ofM6. It has a simple
zero at ∞ and has no zero on H.

(ii) The function j = g3
2/(g

3
2 − 27g2

3) = g3
2/∆ is invariant under the

modular group and induces a bijection of Γ\H onto C and has a
simple pole at ∞.

Proof. We have

g2(∞) = 60G2(∞) = 120ζ(4) = 120
π4

90
=

4

3
π4

g3(∞) = 140G2(∞) = 280ζ(6) = 280
π6

21× 45
=

8

27
π6

From this it is immediate that

∆(∞) = 0 (11)

Now ∆ ∈M6 and so we can use (10) with f = ∆, k = 6. Sincem∞(∆) ≥ 1
it follows that m∞(∆) = 1 and all other orders are 0. This proves (i).

To prove (ii) let λ ∈ C and let f = g3
2−λ∆. Since f(∞) = g3

2(∞) 6= 0,
m∞(f) = 0 and so

1 =
n1

3
+
n2

2
+ n∗

where n1, n2, n
∗ are integers ≥ 0 being respectively

mρ(f), mi(f),
∑∗

p∈Γ\H
mp(f)
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The only possibilities for (n1, n2, n
∗) are

(3, 0, 0), (0, 2, 0) (0, 0, 1)

which proves that f has exactly one zero in H. This shows (as ∆ is never
zero on H) that j takes the value λ exactly at one point of Γ\H.

Theorem 6. Let C3 be the nonsingular cubic curve whose affine equation
is in the Weierstrassian normal form

Y 2 = 4X3 − a2X − a3

Then there is a lattice L in C such that g2(L) = a2, g3(L) = a3. In
particular, the map

z 7−→ (℘(z), ℘′(z))

ia a parametrization of C3, and the projective map

z 7−→ [(℘(z), ℘′(z), 1)]

is a complex analytic isomorphism of C/L with C3.

Proof. We have already seen how this follows from theorem 5.

Remark. This theorem can be informally described as asserting that the
nonsingular plane cubic curves may be parametrized by elliptic functions.
For this reason they are called elliptic curves. This is in striking con-
trast to conics which can be parametrized by rational functions. It can
be proved that the elliptic curves do not admit any parametrization by
rational functions.
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7. GEOMETRY OF NONSINGULAR

PLANE CUBIC CURVES

1. Algebraic curves and compact Riemann surfaces. The isomor-
phism between complex tori and nonsingular plane cubic curves is remark-
able because it says that two very different types of objects are exactly
the same. The complex tori have a transcendental origin. They arise as
the quotients C/L the complex plane C by lattices L which are discrete
subgroups of full rank of C. Thus their construction involves topology and
function theory. They are, together with the extended complex plane, the
simplest compact complex manifolds of dimension 1, i.e., compact Rie-
mann surfaces. Historically compact Riemann surfaces of genus > 1 arose
by uniformizing algebraic functions so that from the very beginning the
transcendental and algebraic theories were deeply intertwined. From the
algebraic point of view the goal was a complete understanding of the geom-
etry of all algebraic curves. The curves can be singular, but it is possible
to “desingularize”the curves and obtain compact Riemann surfaces. The
transcendental theory was the creation of Riemann. It was he who first
showed that there is no distinction between compact Riemann surfaces
and irreducible algebraic curves. Riemann also discovered the basic idea
that the transcendental theory should deal not only with meromorphic
functions but also meromorphic differentials.

Thus the whole theory has two faces to it. It is like a book, where
the odd numbered pages are written in the transcendental language while
the even numbered pages are in the algebraic language. Some questions
and their solutions are natural in the transcendental picture while other
concepts and ideas are more natural in the algebraic picture. But in the
end both tell the same story. This bilingual aspect is what gives the entire
theory its great beauty and depth.

2. Addition theorem for the Weierstrass functions. Addition
on a cubic curve. If L is a lattice in C the manifold C/L has a group
structure. It is therefore an interesting question to ask if we can compute
the values of the elliptic functions at z1 + z2 if we know them at z1 and
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z2. If this could be done, we can use the map

z + L 7−→ [(℘(z), ℘′(z), 1)]

to transfer the additive structure on C/L to the cubic curve. It will turn
out that this structure can be given a completely geometric interpretation
that makes sense on any nonsingular cubic curve.

The idea behind the problem of determining the coordinates of z1+z2
is very simple. If z3 = −(z1 + z2), then z1 + z2 + z3 = 0. But from the
properties of elliptic functions we know that if (ai) and (bi) are the zeros
and poles of an elliptic function with period lattice L, then

∑

i

ai −
∑

i

bi = 0 in C/L

In particular,
z1 + z2 + z3 = 0 in C/L

if the zi are the zeros of an elliptic function with a triple pole at 0 and no
other singularity. In other words, the group structure on C/L, or, what
comes to the same thing, the determination of the triples (z1, z2, z3) such
that z1 +z2 +z3 = 0, is given by the assertion that they are the zeros of an
elliptic function of order 3 with a triple pole at 0 and no other singularity.

Let z1, z2, z1 ± z2 be all nonzero. Let f = ℘′ − (a℘+ b) where a and
b are constants. Then f has a triple pole at 0 and no other singularity.
So its zeros add up to 0. We choose the constants a and b such that
f(z1) = f(z2) = 0. This gives

a =
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)
, b =

℘′(z2)℘(z1)− ℘′(z1)℘(z2)

℘(z1)− ℘(z2)

Notice that ℘(z1) 6= ℘(z2) because, otherwise, that common value will be
taken at the 4 distinct points ±z1,±z2. Then z3 is the third zero of f . To
determine ℘(z3) we consider

g(X) = 4X3 − g2X − g3 − (aX + b)2

Since the zi satisfy ℘′(zi)
2 = (a℘(zi) + b)2, it follows that

g(℘(zi)) = 0 (i = 1, 2, 3)
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So ℘(zi)(i = 1, 2, 3) are the three roots of g. Therefore

℘(z1) + ℘(z2) + ℘(z3) =
a2

4

Substituting for a we therefore obtain, since ℘(z1 +z2) = ℘(−z3) = ℘(z3),

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

(1)

which is the addition theorem for the ℘–function. This has been derived
under the assumption that z1, z2, z1 ± z2 are all nonzero. If we now let z1
approach z2 we get

℘(2z) = −2℘(z) +
1

4

(℘′′(z)

℘′(z)

)2

(2) (2z /∈ L)

Let us go over to the cubic curve corresponding to C/L and denote
by Pi the points on the curve corresponding to zi. The discussion shows
that the line Y = aX + b contains the points (℘(zi), ℘

′(zi), 1)(i = 1, 2)
and so is the line P1P2. Moreover, the point (℘(z3), ℘

′(z3), 1) is the third
point of this line on the cubic curve. Thus this third point is P3. Since

(℘(z1 + z2), ℘
′(z1 + z2), 1) = (℘(−z3), ℘′(−z3), 1) = (℘(z3),−℘′(z3), 1)

it is clear that the point P1 + P2 on the curve corresponding to z1 + z2 is
obtained by reflecting P3 in the X–axis (see figure 1).

This construction of the addition of points is valid for any nonsingular
projective cubic curve, and leads to a group structure for the points on the
curve. The group structure has the following elegant description: three
points P1, P2.P3 satisfy P1 + P2 + P3 = 0 if and only if they are collinear.
See figure 1 where P0 is the identity element.

3. Reduction of nonsingular cubic to Weierstrassian normal
form. The main result is that if a nonsingular cubic is given in CP2

we can choose linear coordinates so that it appears in the form

Y 2W = 4X3 − a2XW
2 − a3W

3

where
a3
2 − 27a2

3 6= 0
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The proof depends on the fact that a nonsingular cubic has at least one
flex or inflection point.

The definition of a flex is simple. Let C be an algebraic curve in CP2

and let P = (pi) be a nonsingular point of C. Let the curve C be given
by an equation

F (X1, X2, X3) = 0

where F is a homogeneous polynomial in X,X2, X3. Let

Fi = ∂F/∂Xi, Fij = ∂2F/∂Xi∂Xj

Since P is nonsingular, at least one of the numbers Fi(P ) is nonzero and
so the equation

∑

i

Xi∂F/∂Xi(P ) = 0

defines a line. We shall see presently that this is the tangent line to C at
P . If A = (ai) is a point, the points of the line joining P and A are of the
form P + tA (except for A) and to find which of these are on the curve we
have to find the values t such that

F (P + tA) = 0

By expanding F as a Taylor series we get

F (P ) + t
∑

i

aiFi(P ) +
t2

2!

∑

ij

aiajFij(P ) + . . . = 0

Since F (P ) = 0 as P is on C, this equation, which is a polynomial equation
in t, has t = 0 as a root. The line PA is said to be tangent to C at P if
t = 0 is a double root. The condition for this is that

∑

i

aiFi(P ) = 0

which was introduced above. The point P is called a flex or an inflection
point if (1) is satisfied and t = 0 is a root of multiplicity at least 3. The
condition for this is that

∑

i

aiFi(P ) = 0 =⇒
∑

ij

aiajFij(P ) = 0 (∗)
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Proposition 1. Let H be the 3×3 matrix of the second partial derivatives
of F , namely, H = (Fij). Then P is a flex if and only if detH(P ) = 0.

Proof. Let ℓ be the linear function
∑

i xiFi(P ) and q the quadratic
function

∑

ij xixjFij(P ). In suitable linear coordinates (zi) we can take ℓ
as z1 = 0; then it is clear that if (∗) holds there is no term in the expression
for q that does not contain z1, i.e., z1 divides q. It is then easy to verify
that the determinant of the matrix of q is 0. This must be true in the
original coordinate system because vanishing of the determinant of H is
an invariant condition, as may be easily seen. Conversely, suppose that
detH(P ) = 0. Then we can find a nonzero vector (ai) such that

∑

j

Fij(P )aj = 0 (i = 1, 2, 3) (†)

We now use Euler’s theorem which states that if f is a homogeneous
polynomial in n variables zi of degree N , then

∑

i

zifi = Nf

(This is proved by differentiating the relation f(tX) = tNf(X) with re-
spect to t and taking t = 1.) We note first that P 6= A. In fact, if P = A,
then, applying Euler’s theorem to Fi we get

Fi(P ) =
∑

j

Fij(P )pj = 0 (i = 1, 2, 3)

which is impossible. Further, multiplying (†) by pi and adding we get,
using Euler’s Theorem again,

∑

j

ajFj(P ) = 0

Thus the line joining P and the point A with coordinates (ai) is tangent
to C. But then

∑

ij

aiajFij(P ) =
∑

i

ai(
∑

j

ajFij(P )) = 0

showing that P is a flex.
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Remark. Let the affine curve have the equation Y = f(X) where f is a
polynomial of degree ≥ 3, and let P be (0, 0); let the tangent line to the
curve at P be Y = 0. Then the above criterion for P to be a flex reduces
to f ′′(0) = 0, which is the classical elementary criterion.

The flexes of the curve C are thus the common points of the curves
with equations

F = 0, detH = 0

It is a general fact that any two curves have a common point in CP2 so
that the existence of flexes is an immediate corollary. The existence of
common points follows from the following classical result (which we shall
not prove).

Proposition 2. Let k be a field and a0, b0 ∈ k be two nonzero elements.
Then the polynomials

f(X) = a0X
m+a1X

m−1+ . . .+am, g(X) = b0X
n+b1X

n−1+ . . .+bn

have a common nonconstant factor if and only if

R(a0, a1, . . . , am, b0, b1, . . . , bn) 6= 0

where R is a polynomial with integer coefficients.

Returning to our two curves in CP2 let us choose coordinates so that
the point (0, 0, 1) is on neither of the curves. If the curves are of degrees
m and n, their equations can be written as

a0X
m
3 + . . .+ am = 0, b0X

n
3 + . . .+ bn = 0

where ai (resp. bj) is a homogeneous polynomial in X1, X2 of degree m− i
(resp. n− j). In particular a0 and b0 are constants while the other ai, bj
are of positive degrees; and, as (0, 0, 1) is on neither of the curves, a0, b0
are nonzero. Computing the polynomial R and taking a point (x1, x2) at
which R vanishes, we see that there is some x3 such that (x1, x2, x3) is a
common point to the two curves. Note that (x1, x2) 6= (0, 0) as otherwise
(0, 0, 1) will be on both curves. This is only a sketch of a proof and one
should refer to a book on algebra for a more detailed discussion.

