HOMEWORK 3

Problem 1 (Gagliardo—Nirenberg inequality). Fix d > 1 and 0 < p < oo for
d=1,20r 0<p< 7% for d > 3. ShowthatforallfGS(Rd)
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Problem 2. Let f € S(R?). Show that
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where Af = ¢
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Problem 3. Given a Schwartz vector field F : R? — C3, define vector and scalar
fields A and ¢ via
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Note that ¢ and A are smooth functions, but need not be Schwartz.
(a) Show that

and A(f) = —
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for1<p<q<ooobeying1—|—§=%.

(b) Show that F =V x A + V¢ and hence that
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for any 1 < p < o0.
(c) Show that all (first-order) derivatives of all components of A are under control
(not just the curl):
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for any 1 < p < co and any k,l € {1,2,3}.
Remark. Observe that F' =V x A+ V¢ decomposes F into a divergence-free part
and a curl-free part. Note however, that the choice of A is far from unique; consider
A+— A+ V. Our choice corresponds to the Coulomb gauge: V- A = 0.

Problem 4. Let f € L*(R?) and fix 0 < a < 1. Show that f is a-Holder
continuous if and only if || P>y fllre S N~ for all N > 1.

Problem 5. Let f,g € S(R?) and 1 < p,q,r < oo with % =141 Show that
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