Homework
 
 

Homework 1 (Due Jan 19, '99)






























1. P 373, #5.

2. P 374, # 11.

3. P 376, # 26.

4. P 377, #33, 34, 35.

5. P 378, # 43.
 
 






Homework  2 (Due Feb 2, '99)
























1. P 373, # 4, 9.

2. P 374-375,  # 15, 17(a) (b), 18, 19.

3. P 376, #22, 28.
 
 







Homework 3 (Due Feb 9, '99)
















1. P 378, # 44.

2. P 379, # 47, 49, 52.

3. P 380, # 53.

4. P 382, # 65, 66, 67.
 
 


Homework 4 (Due Feb 16, '99)
















1. P 381, # 59.

2. P 382, # 61.

3. P 383, # 68, 69, 72, 73.
 


Homework 5 (Due March 2, '99)
















1. Let X and Y be independent Poisson variables with means a and b respectively. Find the moment
    generating function of X-Y.

2. P 391, # 45, 46.

3. P 392, # 48, 49, 50, 51, 52, 54.

4. Let (X, Y) be a bivariate normal distribution with means 0, varianves 1, and correlation k. Find the joint
    moment generating function of (X, Y).
 
 


Homework 6 (Due Mar 9, '99)
















1. P 421, # 2.

2. P 422, # 3, 5, 7, 8.

3. P 423, # 14, 15.

4. Let  X  be a Poisson random variable with mean k (k>0) and Y be the corresponding standardized
    variable. Show that the moment generating function of Y converges to the moment generating
    function of a standard normal varible as k goes to infinity.