We shall now prove that any nonsingular cubic curve C in CP2 can
be put in the Weierstrass form in a suitable coordinate system. We know
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that C has a flex P . We take P to be (0, 1, 0) and the tangent to C at
P as the line W = 0. Since P is on C the equation to C contains no Y 3

term. Let F = 0 be the equation. Since the tangent at P is X3 = 0, we
must have

F1(P ) = F2(P ) = 0, F3(P ) 6= 0

The last condition means that the coefficient of Y 2W in F is nonzero,
while the first condition means that the coefficient of XY 2 is 0 and that
of X3 is not zero. The second condition is automatic since there is no Y 3

term. We now write the condition that the line W = 0 meets the curve in
3 points that are coincident. The condition for this is that the coefficient
of X3 is nonzero and that the coefficient of X2Y is zero. So the curve has
the equation

Y 2W−b5XYW−b4YW 2 = b0X
3+b1X

2W+b2XW
2+b3W

3 (b0 6= 0)

which can be written as

Y ′2W = b0X
3 + b′1X

2W + b′2XW
2 + b′3W

3

where
Y ′ = Y − (1/2)b5X − (1/2)b4W

If we replace X by X ′ = pX + q we can, since b0 6= 0, choose p and q
so that the coefficient of X ′3 is 4 and the coefficient of X ′2W is 0. The
resulting equation is in the Weierstrass form. We have thus proved the
following.

Theorem 3. Given a nonsingular cubic curve in CP2 we can choose
coordinates such that the curve has the equation

Y 2W − 4X3 − a2XW
2 − a3W

3

Then
∆ = a3

2 − 27a2
3 6= 0

Moreover the point at infinity (0, 1, 0) is a flex, and the tangent to the
curve at this point is W = 0, the line at infinity.

4. Flexes on nonsingular cubic curves. Let C be a nonsingular cubic
curve in CP2. Our aim is to prove the following theorem.

57



Theorem 4. C has exactly 9 flexes, all distinct. The line joining any
two of them contains a unique additional flex. The flexes lie, 3 by 3, on
exactly 12 lines.

Proof. We take C in the Wierstrass normal form with one flex at (0, 1, 0)
and equation

Y 2 − (4X3 − a2X − a3) = 0 (∆ = a3
2 − 27a2

3 6= 0) (1)

in the affine XY –plane. The line at infinity is W = 0 and it contains only
one flex, namely P = (0, 1, 0).

We shall show that among the lines through P distinct from the line
at infinity there are exactly 4 which contain flexes of C, and on each of
these there are exactly 2 flexes other than P . Clearly we can work over
the XY –plane to prove this. The lines through P other than the line at
infinity (W = 0) have equations X = c where c is a constant. If

F = Y 2W − (4X3 − a2XW
2 − a3W

3) = 0 (2)

is the homogeneous equation of the curve C, the flexes are the points of
intersection of C with the curve detH = 0 where H is the matrix





−24X 0 2a2W
0 2W 2Y

2a2W 2Y 2a2X + 6a3W





Hence the flexes are the points common to C and the curve with equation

−12X(a2XW + 3a3W
2 − Y 2)a2

2W
3 = 0

Putting W = 1 and taking the line X = c there are flexes on this line in
the affine plane only for those values of c such that the equations

Y 2 − (4c3 − a2c− a3) = 0, −12a2c
2 − 36a3c+ 12cY 2 − a2

2 = 0

have a common solution Y . Substituting for Y 2 from the first of these
equations eliminates Y and we get the equation to be satisfied by c, namely

f(c) = 4c4 − 2a2c
2 − 4a3c−

a2
2

12
= 0 (3)
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We must prove two things: first, this equation has 4 distinct roots, and
second, for each root c, the expression 4c3 − a2c − a3 does not vanish so
that the equation Y 2 = 4c3 − a2c− a3 has 2 distinct solutions. But

f ′(c) = 4(4c3 − a2c− a3)

so that our equations become

Y 2 = f ′(c), f(c) = 0

For a simple root c of f(c) = 0 one has automatically f ′(c) 6= 0, so that
the equation Y 2 = f ′(c) has 2 distinct solutions. Thus it is only a question
of showing that f and f ′ have no common roots. This is equivalent to
showing that the g.c.d of

f = 4X4 − 2a2X
2 − 4a3X −

a2
2

12
and g = 4X3 − a2X − a3

in the ring C[X ] is a nonzero constant. The euclidean algorithm leads to
the following formulae:

f = Xg + f1, f1 = −a2X
2 − 3a3X −

a2
2

12

a2g = −4Xf1 + f2, f2 = −12a3X
2 − 4

3
a2
2X − a2a3

12a3f1 = a2f2 + f3, f3 =
4

3
∆X (∆ = a3

2 − 27a2
3)

f2 = −∆−1(9a3X + a2
2)f3 − a2a3

If a2a3 6= 0 then this shows that the g.c.d of f and g is a nonzero constant
and we are done. Suppose that a2 = 0. Then as ∆ 6= 0 we must have
a3 6= 0. The algorithm now reduces to

f = Xg + f1, f1 = −3a3X

g =
(

− 4

3a3
X2

)

f1 − a3

so that the g.c.d is again a nonzero constant. If a3 = 0 then a2 6= 0 and
the algorithm becomes

f = Xg + f1, f1 = −a2X
2 − a2

2

12

a2g = −4Xf1 + f2, f2 = −4

3
a2
2X

f1 =
( 3

4a2
X

)

f2 −
a2
2

12
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and again the g.c.d is a nonzero constant. We have thus proved our claim.

This already shows that apart from P there are 8 distinct flexes and so
there are 9 altogether. These lie on 4 lines through P , each line containing
3 of the flexes if we include P also. But the choice of P was completely
arbitrary. So, through any flex Q, there are exactly 4 lines that contain the
flexes and there are exactly 3 flexes on each of these four lines including Q.
There are 36 pairs of points among the 9 and on the line containing such
a pair there is a third flex. Hence each of the 36 lines is counted 3 times
so that there are 12 lines in all. This proves the remaining statements of
the theorem.

Let k be a field which we assume to be of characteristic 0 for simplicity,
and let X(k) = P2(k) be the projective plane over k. We consider a
configurations Γ of lines and points in X(k). We denote it by

[p, π; ℓ, λ]

if it consists of p points and π lines such that on every line of the config-
uration Γ there are ℓ points of Γ and through every point of Γ there are
λ lines. The flexes of a nonsingular cubic curve in the complex projective
plane X(C) is a configuration

[9, 12; 3, 4]

Since X(k) can be viewed as the set of lines (=one dimensional linear
subspaces) of k3, the projective group PGL(3, k) = GL(3, k)/k×) acts on
X(k) and hence on the set of configurations of a given type in an obvious
manner. The following theorem places the above results on the flexes in
a better perspective.

Theorem 2. In order that X(k) contain a configuration of type [9, 12; 3, 4]
it is necessary and sufficient that k contains the cube roots of 1. In this case
all such configurations are mutually conjugate under PGL(3, k). Moreover
we can choose coordinates such that the 9 points have the following coor-
dinates:





(0, 1,−1) (0, 1,−ω) (0, 1,−ω2)
(1, 0,−1) (−ω, 0, 1) (−ω2, 0, 1)
(1,−1, 0) (1,−ω, 0) (1,−ω2, 0)



 (4)

Proof. Let Γ be a configuration of type [9, 12; 3, 4] in X(k). Let ξ1 be
a line of Γ and let P1, Q1, R1 be the three points of Γ on ξ1. Through
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each of these points there are 3 lines other than ξ1, and so there are 2
additonal lines, ξ2, ξ3. Notice that we have accounted for the 12 lines of
Γ. Let Pj , Qj, Rj be the points of Γ on ξj (j = 2, 3). The line P1P2 has
an additional point of Γ on it; this has to be one of P3, Q3, R3, and we
can choose the notation that it is P3. Similarly we assume that Q3 is the
point where the lines Q1Q2 and ξ3 meet, and R3 is the point where the
lines R1R2 and ξ3 meet.

We can take coordinates such that ξi has the equation Xi = 0 (i =
1, 2) and the line P1P2P3 to have the equation X3 = 0. Moreover we can
choose the line Q1Q2Q3 to have the equation X1 + X2 + X3 = 0 and
R1R2R2 to have the equation aX1 + bX2 +X3 = 0. Let the line ξ3 have
the equation αX1 + βX2 + γX3 = 0.

We now compute the coordinates of the 9 points. We arrange the
points as the matrix





P1 Q1 R1

P2 Q2 R2

P3 Q3 R3





Their coordinates are then represented by the matrix (the correspondence
is the obvious one)





(0, 1, 0) (0, 1,−1) (0, 1,−b)
(1, 0, 0) (1, 0,−1) (1, 0,−a)

(β,−α, 0) (β − γ, γ − α, α− β) (bγ − β, α− aγ, aβ − bα)



 (5)

In addition to the 6 lines described above there are 6 other lines of the
configuration, and these are

P1Q2R3, P1R2Q3, Q1P2R3, Q1R2P3, R1P2Q3R1Q2P3

We now write down the condition that each of these triplets of points are
collinear. We get the following 6 conditions:

bγ − β + aβ − bα = 0 (a)

α− β + a(β − γ) = 0 (b)

aβ − bα+ α− aγ = 0 (c)

−aβ + α = 0 (d)

α− β + b(γ − α) = 0 (e)

−β + bα = 0 (f)
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Obviously (e)-(d)=(a). Using (d) and (f) we get, in place of (c) and (e)
the equations

aγ = 2α− β, bγ = 2β − α (6)

and then (b) reduces to the first of these two equations. We thus get the
equations

α = aβ, β = bα, aγ = 2α− β, bγ = 2β − α (7)

We now solve for α and β from the last two of the above equations to get

α =
γ(2a+ b)

3
β =

γ(2b+ a)

3
(8)

If γ = 0 then the last two of the equations (7) imply that α = β = 0
which is impossible as αX1 + βX2 + γX3 = 0 is the equation to the line
ξ3. Hence γ 6= 0. The first pair of equations (7) then lead to the relations

a(a+ 2b) = 2a+ b, b(2a+ b) = a+ 2b

So
ab(a+ 2b) = a+ 2b

which implies that either ab = 1 or a+ 2b = 2a+ b = 0, i.e.,

ab = 1 or a = b = 0

But a = b = 0 is impossible as aX1 + bX2 +X3 = 0 is the equation to the
line R1R2R3. Hence

ab = 1

so that the equation a(a+ 2b) = 2a+ b leads to

a3 − 2a2 + 2a− 1 = (a− 1)(a2 − a+ 1) = 0

The other equation b(2a + b) = a + 2b leads to the same equation for a.
But if a = 1 then b = 1 which is impossible as the lines Q1Q2Q3 and
R1R2R3 would become identical. Hence

a2 − a+ 1 = 0

But then −a is a cube root of 1. Thus the field k must contain a cube
root of 1 if there is a configuration of type [9, 12; 3, 4] in X(k).
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For the sufficiency we take a = −ω where ω is a nontrivial cube root
of 1; then by the above discussion to note that once a is given, we find
b = 1/a, and then α, β are determined in terms of a, b, and γ by (8). Since
(α, β, γ) can be replaced by any nonzero multiple of it we can take γ = 1.
The coordinates of the points of the configuration, given by the matrix
(4), are now as in the matrix





(0, 1, 0) (0, 1,−1) (0, 1, ω2)
(1, 0, 0) (1, 0,−1) (1, 0, ω)

(1− ω2,−1 + ω, 0) (−2− ω2, 2 + ω,−ω + ω2) (1, 1,−1)



 (9)

Since there are no arbitrary constants in these expressions it is clear that
every configuration is conjugate to this particular one.

The lines PiQiRi(i = 1, 2, 3) are now given by the equations

X1 = 0, X2 = 0, , (1− ω)X1 + (1− ω2)X2 + 3X3 = 0

while the lines P1P2P3, Q1Q2Q3, R1R2R3 have the equations

X3 = 0, X1 +X2 +X3 = 0, ωX1 + ω2X2 −X3 = 0

The other six lines are given by

P1Q2R3 : X1 +X3 = 0, P1R2Q3 : ωX1 −X3 = 0

Q1P2R3 : X2 +X3 = 0, Q1R2P3 : ωX1 −X2 −X3 = 0

R1P2Q3 : ω2X2 −X3 = 0, R1Q2P3 : X1 − ω2X2 +X3 = 0

It is possible to simplify the appearance of this scheme by applying
a suitable element of PGL(3, k). We shall choose the new coordinates Yi

so that the lines PiQiRi(I = 1, 2, 3) become Yi = 0 and the line P1P2P3

becomes Y1 + Y2 + Y3 = 0. Then a simple calculation shows that





Y1

Y2

Y2



 =





1− ω 0 0
0 1− ω2 0

−(1− ω) −(1− ω2) −3









X1

X2

X3





Applying this transformation the new matrix of coordinates then becomes





(0, 1,−1) (0, 1,−ω) (0, 1,−ω2)
(1, 0,−1) (−ω, 0, 1) (−ω2, 0, 1)
(1,−1, 0) (1,−ω, 0) (1,−ω2, 0)



 (10)
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The lines PiQiRi(i = 1, 2, 3) are now given by the equations

Y1 = 0, Y2 = 0, , Y3 = 0 (11)

while the lines P1P2P3, Q1Q2Q3, R1R2R3 have the equations

Y1 +Y2 +Y3 = 0, Y1 +ω2Y2 +ωY3 = 0, Y1 +ωY2 +ω2Y3 = 0 (12)

The other six lines are given by

P1Q2R3 : Y1 + ω(Y2 + Y3) = 0, P1R2Q3 : Y1 + ω2(Y2 + Y3) = 0

Q1P2R3 : Y1 + ωY2 + Y3 = 0, Q1R2P3 : ω(Y1 + Y2) + Y3 = 0

R1P2Q3 : Y1 + ω2Y2 + Y3 = 0, R1Q2P3 : Y1 + Y2 + ωY3 = 0

(13)

It is interesting to compute the equation to a cubic that contains the
9 flexes given by the coordinate scheme (10). A simple calculation shows
that these form an 1–parameter family with equations

Y 3
1 + Y 3

2 + Y 3
2 − λY1Y2Y3 = 0

The parameter λ can be given a geometric interpretation.

Remark. The condition that k should contain the cube roots of 1 means
that there is no configuration of type [9, 12; 3, 4] in the real projective plane.
This is why we cannot draw the configuration on paper or blackboard!
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8. ELLIPTIC INTEGRALS

1. Fagnano, Euler, and Gauss. The lemniscatic functions of
Gauss. The first appearance of elliptic integrals goes back to the work
of the Italian count Fagnano in the years 1714– 1718 (indeed he was the
first to coin the term elliptic integral). His work contained a remarkable
formula for doubling the arc of the lemniscate (see below for the definition
and elementary properties of the lemniscate). Fagnano worked with the
lemniscatic arc length, namely the integral (see below)

∫ x

0

dr
√

(1− r4)

and his result was that

2

∫ x

0

dr
√

(1− r4)
=

∫ w

0

dr
√

(1− r4)

where

w =
2u

√

(1− u4)

(1 + u4)

Around 1750 he published a book containing his discoveries and sent it to
the Berlin Academy for review where it came to the attention of Euler.
Euler’s imagination was fired by Fagnano’s work and he obtained a series
of results, including a remarkable generalization of Fagnano’s result on the
doubling of the lemniscatic arc length. Euler considered integrals of the
form

Φ(x) =

∫ x

0

du
√

P (u)

where P is a polynomial of degree ≤ 4 and obtained for them a remarkable
formula showing that

Φ(x) + Φ(y) = Φ(w)

where w = w(x, y) is an algebraic function of x and y. For instance, if
P (u) = 1− u2, then Φ(x) = arcsin(x), so that

Φ(x) + Φ(y) = Φ(w) (A)
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where

w = x
√

1− y2 + y
√

1− x2

More generally, let

P (u) = 1 +mu2 + nu4 (n 6= 0)

Then Euler proved that (A) is true for

w =
x
√

1 +my2 + ny4 + y
√

1 +mx2 + nx4

1− nx2y2

For m = 0, n = −1, y = x this reduces to the Fagnao formula for doubling
the lemniscatic arc. The formula (A) is known as Euler’s addition theorem.

The analogy with the circular arcs suggest that it is the function
inverse to the arc length function that should be expected to have nice
properties. This is in fact so as we shall see later. In any case the next
step in this story was taken by Gauss. Gauss pursued the investigation
of the lemniscate at the analytical level in contrast to the formal level of
the treatment of Euler. Gauss defined the lemniscatic sine function as
the inverse function to the arc length function of the lemniscate. He then
porceeded to take the remarkable step of extending the definition of this
function to the complex plane and made the momentous discovery that it
had —it two periods, namely 2ω and ω+iω where 2ω is the total length of
the lemniscate. This is the original elliptic function. To motivate Gauss’s
work and also to give more details to the discussion above let us begin
with the trigomometric and exponential functions.

Consider the circle in the plane of diameter 1 which is standing on
the x–axis touching it at the origin. Let A be the point (0, 1). If P is a
variable point on the semicircle to the right of A such that the arc OP
subtends an angle 2t at the center, the arc OP has length t while the
chord OP has length sin t (figure 1). The angle between the x–axis and
OP is t. The equation of the circle in polar coordinates is

r = sin θ

Since

dx2 + dy2 = r2dθ2 + dr2,
dr

dθ
=

√

1− r2
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the arc length is
∫

√

1 + (dθ/dr)2dr

we get
∫ sin t

0

dr√
1− r2

dr = t

More precisely we consider the function

∫ u

0

dr√
1− r2

dr = f(u)

and note that it increases from −π/2 to π/2 as u increases from −1 to 1.
The inverse function is sin t which increases from −1 to 1 as t increases
from −π/2 to π/2. The function is extended to all of R by sin(t) =
sin(π− t) and by requiring that it be odd and periodic of period 2π. This
is the ancient way of treating the sin; the other trigonometric functions
are obtained by other processes, algebraic and infinitesimal.

For the hyperbolic functions an analogous method applies although
one uses areas rather than arclengths. Take a hyperbola with equation

x2 − y2 = 1

and take a variable point P with coordinates (cosh t, sinh t). If A = (1, 0),
then a simple calculation shows that (figure 1)

2× area of region OAP =

∫ sinh t

0

dy
√

1 + y2
= t

The function sinh is thus the function inverse to the function

f(u) =

∫ u

0

dy
√

1 + y2

i.e.,
∫ sinh t

0

du√
1 + u2

= t

Since the integral over the infinite range diverges, f increases from −∞
to ∞ as u increases from −∞ to ∞. So sinh t increases from −∞ to ∞
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as t increases from ∞ to ∞. As usual the other hyperbolic functions arte
obtained by algebraic and infinitesimal processes.

Clearly there is no real period for sinh t. However a formal change of
variables from u to iu(i2 = −1) shows that

∫ i sinh t

0

du√
1− u2

= it

and suggests that sinh t has an imaginary period 2πi.

Sometime before 1799 Gauss started to think along these lines for the
functions that can be defined by the rectification of the lemniscate. The
lemniscate is the locus of a point which moves so that the product of its
distances from two fixed points remains constant. If the points are taken
as (±1/

√
2, 0) and we take the constant to be 1/2, the origin is on the

locus and the locus has the equation

(x2 + y2)2 = x2 − y2

The graph looks like a figure 8 lying on its side and looks like a ribbon,
hence its name, derived from the Latin expression lemniscatus meaning
ribboned. If we rotate the lemniscate by 45◦ we get the equation in polar
coordinates (see figure 2)

r2 = sin 2θ

In this case

1 + r2(dθ/dr)2 =
1

1− r4
so that the arc length is

∫ y

0

dr√
1− r4

Let the total length of the lemniscate in the first quadrant be ω. In analogy
with the case of the sin Gauss defined the lemniscate sin as the function
defined by inverting the arc length function, and wrote it as sin lemn; we
shall denote it by sl so that

∫ sl t

0

dr
√

(1− r4)
= t (0 ≤ t ≤ ω/2)

Exactly as in the case of the sin we extend the function to [0, 2ω] by

sl (t) = sl (ω − t) (ω/2 ≤ t ≤ ω), sl (t) = −sl (t− ω) (ω ≤ t ≤ 2ω)
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The function sl is then extended to all of R by making it periodic of period
2ω. The value of ω is given by

ω

2
=

∫ 1

0

dr√
1− r4

The lemniscatic cosine function cl can be defined by analogy with cos by

cl t = sl (
ω

2
− t),

∫ 1

cl t

dr√
1− r4

=
ω

2
− t

Sometime around 1799 Gauss discovered that the function sl t can
be extended to the complex plane and that it had two periods, one real,
namely 2ω, and the other ω+iω. The functions sl, cl are the original ellip-
tic functions. Gauss went far in their development, and obtained results
about double periodicity, division points, representation of the functions
as ratios of entire power seires (which later would be independently dis-
covered by Jacobi as theta functions), and so on.

2. Elliptic integrals of Jacobi and Legendre. Gauss did not publish
any of his significant results during his lifetime. After Gauss, Abel, Jacobi,
and Legendre were the classical masters of the theory of elliptic integrals.
Legendre in particular spent a huge part of his scientific life working on
the theory of elliptic functions and integrals and wrote a great treatise on
the subject. In Legendre’s notation the elliptic integrals are the indefinite
itegrals of the form

∫

du
√

(1− u2)(1− k2u2)

where k is known as the modulus. In most of the formulae k is real and
lies between 0 and 1, but the general theory requires the treatment of
these functions for complex k such that k2 6= 0, 1. In fact, the lemniscatic
integral of Gauss is obtained for the value k2 = −1. Actually these are
know as the elliptic integrals of the first kind; the general elliptic integral
is an expression of the form

∫

R(u, y)dx

where R is a rational function of u and y and y is the quadratic irrationality

y =
√

P (u)
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where P is a polynomial of degree ≤ 4. The case treated by Jacobi and
Legendre is when

P (u) =
√

(1− u2)(1− k2u2)

Legendre classified the elliptic integrals into three kinds, showed how their
evaluations can be reduced to the evaluation of three basic types. The
definite integrals

K(k) =

∫ 1

0

du
√

(1− u2)(1− k2u2)
, E(k) =

∫ 1

0

√

1− k2u2

1− u2
du

are the complete ellitptic integrals of the first and second kind. Legendre’s
monumental work contains many remarkable properties of these.

The reason for calling these integrals and the functions obtained from
them elliptic is that they arise in the problem of the rectification of an
ellipse. Let us take the equation of the ellipse in the form

x2

a2
+
y2

b2
= 1

where

a > b > 0, b2 = a2(1− e2) (e = eccentricity of the ellipse )

Let B = (0, b) and A = (a, 0) be the points of the ellipse in the first
quadrant (see figure 3). Then the length of the arc of the ellipse in the
first quadrant from B to the point S = (s, t) is gien by the integral

∫ s

0

√

1 + y′2dx (y′ = dy/dx)

Now
y = b

√

1− (x2/a2)

and so the integral becomes, after some simplification,

a

∫ s/a

0

√

1− e2x2

1− x2
dx

which is an elliptic integral according to our definition. In particular, the
total length of the ellipse is

L = 4a× E(e)
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where

E(k) =

∫ 1

0

√

1− k2x2

1− x2
dx =

∫ 1

0

(1− k2x2)
√

(1− k2x2)(1− x2)
dx

The problem of determining the motion of a simple pendulum also
leads to elliptic integrals. Let θ be the deviation from the vertical of the
pendulum (see figure 3). Then the equation of motion for θ is

θ̈ +
g

ℓ
sin θ = 0

where ℓ is the length of the pendulum. For small oscillations, one usually
replaces sin θ by θ to obtain the equation of the linear pendulum:

θ̈ +
g

ℓ
θ = 0

The solution for the linear pendulum is

θ = A cos θ

√

g

ℓ
+B sin θ

√

g

ℓ

where A and B are determined by the initial conditions. Clearly, the
solution is periodic with period

Tlin = 2π

√

ℓ

g

and it is independent of the initial conditions. The integration of the non-
linear pendulum equation leads to elliptic integrals in a very well known
manner. Multiplying the equation of motion by θ̇ one gets

d

dt

(

θ̇2 − 2
g

ℓ
cos θ

)

= 0

If the vertical displacement at time t = 0 is θ0, then, as θ̇(0) = 0, we get

θ̇ = ±
√

2g

ℓ
(cos θ − cos θ0) (|θ| ≤ θ0)
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The condition on θ arises fromthe fact that cos θ − cos θ0 has to be ≥ 0
during motion. The sign of θ̇ changes every time θ̇ becomes 0. The usual
way to integrate this is to write it as

± θ̇√
cos θ − cos θ0

=

√

2g

ℓ
dt

to get t as a function of θ:

t =

√

ℓ

2g

∫ θ0

θ

dθ√
cos θ − cos θ0

(0 ≤ θ ≤ θ0)

We now make the trigonometric substitution sin(ψ/2) = u sin(θ0)/2 to
obtain

t =

√

ℓ

g

∫ 1

u

du
√

(1− u2)(1− k2u2)
(k = sin(θ0/2))

which is an elliptic integral. The period T is then given by

T = 4×
√

ℓ

g

∫ 1

0

du
√

(1− u2)(1− k2u2)
(k = sin(θ0/2))

Thus
T = Tlin(2/π)K(k) (k = sin(θ0/2))

where
K(k) =

π

2

(

1 + (1/4)k2 + . . .
)

The interesting thing is that the period depends on the intial conditions.
To a first approximation,

T = Tlin

(

1 + (1/4)k2 +O(k4)
)

The period of the nonlinear pendulum is thus slightly larger than the
period of the linearized version.

3. The Jacobian elliptic functions. The integrand

1
√

(1− u2)(1− k2u2)
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appearing in the definition of elliptic integral is a special case of a class
of functions that occur in the theory of conformal mappings, namely the
Schwarz–Christoffel functions. These are the functions which give the
conformal mapping of the disk or the upper half plane onto the interior
of a closed polygon. The Jacobian function is obtained when the closed
polygon is a rectangle. The inverse map, from the rectangle to the up-
per half plane, can be extended meromorphically to the whole plane by
repeated reflection in the sides of the rectangle, and leads to a doubly peri-
odic meromorphic function whose periods, when the sides of the rectangle
are parallel to the coordinate axes, are 4K and 2iK ′ where 2K,K ′ are the
sides of the original rectangle. This is the Jacobian elliptic function

sn(z, k)

nd the entire theory of elliptic functions can be erected on it. This was
what Jacobi did in the 1820’s. Weierstrass’s lectures which came later
in the 1890’s, presented the theory through the ℘–function, which is the
modern way of introducing the student to the theory of elliptic functions
and curves.

It must be pointed out that the concept of analytic continuation,
which is fundamental to the problem of extending these functions beyond
their original domains of definition, was not available before Riemann and
Weierstrass. Abel and Jacobi circumvented it by clever arguments. For
the Jacobian functions let

cn(z, k) =
√

1− sn(z, k)2

Then one can prove by a formal argument that

sn(it, k) = i
sn(t, k′)

cn(t, k′)
(k′ =

√

1− k2)

So one can extend the definition of sn to the imaginary axis; one can then
extend it to all of C using Euler’s addition theorem to define sn(s+ it). It
was only after Riemann and Weierstrass that the definition of the Jacobian
elliptic functions on all of C was given a secure foundation.

An analytic function mapping a domain (open connected set) U into
a domain U ′ of C is called conformal if f ′(z) 6= 0 for all z ∈ U . This is
the same as saying that f is locally one–one. If f is globally one–one (uni-
valent in older terminology) it is a conformal equivalence or a conformal
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isomorphism of U with f(U ′) (recall that any analytic function is an open
mapping on its domain so that f(U ′) is open and connected). For any
domain U we write Aut (U) for the group of all conformal isomorphisms
of U onto itself. The group Aut (U) is known for the classical domains
and is described as follows. Here S2 = C ∪ {∞} is the extended complex
plane, D is the unit disk, and H is the upper half plane.

(i) Aut (S2)=SL(2,C)/{±1}; the matrix

(

a b
c d

)

acts by z 7−→ az+b
cz+d .

Here and in what follows we refer to the group of matrices as the
automorphism group when we actually mean its quotient by {±1}.

(ii) Aut (C)=the subgroup of SL(2,C) of matrices of the form

(

a b
0 1

)

and so consists of the affine maps z 7−→ az + b.

(iii) Aut (D)=the subgroup SU(1, 1) of SL(2,C), namely, the group of
all transformations of the form z 7−→ αz+β

β̄z+ᾱ
, with αᾱ− ββ̄ = 1.

(iv) Aut (H)=the subgroup SL(2,R) of SL(2,C), namely the matrices
with real entries.

The basic theorem is the Riemann mapping theorem for simply con-
nected domains of the complex plane. Let us recall this theorem.

Theorem (Riemann mapping theorem). Let U be a simply connected
domain in C, with U 6= C. Then U is conformally isomorphic to the disk
D. More precisely, given z0 ∈ U , there is a unique conformal isomorphism
F of U with D,

F ≃ D

such that

(a) F (z0) = 0

(b) F ′(z0) > 0

Moreover D 6≃ C.

For any simply connected domain in C which is not C, the functions from
D to U that define conformal isomorphisms are called mapping functions.

In constructing or identifying mapping functions it is convenient to
use the following principles. These are proved in the theory of conformal
mappings. We recall that a Jordan domain is a bounded domain whose
boundary is a simple closed curve (a Jordan curve).
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(i) If U,U ′ are Jordan domains and f(U ≃ U ′) is a conformal isomor-
phism, then f extends to a homeomorphism of cl (U) with cl (U ′), cl
denoting closure.

(ii) Let f be as above. If σ is a line or circular arc of ∂U , then f extends
analytically across σ by reflection.

(iii) If U,U ′ are Jordan regions and f is a continuous map cl (U) −→
cl (U ′) which is conformal on U ,and also on ∂U except at a finite
number or points, and if f is a homeomorphism of ∂U with ∂U ′, then
f is a conformal isomorphism of U with U ′.

As a simple example, consider the mapping F of the strip

Sℓ = {z | |ℜ(z)| < ℓ}

onto the disk D. We may assume that F (0) = 0, F ′(0) > 0. Then F
extends anlytically across the bounding lines x = ±ℓ by reflection. The
extension has the property that two values of z that are reflections of one
another on the lines x = ±ℓ go over to values w, 1/w̄ (which are symmetric
with respect to the unit circle. Thus for the extension we have

F (±2ℓ) =∞, F (±2ℓ− z̄) =
1

F (z)

The second reflection is in the line x = 3ℓ and is given by z 7−→ 6ℓ− z̄ so
that the product of these two reflections is z 7−→ 6ℓ − (2ℓ− z̄) = z + 4ℓ.
Hence we get

F (4ℓ+ z) = F (z)

So F has period 4ℓ, and is meromorphic with zeros at points of 4ℓZ and
poles at 2ℓ+ 4ℓZ. Moreover F stays bounded as z goes to infinity on the
strip. It is then not difficult to show that that

F (z) = tan
πz

4ℓ

Thus the periodicity comes in from the relection principle.

Let P be a closed polygon with vertices z1, z2, . . . zn and interior an-
gles αjπ at zj where 0 < αj < 2; some of the αj are allowed to be > 1
so that the polygon need not be convex. The exterior angle at zj is βjπ
where βj = 1− αj so that −1 < βj < 1. We have

β1 + β − 2 + . . .+ βn = 2
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For a convex polygon

0 < βj < 1 (j = 1, 2, . . . , n)

The classical result on the mapping functions from the disk to the closed
polygon P with exterior angles βjπ is as follows (see Ahlfors’s book).

Theorem. The conformal isomorphisms f(D ≃ P ) are of the form

f(w) = C

∫ w

(w − w1)
−β1 . . . (w − wn)−βndw + C′

where |wj | = 1, f(wj) = zj and C,C′ are nonzero complex constants.

Remark. The lower limit of integration is left open; we can take it to be
any point in the interior of the disk or even on the boundary but different
from the wj . The constants C,C′ depend on the location of P in the
complex plane. As they vary the polygon gets moved by a rigid motion,
translation, or a dilation, and so remains a closed polygon similar to itself.
Thus the map

w 7−→
∫ w

(w − w1)
−β1 . . . (w − wn)−βndw

is a conformal isomorphism ofD with a closed polygon with interior angles
βjπ. From the main results on the boundary behaviour of conformal
mappings that we reviewed above, the determination of the image polygon
is done by looking at the image of f of the boundary of the disk.

When D is replaced by H, the upper half plane, it is easy to get the
corresponding result by the Cayley transform applied to the above result.
There are two formulations depending on whether one of the wj = 1 or
not. The transformation is

z = i
1 + w

1− w, w =
z − i
z + i

and the conformal isomorphism F (H ≃ P ) is of the form

F (z) =

∫ z

(u− ξ1)−β1 . . . (u− ξn)−βndu
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where
ξj ∈ R,−∞ < ξ1 < . . . < ξn <∞

The alternative form is when one of the ξj is thrown to the point at infinity.
Then the mapping takes the form

G(z) =

∫ z

(u− ξ1)−β1 . . . (u− ξn−1)
−βn−1du

where
ξj ∈ R,−∞ < ξ1 < . . . < ξn−1 <∞

Here we must remember that βn = 2− (β1 + . . .+ βn−1).

The case when n = 4 and αj = 1/2 is important for us; then P is a

rectangle. Then the integrand is
√
P where P is either a quartic or a cubic

polynomial with distinct real roots. In the quartic case we can map the ξj
to −1/k,−1, 1, 1/k where k > 1 by a fractional real linear transformation
by choosing k so that we have

[ξ1, ξ2, ξ3, ξ4] = [−1/k,−1, 1, 1/k]

where [ , , , ] denotes the cross ratio. Then the mapping function is

f(z) =

∫ z

0

du
√

(1− u2)(1− k2u2)
(k > 1)

which is the Legendre normal form. In the cubic case the mapping function
is

f(z) =

∫ z

0

du
√

(1− u)(1− k2u2)
(k > 1)

which is often called the Riemann normal form. The inverse maps of these
functions are conformal isomorphisms of rectangles with H. We formulate
the result here for the Legendre normal form.

Theorem. Suppose P is a rectangle with vertices p, p+ω1, p+ω1+iω1, p+
iω1 (in natural order and orientation). Then a conformal isomorphism
g(P ≃ H) extends to C as a mermomorphic doubly periodic function (also
written g) with periods 2ω1, 2iω1. In any fundamental parallelogram the
function g has 2 simple zeros and 2 simple poles. In particular, if

f(z) =

∫ z

0

du
√

(1− u2)(1− k2u2)
(z ∈ H)
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then f is a conformal isomorphism of H with the interior of the recatngle
R with vertices −K,K,K + iK ′,−K + iK ′ where

K = K(k) =

∫ 1

0

du
√

(1− u2)(1− k2u2)

K ′ = K ′(k) =

∫ 1/k

1

du
√

(u2 − 1)(1− k2u2)

The inverse function g extends to C as doubly periodic function meromor-
phic function g with periods 4K, 2iK ′ whose zeros are simple and precisely
at points of L,L+2K and whose poles are simple and precisely at the points
of L+ iK ′, L+ iK ′ + 2K.

Proof. Regard g as a map into the disk. Then g extends by reflection in
the sides repeatedly to all of C, the extension also being written as g. The
extension is doubly periodic, the rectangle obtained by reflection once in
each pair of adjacent sides being a fundamental parallelogram. A rotation
leads us to the situation where the larger rectangle has sides parallel to the
coordinate axes and has vertices 0, 2a, 2a+ 2ib, 2ib. The larger rectangle
contains two simple zeros and two simple poles of the extension. The
epriods are 2a, 2ib and so before the rotation they are 2ω1, 2iω1. In the
special case we know a priori that the image of the map is a rectangle,
and so it is a question of describing the map on the real axis. Let the
branch of the square root of the integrand be the one which is 1 at the
origin. This is also the branch which is real and positive on the imaginary
axis in H. We wish to determine how this branch determines uniquely the
branch on R \ {±1,±1/k}. A simple calculation* leads to the following;

* To see this, note that on H we have a unique branch of
√
ζ such that it is 1 at

ζ = 1; it is reiθ 7−→ r1/2eiθ/2 (0 < θ < π). This branch induces a unique branch

on R \ (0) which is [
√
u]+ for u > 0 and i[

√
u]+ for u < 0. If we change H to

the lower half plane in the above, the induced branch on R \ (0) remains the same for

u > 0 and becomes −i[√u]+ for u < 0. Hence, the branch induced on R \ (−1)
by the unique branch of

√
1 + z which is 1 at z = 0 is [

√
1 + u]+ for u > −1

and i[
√

−(1 + u)]+ for u < −1. For
√

1− z the branch induced on R \ (1) is

[
√

−i(u− 1)]+ for u > 1 and [
√

(1− u)]+ for u < 1.
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we write [
√
a]+ for the positive square root of a if a > 0.

1
√

(1− u2)(1− k2u2)
=































1

[
√

(1−u2)(1−k2u2)]+
if −1 < u < 1

i

[
√

(u2−1)(1−k2u2)]+
if 1 < u < 1/k

−1

[
√

(u2−1)(k2u2−1)]+
if 1/k < u or u < −1/k

−i

[
√

(u2−1)(1−k2u2)]+
if −1/k < u < −1

As u increases from 0 to 1, f(u) increases from 0 to K; when u increases
from 1 to 1/k, f(u) goes up from K to K + iK ′; when u increases from
1/k to ∞, f(u) turns left and goes from K + iK ′ to

K + iK ′ −
∫ ∞

1/k

du
√

(u2 − 1)(k2u2 − 1)
= iK ′

in view of the relation
∫ ∞

1/k

du
√

(u2 − 1)(k2u2 − 1)
= K

which can be seen by the substitution u = 1/kv. Thus as u increases from
0 to ∞, f(u) traverses the right half of the rectangle R. Similarly as u
goes from 0 to −∞, f(u) traverses the left half of the rectangle R. Thus
if u goes from −∞ to ∞, f(u) traverses the boundary of R in the usual
orientation. Hence f is a conformal isomorphism of H onto the interior of
R. This finishes the proof.

The elliptic function with periods 4K, 2iK ′ defined above is the Jacobi
function

sn (z : k)

Between the periods K and K ′ there is a relation:

K ′(k) = K(k′) (k′ =
√

1− k2)

To prove this we make the substitution

u =
1√

1− k′2t2

in the integral for K ′(k) to get K(k′). The trigonometric substitution

u = sinφ
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gives

K(k) =

∫ π/2

0

dφ
√

1− k2 sin2 φ

The periods K,K ′ are hypergeometric functions. This is a deep re-
lationship between periods and solutions of certain types of differential
equations (the regular singular ones) that goes back to Legendre and was
pushed much farther by Fuchs. We expand (1−k2u2)−1/2 by the binomial
theorem and use Euler’s formula

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
Γ(1/2) =

√
π

where Γ is the classical gamma function of Euler, and obtain

K(k) =
∑

n

(

1/2

n

)
∫ 1

0

u2n(1− u2)−1/2duk2n

= (1/2)
∑

n

(

1/2

n

)
∫ 1

0

tn−(1/2)(1− t)−1/2dtk2n

= (π/2)
∑

n

((1/2)(3/2) . . . (2n− 1)/2

n!

)2

k2n

We now recall the hypergeometric series

F (a, b, c; z) =
∑

n

a(n)b(n)

c(n)n!
zn

where
u(n) = u(u+ 1) . . . (u+ n− 1)

So
K(k) =

π

2
F (1/2, 1/2, 1; k2)

Letting k → 0 we have

K(0+) =
π

2

which can also be obtained directly from the integral.

It is classical that the hypergeometric series F (1/2, 1/2, 1; z) is the
solution regular at z = 0 of the differential equation

z(1− z)d
2F

dz2
+ (1− 2z)

dF

dz
− 1

4
= 0
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This equation is invariant under z 7−→ 1 − z and so has the solution
F (1− z). We have

K(k) =
π

2
F (k2), K ′(k) = K(k′)

so that K and K ′ are solutions to

k(1− k2)
d2K

dk2
+ (1− 3k2)

dK

dk
− kK = 0

One can find expressions for the solutions by the Frobenius method. But
this is a case (as already noticed by Euler!) where the indicial equation
has roots differing by an integer and the second solution has a logarithmic
term.

One can show that

lim
k↓0

K(k) =
π

2
, lim

k↑1
K(k) =∞

Hence also
lim
k↓
K ′(k) =∞, lim

k↑1
K ′(k) =

π

2

Hence

lim
k↓0

K(k)

K ′(k)
= 0, lim

k↑1

K(k)

K ′(k)
=∞

This shows that the ratio
K(k)

K ′(k)

takes all values betwqeen 0 and ∞ as k varies between 0 and 1. The
parameter τ for the elliptic function sn(z, k) is

τ = i
K

2K ′

and so varies over the entire imaginary axis in H as k varies from 0 to 1.
Notice that the period lattices are all rectangular. For nonrectangular pe-
riod lattices we must consider complex k. These however require working
over the Riemann surface of the function

√

(1− u2)(1− k2u2)
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from the beginning, and hteir treatment became clear only after Riemann’s
epoch-making work on algebraic functions.

It can be shown that

K(k) = 2 log 2 + log k + o(1) (k ↑ 1)

The appearance of the logarithmic divergence is not surprising in view of
the remarks we made on the second solution of the differential equation
having a logarithmic term. The above relation can ndeed be obtained by
that technique.

Finally mention must be made of the famous relation of Legendre

KE′ + EK ′ −KK ′ =
π

2

where, for any function G on (0, 1), the function G′ is defined by G′(k) =
G(k′) where, as usual, k′ =

√
1− k2.
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RECTIFICATION OF CIRCLE

r = sin t

∫ sin t

0

du√
1− u2

= t

2× area OAP =

∫ sinh t

0

du√
1 + u2

= t

FIGURE 1
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RECTIFICATION OF LEMNISCATE

r2 = sin 2θ

∫ slt

0

dr√
1− r4

= t

∫ 1

0

dr√
1− r4

=
ω

2
(half length of lemniscate in the first quadrant)

FIGURE 2
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RECTIFICATION OF ELLIPSE

x2

a2
+
y2

b2
= 1

Length of arc BS =

∫ s

0

√

1 + (dy/dx)2dx

= a

∫ s/a

0

√

1− e2u2

1− u2
du

Total length of ellipse = 4a×
∫ 1

0

√

1− e2u2

1− u2
du = 4aE(e)

FIGURE 3
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PERIOD OF THE SIMPLE PENDULUM

0 < θ0 < π

Tlin = 2π

√

ℓ

g

T = Tlin·(2/π)K(k) = TlinF (1/2, 1/2, 1; k2) = Tlin

(

1− (1/4)k2 + . . .
)

FIGURE 4
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9. THETA FUNCTIONS

1. Introduction and definition of theta functions. Theta func-
tions were first introduced by Jacobi. They are entire functions defined
by power series with a parameter τ ∈ H and play a decisive role in the
theory of elliptic functions because the elliptic functions can be expressed
as a quotient of theta functions. Jacobi discovered extraordinary identi-
ties involving theta functions and showed that the entire theory of ellipti
functions can be developed from their point of view. He solved funda-
mental problems of number theory with their help, namely the number of
representations of an integer as a sum of k squares, especially k = 2, 4, 8.

It turned out that theta functions were equally critical in the theory of
algebraic functions of higher genus. This was due to Riemann and Weier-
strass who developed the theory of theta functions of several variables.
Exactly as in the case of a single variable, ratios of theta functions give
rise to multiply periodic functions of several variables, and indeed this is
one of the methods for developing a generalization of the theory of ellip-
tic functions to several variables. Theta functions of several variables are
attached to lattices in Cg and one of the fundamental questions became
the following: how to recognize, through the theta functions, whether the
lattice is the lattice of periods of al algebraic function of genus g? The
theta functions associated to the period lattice are called Riemann theta
functions. It was only in recent years that this question, often called
the Shottky problem, was solved. One of the solutions is due to Shiota,
who solved it in the form conjectured by Novikov: a theta function is a
Riemann theta function if and only if it satisfies the KdV equation.

There are many theta functions and we shall confine ourselves to the
simplest aspects of the theory, mainly to give a sample of what is possible.
In what follows all sums are over the set of all integers, unless explicitly
indicated. We define

θ(z, τ) = θ(z) =
∑

n∈Z

(−1)ne2πinz+πin(n+1)τ (z ∈ C, τ ∈ H)

If we write

z = x+ iy, τ = u+ iv (x, y, u, v ∈ R)
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then, in the region |y| ≤ Y, v ≥ V we have the estimate

|(−1)ne2πinz+πin(n+1)τ | ≤ e−[n(n+1)V −2πnY ]

For n ≥ n0 we have (n+ 1)V − 2πY > 1 and so the RHS of the estimate
above is majorized by e−n for such n. So the series defining theta converges
absolutely and uniformly in the region specified. Hence θ is a holomorphic
function on C×H.

The critical property of theta is that as a function of z it has period
1 and a quasi period τ . First of all since n(n+ 1) is even it is clear that
changing z to z+1 does not change the terms of the series and so it follows
that theta has period 1. On the other hand,

θ(z + τ, τ) =
∑

(−1)ne2πinz+πi(n2+3n)τ

= −
∑

m

(−1)me2πi(m−1)z+πi(m2+m)τ−2πτ

= −e2π(z+τ)
∑

m

e2πimz+πi(m2+m)τ

Thus we have
θ(z + τ, τ) = −e2π(z+τ)θ(z, τ)

In other words, changing z to z+τ (with θ fixed), changes θ to a multiple of
itself by the exponential of a linear function. This is usually described by
saying that θ has τ as a quasi period. Of course theta cannot have period
τ also as then it would be doubly periodic and so would be a constant. If
we take z = x to be real, then

θ(x, τ) =
∑

(−1)neπn(n+1)τ)e2πinx

showing that θ(x, τ) has Fourier coefficients

(−1)neπn(n+1)τ)

(which are rapidly decreasing in n) so that it cannot be a constant. We
also have, by a similar manipulation of series

θ(−z, τ) =
∑

(−1)ne−2πinz+πn(n+1)τ

=
∑

(−1)ne2πinz+πn(n−1)τ

= −e2πiz
∑

m

e2πimz+πm(m+1)τ
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so that

θ(−z, τ) = −e2πizθ(z, τ)

In particular

θ(0, τ) = 0

Let P be a fundamental parallelogram for the lattice Lτ in the complex
plane. We can translate P slightly so that no zero of θ lies on the boundary
of P .

Proposition 1. We have

1

2πi

∮

P

θ′

θ
dz = 1

In particular, inside P there is exactly one zero for θ, and it is a simple
one.

Proof. The proof is essentially the same as that of the Liouville theorems
in the theory of doubly periodic functions. Let the vertices of P be p, p+
1, p+ 1 + τ, p+ τ . Since θ and hence θ′, has period 1, the integrals over
the line segments from p+ τ to p and from p+1 to P+ τ +1 cancel. The
other two integrations do not quite cancel but almost. In fact,

1

2πi

∮ p+τ

p+τ+1

θ′(z)

θ(z)
dz =

1

2πi

∮ p

p+1

θ′(w + τ)

θ(w + τ)
dw

But
θ′(w + τ)

θ(w + τ)
= −2πi+

θ′(w)

θ(w)

Hence,
1

2πi

∮

P

θ′

θ
dz =

1

2πi

∮ p

p+1

(−2πi)dw = 1

Corollary 2. The zeros of θ are all simple and are precisely at the points
of Lτ .

Proof. This is because the zero set of θ is invariant under translations by
1 and τ and in a fundamental parallelogram there is just one simple zero.
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2. Elliptic functions as the ratio of products of thetas. Abel’s
theorem. We now observe that the ratio of two functions, both entire
with period 1 and same quasiperiod τ is a meromorphic function with
periods 1, τ . So, if a, b are complex numbers,

θ(z − a+ τ)

θ(z − b+ τ)
= e2πi(a−b)τ θ(z − a)

θ(z − b)

Hence, if aj, bj(1 ≤ j ≤ k) are arbitrary complex numbers (equality among
the aj and bj separately is allowed but no aj is equal to any br) and we
put

f(z) =
θ(z − a1) . . . θ(z − ak)

θ(z − b1) . . . θ(z − bk)

then f has period 1 and

f(z + τ) = e
2πi(

∑

j
aj−

∑

j
bj)τf(z)

Suppose now αj , βj(1 ≤ j ≤ k) are points on the torus C/Lτ such that
no αj is equal to any βr, although among themselves the α’s and β’s may
be equal, with

∑

j

αj −
∑

j

βj = 0

Clearly we can choose aj, bj in C above αj , βj respectively such that

∑

j

aj −
∑

j

bj = 0

Then, for the corresponding function f constructed above we have,

f(z + 1) = f(z), f(z + τ) = f(z)

Hence f is a meromorphic function with period lattice Lτ . From the
construction it is clear that f has zeros exactly at the aj and poles exactly
at the bj mod Lτ . We have thus proved Abel’s theorem:

Theorem 3 (Abel). If αj , βj are elements of C/Lτ as above satisfying
∑

j αj −
∑

j βj = 0, there is an elliptic function with period lattice Lτ

which has zeros exactly at the αj and poles exactly at the βj .
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Remark. We already know (Liouville’s theorems) that the condition

∑

j

αj −
∑

j

βj = 0

is necessary. So Abel’s theorem is the sufficiency of this condition.

3. Sums of squares. Theta as a modular form. We now take up
two other aspects of thetas, both due to Jacobi, which show the depth at
which the thetas interact with arithmetic. First we introduce a variant of
the theta function defined above. Let

θ0(z, τ) =
∑

n∈Z

e2πinz+πn2τ

The convergence of this series is similar to the earlier one and so θ0 is
holomorphic on C×H. Again

θ0(z + 1) = θ0(z)

while
θ0(z + τ) = e−2πiz−πiτθ0(z)

so that 1 is a period and τ is a quasi period for this theta. We are now
interested in the value of θ0 when z = 0. The null value, θ0(0), is a
function of θ. In fact

θ0(0)(τ) =
∑

n∈Z

eπin2τ (τ ∈ H)

We now write
x = q1/2 = eπiτ

Then θ0(0) is a function of x and we have

θ0(0)(τ) =
∑

n

xn2

We shall presently show that θ0(0) is a modular form in the sense we have
defined earlier, but with a small modification, namely that the properties
of invariance are not with respect to the modular group PSL(2,Z) but
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with a congruence subgroup of it 9see below). The above power series
representation of θ0(0) shows that for any integer k ≥ 1,

θ0(0)(x)k =
∑

m≥1

rk(m)xm

where rk(m) for any integer m ≥ 1 is the number of (n1, n2, . . . , nk) such
that the nj are in Z and

n2
1 + n2

2 + . . .+ n2
k = m

i.e., the number of representations of m as a sum of squares of k integers.
It must be remembered that rk(m) counts as different representations
where the signs are changed and the numbers permuted.

Theorem 4. For any positive integer m let dr(m) (r = 1, 3) be the number
of divisors u of m such that u ≡ r(4). Then

r2(m) = 4× (d1(m)− d3(m)

Further,

r4(m) = 8× sum of divisors of m that are not divisible by 4

Note that for any positive integer m we count 1 and m as divisors of
m. Suppose first that m = p is an odd prime. Then if p ≡ 1(4), we have
d1(p) = 2, d3(p) = 0 so that r2(p) = 8. But if p = a2 + b2, then neither
of a, b is 0 and ±a 6= ±b. Hence each solution p = a2 + b2 where a, b are
positive integers contributes 8 to r2(p). Thus we see that there is a unique
solution p = a2 + b2 where a, b are positive integers and a < b. If on the
other hand p ≡ 3(4), then d1(p) = 1, d3(p) = 1 so that r2(p) = 0. Thus
in this case p cannot be represented as a sum of two squares. This is a
classical result of Fermat. Suppose next that m is any positive integer.,
Then there is at least one divisor of m not divisible by 4, namely 1. hence

r4(m) > 0 for all m

Thus every positive integer can be expressed as a sum of 4 squares. This
is a famous theorem that Lagrange had proved before Jacobi.
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There is no question of proving the theorem of Jacobi here except to
mention that it depends on the theory of the theta functions and their
relationship to the ℘–functions.

We mentioned that θ0(0) is a modular form. We shall now discuss
this aspect of theta functions. From the definition of θ0 it is immediate
that

θ0(0)(τ) = θ0(0)(τ + 2) (1)

To get the modular property we must investigate what happens when we
make the transformation

S : τ 7−→ −1

τ

We have the famous formula

θ0(0)(−1/τ) = (−iτ)1/2θ0(0)(τ) (τ ∈ H) (2)

where (−iτ)1/2 is the branch of the square root that takes the value 1 at
τ = i. This is usually proved as an application of the Poisson summation
formula and we shall give this proof.

Let S be the space of rapidly decreasing functions on R, the so called
Schwartz space of the real line. This is the space of smooth functions
which, together with each of their derivatives, go to 0 at infinity faster
than (1 + x2)−N for any N ≥ 0. For f ∈ S its Fourier transform f∼ is
defined by

f∼(k) =

∫

e−2πixkf(x)dx (k ∈ R)

(all integrations are over R). Then the basic result of Fourier analysis is
that f∼ is also in S and f can be recovered from f∼ by

f(x) = (f∼)∼(−x)

i.e.,

f(x) =

∫

e2πikxf∼(k)dk (x ∈ R)

The Poisson summation formula is the statement that for any f ∈ S we
have

∑

n∈Z

f(n) =
∑

n∈Z

f∼(n)
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We now take
f(x) = eπix2τ (x ∈ R, τ ∈ H)

It is a standard calculation that

f∼(k) = (−iτ)−1/2eπik2)(−1τ) (k ∈ R)

To prove this we first take τ = iy where y > 0 and compute f∼ to be
given by the above formula; −iτ is equal to y and we take the positive
square root. The full formula is obtained by observing that f∼ is analytic
on H. The Poisson summation formula applied to this f then gives

∑

n

eπin2τ = (−iτ)−1/2
∑

n

e(πin2)(−1/τ)

which gives (2). We can also write (2) as

θ0(0)(−1/τ) = e−πi/4τ1/2θ0(0)(τ) (3)

where τ1/2 is the branch of the square root that takes the value eπi/4 at
τ = i.

The equations (1) and (2) imply that θ0(0) is a modular form for the
subgroup of the modular group generated by T 2 and S. The subgroups of
the modular group of the greatest interest are the congruence subgroups;
the congruence subgroup of the modular group of level n is the subgroup

Γn of SL(2,Z) of all matrices

(

a b
c d

)

such that

(

a b
c d

)

≡
(

1 0
0 1

)

(mod n)

It can be shown that the subgroup of the modular group generated by T 2

and S contains Γ4.

The subject has an unbelievable number of remarkable and deep lying
identities. We mention the product formula for the discriminant of the
elliptic curve, namely

(2π)−12∆(τ) = q

∞
∏

n=1

(1− qn)24 (q = e2πiτ ) (4)
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where, as usual, ∆ = g3
2/g

3
2 − 27g2

3 . The infinite series

(2π)−12∆(τ) =
∞
∑

n=1

τ(n)qn (5)

was singled out by Ramanujan in a famous paper as the generating func-
tion of the numbers τ(n) and so n 7−→ τ(n) is called the Ramanujan
function’ and the τ(n) the Ramanujan numbers. Ramanujan conjectured
remarkable properties of them, among them the result that they are mul-
tiplicative, i.e.,

τ(mn) = τ(m)τ(n) ((m,n) = 1) (6)

where (m,n) = 1 means that the integers m,n are mutually prime. This
was an entirely novel concept of multiplicativity for arithmetically defined
functions because up to that time only sequences which were unrestrictedly
multiplicative were known, namely those for which f(mn) = f(m)f(n) for
all integer pairs m,n. The multiplicativity means that the knowledge of τ
for powers of primes is enough to determine it completely, and Ramanujan
conjectured the form of the generating function of the τ(n) in the form

∞
∑

n=1

τ(n)

ns
=

∏

p

1

(τ(p)p−s + τ11−2s)
(7)

where the product is over all primes. Finally he conjectured that

|τ(p)| < 2p11/2 (8)

for all primes p, the statement being equivalent to the statement that the
roots of the quadratic polynomial

gp(T ) = 1− τ(p)T + p11T 2 (9)

are complex and have absolute value p11/2. The multiplicativity of τ and
the formula for the generating function were proved by Mordell a little time
after Ramanujan made the conjecture. Mordell’s work was the inspiration
for Hecke who realized that Mordell’s ideas could be vastly generalized
and applied to all modular forms, thus inaugurating his celebrated theory
of Hecke operators. The location of the roots of g+p(T ) was another story
altogether. It resisted proof for a long time until Deligne proved first that
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it will follow from the so called Weil conjectures in algebraic geometry,
and then a few years later proved the Weil conjectures themselves. No
elementary proof of (8) is known. The result (8) itself has been vastly
generalized, in conjectural form, by various people, and is an important
aspect of the modern program for modular forms pioneered by Langlands,
the so called Langlands program.

One final historical note. The infinite product

∞
∏

n=1

(1− qn)

already was encountered by Euler who treated this and similar products
in a famous paper Partitio Numerorum. He established the absolutely
remarkable identity

∞
∏

n=1

(1− qn) =
∑

n∈Z

(−1)nqn(3n+1)/2 =
∑

n∈Z

(−1)nqn(3n−1)/2 (10)

The numbers n(3n − 1)/2 are known as the pentagonal numbers. If one
builds regular pentagons starting at the origin in an expanding manner
where the sides of the nth pentagon have n lattice points, the number of
lattice points that one gets upto the nth pentagon is n(3n− 1)/2, hence
the name. The relation (120 is known as the pentagonal number theorem
of Euler. It is one of the more dramatic achievements of Euler.
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10. RIEMANN SURFACES OF ALGEBRAIC FUNCTIONS

1. Concept of an algebraic function. At various places earlier we
have discussed Riemann surfaces and the examples of C ∪ (∞) and C/L
(L a lattice in C) as compact Riemann surfaces. We have also mentioned
that the proper foundation for treating the Jacobian elliptic functions for
complex moduli k is to view

dz
√

(1− z2)(1− k2z2)

as a holomorphic differential on the Riemann surface of the function

y =
√

(1− z2)(1− k2z2) (1)

In this section we shall take up such matters in a little more detail but
still briefly.

By an algebraic function of the complex variable z we mean a function
y satisfying a relation

yk + a1(z)y
k−1 + . . .+ ak(z) = 0 (2)

where the aj are rational functions of z. The function (1) is an example
of an algebraic function. Let us write aj = fj/f0 where the fj are poly-
nomials (we may always assume that they have no common factor). Then
(2) is the same as

F (y, z) = f0(z)y
k + f1(z)y

k−1 + . . .+ fk(z) = 0 (3)

A branch of (2) on a domain U is an analytic function y on U that satisfies
(3) on U . However branches may not exist unless the domain U is chosen
with care. For instance, no branch of

√
z exists on any domain containing

0 while on any simply connected domain not containing 0 there are two
branches differing only by a sign factor. The basic question of the theory
of algebraic functions is to devise a method of treating them as single–
valued functions. It was Riemann’s great idea that this can be done if we
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abandon the requirement that analytic functions be defined on domains
in the complex plane but accept that they could be defined on what we
now call Riemann surfaces. He realized that the topology of these Rie-
mann surfaces influences the function theory in a decisive manner. We
have already seen the difference between function theory on the extended
complex plane and on the complex tori.

The construction of a Riemann surface for an algebraic function (3)
on which y becomes single–valued becomes especially transparent if we
follow the path taken by Weierstrass, namely, the method of function
elements. In modern terminology, given a point a ∈ C, a germ of an
analytic function at a is an equivalence class of analytic functions defined
around a, two such functions being called equivalent if they coincide in a
little disk with a as center. Weierstrass called the germs function elements.
The germs at a given point form an algebra and one can introduce the
totality G of all germs at all possible points. If ga is a germ at a, we may
view ga as defining an analytic function (also written as ga) on a disk Da

around a; this function defines at each point b of the disk a germ gb at b.
The set of all germs gb is thus a subset of G containing ga. We denote
this by D(ga) and view it as a neighborhood of ga in the space G. The
space G thus becomes a topological space. More than that, the map

Z : gb 7−→ b (4)

is bijective from D(ga) onto the diskDa, and we give toD(ga) the complex
structure that makes this map an analytic isomorphism. In this manner
G becomes a complex manifold. Moreover, Z is a complex analytic map
from G to C.

But unlike usual complex manifolds, G is not connected. Nevertheless
the concept of paths in G has an intrinsic significance. A path in G lies
above, through Z, a path γ in C. One can then view the germs g, h
located at the ends of the path as germs that are connected to each other
by analytic continuation along the path γ in the complex plane. Indeed,
this is essentially the definition of analytic continuation along paths in the
complex plane. A connected component of G is thus the totality of all
germs that can be obtained by analytic continuation from a given germ.

2. The Riemann surface of an algebraic function. Let us now start
with an algebraic function defined by the equation (1). It makes perfectly
good sense to speak about germs that satisfy (1). The basic question is
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now to look at the complex manifold of all such germs and determine
completely its structure and the manner it lies above C. Notice that on
this manifold y becomes a single–valued function:

y : ga 7−→ ga(a) (5)

The key observation is that if a is a generic point of the complex plane,
there are k distinct branches satisfying (3).

Proposition 1. Let ∆ be the set of all points t ∈ C such that f0(t) 6=
0 and the polynomials F (y, t), Fy(y, t) do not have a common root, Fy

being the partial derivative of F with respect to w, so that the equation
f0(t)X

k + f1(t)X
k−1 + . . .+ fk(t) = 0 has k distinct roots u1, u2, . . . , uk.

Then there are k distinct branches yj(1 ≤ j ≤ k) of (3) such that yj(t) =
uj(1 ≤ j ≤ k). Moreover, if h is a continuous function that is defined
around t and satisfies F (h(z), z) = 0 around t, then h = yj for some j
around t.

Proof. Fix j = 1, 2, . . . , k and write u = uj . Since Fy(u, t) 6= 0 we can find
ρ > 0, δ > 0 such that Fy(y, z) 6= 0 for |z− t| ≤ ρ, |y−u| ≤ δ. By choosing
ρ smaller we may assume that F (y, t) has no zero in 0 < |y − u| ≤ δ, in
particular on |y − u| = δ. A simple compactness argument shows that we
can choose a smaller ρ so that F (y, z) 6= 0 for |y− u| = δ, |z− t| ≤ ρ. The
integral

n(z) =
1

2πi

∮

|y−u|=δ

Fy(y, z)

F (y, z)
dy

is the number of roots of F (y, z) = 0 inside the circle |y − u| = δ which is
1 for z = t. On the other hand, it follows from a general argument that
it is continuous. So n(z) = 1 for |z − t| ≤ ρ. So there is a unique root of
F (y, z) = 0 inside this circle for |z − t| ≤ ρ. Let us denote it by y(z). By
the residue calculus we have

y(z) =
1

2πi

∮

|y−u|=δ

y
Fy(y, z)

F (y, z)
dy

and from this formula it is clear that y(z) is analytic in z. y thus defines
a branch of (3). We denote y as yj to remind us that its value at z = t
was u = uj . If h is as in the theorem, then h(t) = uj for some j, and so,
as h(t) is different from the other yr, we see that for z sufficiently near t,
h(z) has to coincide with yj(z), for reasons of continuity.
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Proposition 2. The complement of ∆ is finite.

Proof. This is a consequence of the theory of resultants or the use of
the euclidean algorithm in the ring of polynomials in y, z. We omit the
argument.

The points outside ∆, including ∞, are called critical points. Then
at each point of ∆ there are k branches located at that point. Let R′ be
the set of all branches at the noncritical points. Then R′ is a complex
manifold and the map

Z : R′ −→ ∆

is a covering map such that each fiber has exactly k elements. Z is called
a k–sheeted covering map. The second key point, which we shall not prove
here, is the following.

Proposition 3. R′ is connected if F is irreducible. In particular, in this
case, analytic continuation of any branch is possible along any path in ∆.

One would like to call R′ the Riemann surface of attached to the
algebraic function y satisfying (3). But one can do more. For each critical
point t including ∞ we can add points p1(t), p2(t), . . . pr(t) to R′ such
that R = R′ ∪t {p1(t), . . . , pr(t)} such that R is a Riemann surface which
is compact. R is called the Riemann surface of the algebraic function
defined by (3).

The addition of the pj above the critical point t is seen to be possible
as follows. Although R′ is connected, if we take a small disk D around t
(not containing any critical point other than t), the open set Z−1(D×) is
not connected in general, D× being the punctured disk D \ (t). Let

Z−1(D×) = K1 ∪K2 ∪ . . . ∪Kr (6)

be its decomposition into connected components. One can give an invari-
ant description of the branches that lie in the various Kj . Fix a point
z0 ∈ D× and let η be a branch of (3) at z0. If we analytically continue
this branch along a closed path beginning and ending at z0, the end result
will be another branch η1. The branch η1 depends only on the homotopy
class of the path in D×. So the fundamental group of D× with base point
z0, which is isomorphic to Z, acts on the set B0 of branches at z0. This
action will split B0 into a finite set of disjoint orbits Σj(1 ≤ j ≤ r):

B0 = Σ1 ∪Σ2 ∪ . . . ∪Σr (7)
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Then we can take Kj to be the set of all branches at points of D× that
have an analytic continuation into some element of Σj . Let

nj = number of elements of Σj (8)

It is then easy to show that

Z : Kj −→ D×

is a covering map also, mapping Kj onto D× and having nj sheets. Clearly

n1 + n2 + . . .+ nr = k

Now comes the decisive observation, that the punctured disk has only one
m–sheeted covering map for any positive integer m, namely the map that
locally looks like

z 7−→ zm

So we can find a disk Dj and a complex analytic isomorphism

tj : D×
j ≃ Kj

such that the composition
tj ◦ Z

becomes the map
ζ 7−→ ζnj

of D×
j onto D×. We glue Dj to R′ so that D×

j gets glued on Kj via the
identification tj. The construction of R is complete.

The points pj(t) above the various critical points are called ramifica-
tion points. The integer nj is called the ramification index at the point
which corresponds to the center ofDj (that represents the additional point
corresponding to Σj). The Riemann surface R defined above has two maps
Z, y both into C ∪ (∞). y is the algebraic function satisfying (3) while Z
gives the location of the branch of y.

To add some additional insight into these considerations, we remark
that if f is a local nonconstant complex analytic map defined around 0
taking 0 to 0, then there is an integer m ≥ 1 such that in suitable local
coordinates f becomes the map z 7−→ zm; m is the ramification index of
the map f at the origin.
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For any compact smooth manifoldX of dimension 2 we have the finite
dimensional vector space

H1(X) = Z(X)/B(X)

where Z(X) is the vector space of all real closed 1-forms on X and B(X)
is the subspace of all forms df where f is a real smooth function on X . If
α, β are two closed forms, α ∧ β is a 2–form and so

B′(α, β) =

∫

X

α ∧ β = −B′(β, α)

is well defined and vanishes whenever either α or β is exact. Hence B′

induces a bilinear form

B : H1(X)×H1(X) −→ R

which is skew symmetric. It is a basic result that this form is nondegener-
ate. As only an even dimensional vector space can carry a nondegenerate
skew symmetric bilinear form we conclude that dimH1(X) must be even,

dimH1(X) = 2g

where g is called the genus of X . If X is a Riemann surface Riemann’s
work showed the decisive role played by the genus in the function theory
on X . The genus is 1 if and only if X is a torus while the genus is 0 if and
only if X ≃ S2.

The Riemann surface R constructed above for an algebraic function
(3) has a genus g given by the so called Riemann–Hurwitz formula:

2− 2g = 2k −
∑

(n− 1) (8)

where the sum is over all the ramification points of the map Z : R −→
C ∪ (∞). In classical texts for various simple forms of (3) the genus g is
computed explicitly by the so called glue and scissors method.

As an example consider the algebraic function defined by

y2 = (z − e1)(z − e2) . . . (z − eN )

where e1, e2, . . . , eN are N distinct complex numbers. We first claim that
the Riemann surface R is ramified above the points ej . Indeed there are 2
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sheets and so if there is no ramification above ej , then any branch returns
to itself if continued analytically around ej (inside a small disk around ej).
So the branch must be meromorphic at ej and, as it is bounded near ej ,
it must be holomorphic. But it is easy to see that there is no holomorphic
branch around ej . The same argument applies at ∞ if N is odd, while
for N even there is no ramification above ∞ because there is a branch
meromorphic at ∞ as is easily verified. Hence, by (8) the genus is

g =
[N − 1

2

]

([ · ] is the integral part ) (9)

Thus if N = 3, 4 the genus is 1, while for higher N the genus is > 1.
Riemann surfaces with genus 1 are complex tori and so are called elliptic.
The surfaces for N > 4 are called hyperelliptic.

For the Jacobi case (1) we introduce the Riemann surface X corre-
sponding to (1). On it the form

dZ

y
(10)

is a holomorphic differential and so its integral over paths make sense. The
indefinite integral however depends on the path but is uniquely determined
upto a lattice L in the complex plane, namely the lattice of periods of the
form (10). One thus obtains a map of X on C/L. The inversion theorem
of Jacobi is that this map is an analytic isomorphism.

3. The algebraic point of view. If R is the Riemann surface of y
constructed above, it turns out that the meromorphic functions on R are
precisely the rational functions of y, Z. They form a field, which we denote
by C(R). The rational functions of Z form a subfield, C(Z), and C(R)
is a finite (hence algebraic) extension of C(Z). Conversely, if R is any
Riemann surface, there is a nonconstant meromorphic function Z on R
and another meromorphic function y on R, such that y is an algebraic
function of Z and the field of meromorphic functions on R is precisely
the field of rational functions of y, Z. On the other hand, if K is a finite
algebraic extension of C(z), there is a Riemann surface R, unique upto
analytic isomorphism, such that K = C(R); R can be recovered from K
as the set of its places.. This last result suggests that the entire theory of
Riemann surfaces can be developed from the algebraic point of view; this
was historically done by Dedekind and Weber.
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This last point can be illustrated by an example. We have seen that
nonsingular plane cubic curves

Y 2W = 4X3 − a2XW
2 − a3W

3 (a3
2 − 27a2

3 6= 0) (11)

are isomorphic to complex tori. The space defined by this equation is a
submanifold of CP2 and can be identified with the Riemann surface of
(11). If however we consider a plane quartic curve, such as (1) in projective
form

Y 2W 2 = (W 2 −X2)(W 2 − k2X2) (12)

we see that it has singular points; indeed, the point at infinity (0, 1, 0) is
a singular point, although it is the only singular point. So the Riemann
surface of (12) cannot be identified with this curve. Nevertheless the
Riemann surface exists and its field of meromorphic functions is the same
as the restriction to the curve of the rational functions p/q in X, Y such
that q does not vanish identically on the curve. It is on this surface that
the elliptic integral is defined. We should regard the Riemann surface as
a nonsingular model of the curve; the nonsingular model is unique.

In the 19th century people developed the theory of algebraic curves
in great depth and obtained results of great beauty (recall for instance
the geometry of plane cubics). The great figures were Clebsch, Noether
(the father of Emmy Noether), Brill, etc. The work of Riemann, and the
subsequent work of Dedekind–Weber showed conclusively that all three
points of view lead to the same theory. However, the algebraic and geo-
metric points of view have an additional aspect, namely that they can be
developed over an arbitrary field , instead of the complex field over which
the transcendental theory takes place. Nevertheless the formal structures
have a great deal of resemblance. In particular, As Schmidt and then
Artin did, one can develop the theory over finite fields. One may think
of the theory of algebraic function fields over finite fields as a theory of
Riemann surfaces with finite fields of constants.

Let us start with the field C(z) and then consider the tower of all
finite algebraic extensions of it. From our remarks above it is clear that
this tower is more or less the same as the tower of Riemann surfaces over
C ∪ (∞). Now this structure has a great similarity to the structure of all
finite algebraic extensions of Q, the field of rational numbers. These are
the algebraic number fields. Thus algebraic number theory and algebraic
function theory are built along very similar lines, and the mathematicians
of the 19th century obtained great insights into both theories by exploring
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this analogy. The analogy becomes particularly close when we compare
the algebraic number fields with algebraic function fields over finite fields
of constants. What came out of this analogy and how it has led to a
revolution in modern mathematics is another story.
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11. JUGENDTRAUM

1. Cyclotomic fields. Theorem of Kronecker–Weber. Cyclotomy
means division of the circle. The points of division of the unit circle into
n equal parts are the nth roots of unity,

ωr = ωr
n (0 ≤ r ≤ n− 1), ωn = e2πi/n (1)

These are the vertices of a regular n–gon inscribed in the unit circle. The
algebraic and arithmetic importance of these numbers has probably been
recognized from ancient times. The formulae

cos
π

3
=

√
3

2
, sin

π

10
=

√
5− 1

4

show that cyclotomy is closely related to quadratic irrationalities. When
he was 19 years old, Gauss made a profound discovery, namely that the
quantities

cos
2π

n

are not accessible by euclidean geometric constructions except for cer-
tain special values of n. For n a power of 2 this was already known to
Archimedes, but Gauss showed, in a famous discussion, that this is possi-
ble for n = 17, and more generally, that this is possible if and only if n is
of the form

2kp1p2 . . . pr

where the pi are distinct Fermat primes, i.e., primes of the form

22s

+ 1

Since 17 = 24 +1 this result contains the theory of euclidean construction
of regular 17–gons as a special case.

Let us write Fn for the extension of Q generated by ωn where Q is as
usual the field of rational numbers. Fn is called the nth cyclotomic field.
This is the splitting field of the polynomial

Xn − 1
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and so is a Galois extension. Let

Gn = Gal (Fn/Q)

be the Galois group of Fn over Q. Now ωn is a primitive nth root of unity,
namely a root of unity such that its rth power is not unity for any r with
1 ≤ r < n. It is clear that the primitive nth roots of unity are those of the
form

ωr
n ((r, n) = 1)

and so are φ(n) in number where φ(n) is Euler’s number, i.e., the number
of integers that are < n and prime to n. If σ ∈ Gn, it is clear that σ(ωn)
is also a primitive root of unity and so there is an integer r = r(σ) such
that

σ(ωn) = ωr(σ)
n ((r(σ), n) = 1)

The integer r(σ) is determined only mod n and so we have a map

r : Gn −→ Z/nZ := Zn

Moreover the values of r are residue classes prime to n so that we have
indeed a map

r : Gn −→ Pn σ(ωn) = ωr(σ)
n

where Pn is the multiplicative group of residue classes mod n that are prime
to n. This map is a homomorphism. Indeed, if σ, τ are two elements of
Gn, we have

στ(ωn) = σ(ωr(τ)
n ) = ωr(σ)r(τ)

n

Since ωn generates Fn it is immediate that this map is injective. It is a
deep fact that this map is surjective also so that

Gn ≃ Pn

In particular
[Fn : Q] = φ(n)

The last fact can be described in another way. The polynomialXn−1
is not irreducible, it has X − 1 as a factor. The polynomial

Φn(X) =
∏

r:(r,n)=1

(X − ωr
n)
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is called the nth cyclotomic polynomial. Thus

Φ3 = X2 +X + 1,Φ4 = X2 + 1,Φ5 = X4 +X3 +X2 +X + 1

and one can write down a formula for computing Φn for any n. The degree
of this polynomial is φ(n) and one can show that

Φn(X) ∈ Z[X ]

The fact that the degree of Fn over Q is φ(n) shows that Φn(X) is irre-
ducible.

The fact that the Galois group of Fn is isomorphic to Pn implies in
particular that it is abelian. The converse, which is very surprising, is
also true. It was discovered by Kronecker but is known as the Kronecker–
Weber theorem. It asserts that if K is a Galois extension of Q such that its
Galois group is abelian, or as it is usual to say, K is an abelian extension
of Q, then there is an integer n such that

K ⊂ Fn

In other words, every abelian extension of Q is a subextension of a cyclo-
tomic field extension.

2. Jugendtraum. In a letter to Dedekind written on March 15, 1880,
Kronecker referred to the problem of describing explicitly all the abelian
extensions of a quadratic imaginary field Q(

√
−D) where D is a positive

square–free integer (this means that D is a product of distinct primes).
Clearly he thought of this as a vast generalization of the theory of abelian
extensions of Q which were known to him to be cyclotomic. In the letter,
which is in German, he referred to this as meinen liebsten Jugendtraum,
my dearest dream of youth. In fact he writes

. . . I have overcome today the last of many difficulties which have
been preventing me the conclusion of an investigation with which I
have been occupied again in the past months. The subject is my dear-
est dream of youth, namely the proof that the abelian equations with
square roots of rational numbers as coefficients are given by the trans-
formation equations of elliptic functions with singular moduli, just as
the abelian equations with integer coefficients are given by the cyclo-
tomic equations. . .
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Kronecker’s vision was remarkable and he obtained most of the fun-
damental results in this program. But there were some gaps in methods
as well as results, and his work was completed by Weber after Kronecker
had died. Ever since that time, this circle of problems has always been
referred to as the Jugendtraum problems. For us, the most interesting as-
pect of this question is the role played by elliptic and modular functions.
We shall not describe fully the results of Kronecker and Weber but con-
fine ourselves to just one aspect. For this some preparation is necessary,
especially in the arithmetic of number fields.

Everyone knows that the basis of ordinary arithmetic is the unique
factorization theorem in Q which asserts that any positive integer is a
product of primes and that this representation is unique except for the
order of the prime factors. Although the concept of primes and integers
can be extended to arbitrary number fields, and although for a few of them
such as Q(i) the unique factorization is verifiable, people like Dirichlet
and Gauss knew that this is not true in general. For instance, in the field
Q(
√
−5) one has the two distinct decompositions

6 = 2× 3, 6 = (1 +
√
−5)(1−

√
−5)

and it is easy to verify that 2, 3, 1 ±
√
−5 are all prime numbers in the

sense that they are divisible only by themselves and units (integers whose
inverses are also integers, integers being numbers of the form a+ b

√
−5).

It was Kummer who overcame this hiatus and discovered the path toward
a general arithmetical theory of number fields. His idea was to insist
on unique factorization but change the concept of prime so as to secure
unique factorization. This is not the place to go into Kummer’s epoch–
making discoveries but we confine ourselves to the statement that Kummer
replaced primes by prime ideals. Let K be an algebraic number field. An
integer in K is an element which satisfies a monic equation with integer
coefficients, i.e., any element θ such that

θk + a1θ
k−1 + . . .+ ak = 0

where a1, . . . , ak are ordinary integers. The integers form a ring whose
quotient field is K. Let R be the ring of integers in K. For instance, the
ring of integers in Q(

√
−5) is Z + Z

√
−5 while the integer ring in Q(

√
5)

is Z +Zθ where θ = (1 +
√

5)/2. Kummer* realized that one should work

* Actually Kummer worked only with cyclotomic fields. The extension of the Kum-
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with prime ideals in R instead of prime numbers. In the case of Z the
two concepts coincide; the prime ideals in Z are precisely the principal
ideals generated by prime numbers. For an arbitrary number field, one
should consider ideals whether they are prime or not, and more generally,
fractional ideals, namely R–modules in K of the form xJ where J is an
ideal in R. The fractional ideals admit an operation of multiplication,
namely,

J1J2 = R −module generated by a1a2 where ai ∈ Ji

The fundamental theorem of algebraic number theory, proved by Kummer
for the cyclotomic fields and Dedekind and Kronecker extended to all
number fields, is the following.

Theorem. Under multiplication the set of fractional ideals form a group,
and that this group is the free abelian group generated by the prime ideals.
In particular if J is any ideal in R,

J = P k1

1 . . . P kr

r

where the kj are integers ≥ 0 and the Pj are prime ideals, the representa-
tion being unique except for the order of the factors Pj.

Clearly the group property and its freeness is the abstract expression
of the unique factorization property. How do the fields with unique fac-
torization property in the old sense fit in here? Clearly when all ideals of
R are principal. This is however not always true. Kummer proved (again
for cyclotomic fields, and Dedekind and Kronecker for arbitrary number
fields) that if G is the group of fractional ideals and G0 is the subgroup
of principal fractional ideals, then

C(K) := G/G0

is a finite group. The elements of C(K) are called ideal classes and C(K)
itself is called the ideal class group or simply, the class group. For instance

C(Q(
√
−5)) = 2

mer theory to all number fields was carried out by Dedekind and Kronecker in inde-

pendent and different ways. We adopt the Dedekind point of view that the proper

generalization of a prime number to a number field is a prime ideal.
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The number of elements in C(K) is known as the class number of K. The
class number is a deep lying global invariant of a number field.

Let us return to the jugendtraum. Let

K = Q(
√
−D)

where D > 0 is a square free integer. The key observation that shows that
the theory is somehow related to elliptic functions is that the integers of
K form a lattice in C. In fact, each fractional ideal in K is a lattice, and
two fractional ideals are in the same class if and only if they are equivalent
under complex multiplication. Now let J be the modular function

J =
g3
2

g3
2 − 27g2

3

Then as J gives the same value to all lattices that are equivalent under
complex multiplication, it follows that the J–value of all the fractional
ideals in a given ideal class k are the same. We denote this by J(k). Then
Kronecker’s beautiful theorem, which is one of the many that he obtained
is the following.

Theorem (Kronecker). Let k1, . . . kd be the distinct ideal classes of K =
Q(
√
−D), d being the class number of K. Then the values

J(k1), . . . , J(kd)

are all algebraic numbers, and they generate an abelian extension of K.
Moreover this is the maximal unramified abelian extension of K.

It is necessary to comment only on the last statement of the theorem.
The point is, and we have mentioned this earlier, the tower of extensions of
a given number field is very similar in structure to the tower of Riemann
surfaces above a given Riemann surface. Clearly it is possible that for
Riemann surfaces X,X ′ where there is a nonconstant map X ′ −→ X ,
this map may be everywhere unramified, i.e., it is conformal. Then it is a
covering map. For instance, if L is a lattice in C and L′ = rL where r is
a positive integer > 1, the natural map

C/L′ −→ C/L

is a covering map and so is unramified everywhere. It is possible to develop
the notion when a number field K ′ that contains a number field K is
ramified at a prime ideal of K ′. One says that K ′/K is unramified if the
extension is unramified at all primes. The field obtained by Kronecker in
the above theorem is the so called Hilbert classfield.
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