PROBLEMS

Problem 1. Let us define

$$J_0(x) = \frac{1}{2\pi} \int_0^{2\pi} \cos\left(x\sin(\theta)\right) d\theta,$$

which is the Bessel function of order zero. Describe the relation of

$$f(r) \mapsto F(\rho) = 2\pi \int J_0(2\pi r\rho) f(r) r \, dr \tag{1}$$

to the action of Fourier transform on spherically-symmetric functions in two dimensions. Use this to deduce that it defines a unitary map from $L^2([0,\infty), r dr)$ to itself.

Problem 2. Show that the eigenvalues of the Fourier transform are contained in the set $\{1, -1, i, -i\}$.

Problem 3. We define a sequence functions on \mathbb{R} by

$$\psi_n(x) = \left[\frac{d}{dx} - 2\pi x\right]^n e^{-\pi x^2}$$

where $n \geq 0$. Show that $\psi_n(x)$ form an orthogonal sequence of eigenfunctions for the Fourier transform on $L^2(\mathbb{R})$. In particular, show that all four potential eigenvalues listed in Problem 2 do, in fact, occur.

Problem 4. Prove Young's inequality: For $1 \le p, q, r \le \infty$,

$$||f * g||_{L^{r}(\mathbb{R}^{d})} \leq ||f||_{L^{p}(\mathbb{R}^{d})} ||g||_{L^{q}(\mathbb{R}^{d})}$$
 whenever $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.

Show that no inequalities of this type are possible for other exponents.

Problem 5. Consider the Lorentz space $L^{1,q}(\mathbb{R})$ with $1 < q < \infty$. Show that the quasinorm on $L^{1,q}(\mathbb{R})$ cannot be equivalent to any norm.

Problem 6. Let $\|\cdot\|$ denote a quasinorm on functions. Let f_1, \ldots, f_N be functions satisfying the bounds

$$\|f_n\| \le 2^{-\varepsilon n}$$

for some $\varepsilon > 0$. Show that

$$\left\|\sum_{n=1}^N f_n\right\| \lesssim_{\varepsilon} 1,$$

where the implicit constant is independent of N. *Hint:* First reduce the problem to large positive ε .

Problem 7. Let $1 \le p < \infty$ and $1 \le q \le \infty$ and let $f \in L^{p,q}(\mathbb{R}^n)$. We can write $f = \sum f_n$ where

$$f_n = f\chi_{\{x: H_{n+1} \le |f(x)| < H_n\}} \quad \text{with} \quad H_n = \inf\{\lambda : |\{x: |f(x)| > \lambda\}| \le 2^{n-1}\}.$$

Show that

Show that

$$||f||_{L^{p,q}}^* \sim ||H_n 2^{\frac{n}{p}}||_{\ell^q(\mathbb{Z})}.$$

Hint: Show that for $H_{n+1} \leq \lambda < H_n$ we have $2^{n-1} < |\{x : |f(x)| > \lambda\}| \leq 2^n$.

PROBLEMS

Problem 8. Let $1 \le p < \infty$ and $1 \le q \le \infty$. Suppose that $H_n \ge 0$ and E_n are measurable sets with $|E_n| \le C2^n$. Show that if

$$|f| \le \sum H_n \chi_{E_n},$$

then

$$||f||_{L^{p,q}}^* \lesssim ||H_n 2^{\frac{n}{p}}||_{\ell^q(\mathbb{Z})}.$$

Hint: Show that $|\{x : |f(x)| > \lambda\}| \lesssim \sup\{2^n : \sum_{m \ge n} H_m > \lambda\}.$

Problem 9. (Hölder in Lorentz spaces) Let $1 \le p, p_1, p_2 < \infty$ and $1 \le q, q_1, q_2 \le \infty$ such that $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$ and $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. Show that

$$||fg||_{L^{p,q}}^* \lesssim ||f||_{L^{p_1,q_1}}^* ||g||_{L^{p_2,q_2}}^*$$

Hint: Use the previous three problems.

Problem 10. For $1 < p, q < \infty$, we define an operator on functions on $(0, \infty)$ via

$$(Tf)(x) = |x|^{-\frac{1}{q}} \int_0^\infty f(y)|y|^{-\frac{1}{p'}} \, dy.$$

Show that T is of restricted weak type (p,q), but not of weak type (p,q).

Problem 11. Let $\omega : \mathbb{R}^d \to [0, \infty)$ given by $\omega(x) = |x|^{\alpha}$. (a) Show that $\omega \, dx$ is a doubling measure if and only if $\alpha > -d$. (b) Show that $\omega \in A_p$ with $1 if and only if <math>-d < \alpha < (p-1)d$.

Problem 12. Fix $1 \le p < \infty$ and let $\omega \in A_p$. (a) Show that $M_{\omega} : L^1(\omega \, dx) \to L^{1,\infty}(\omega \, dx)$, where

$$M_{\omega}f(x) = \sup_{r>0} \frac{1}{\omega(B(x,r))} \int_{B(x,r)} |f(y)|\omega(y) \, dy.$$

(b) Show that $(Mf)^p \leq M_{\omega}(f^p)$ for all $f \geq 0$, where M denotes the Hardy-Littlewood maximal function.

(c) Conclude that $M: L^p(\omega \, dx) \to L^{p,\infty}(\omega \, dx)$.

Problem 13. The dyadic cubes in \mathbb{R}^d are sets of the form

$$Q_{n,k} = [k_1 2^n, (k_1 + 1)2^n) \times \dots \times [k_d 2^n, (k_d + 1)2^n),$$

where n ranges over \mathbb{Z} and $k \in \mathbb{Z}^d$.

(a) Given a collection of dyadic cubes with bounded maximal diameter, show that one may find a subcollection which covers the same region of \mathbb{R}^d , but with all cubes disjoint.

(b) Define the dyadic maximal function by

$$[M_D f](x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy,$$

where the supremum is taken over all dyadic cubes that contain x. Show M_D is of weak-type (1, 1) and of type (p, p) for all 1 .

Problem 14. Let M_D denote the dyadic maximal function defined above and let $Q_0 := [0, 1)^d$.

(a) For $\alpha > 0$, show that

$$|\{x \in \mathbb{R}^d : [M_D f](x) > \alpha\}| \lesssim \frac{1}{\alpha} \int_{|f| > c\alpha} |f(y)| \, dy$$

for some small constant c.

(b) Deduce that if f is supported on Q_0 and $|f| \log[2 + |f|] \in L^1(Q_0)$, then $M_D f \in L^1(Q_0)$.

(c) Given $f \in L^1(Q_0)$ and $\alpha > \int_{Q_0} |f(y)| dy$, show that

$$|\{x \in Q_0 : [M_D f](x) > \alpha\}| \gtrsim \frac{1}{\alpha} \int_{|f| > \alpha} |f(y)| \, dy$$

Hint: perform a Calderon–Zygmund style decomposition. (d) Deduce that if $M_D f \in L^1(Q_0)$, then $|f| \log[2 + |f|] \in L^1(Q_0)$.

Problem 15 (Schur's test with weights). Suppose $(X, d\mu)$ and $(Y, d\nu)$ are measure spaces and let w(x, y) be a positive measurable function defined on $X \times Y$. Let $K(x, y) : X \times Y \to \mathbb{C}$ satisfy

$$\sup_{x \in X} \int_{Y} w(x, y)^{\frac{1}{p}} |K(x, y)| \, d\nu(y) = C_0 < \infty, \tag{2}$$

$$\sup_{y \in Y} \int_X w(x, y)^{-\frac{1}{p'}} |K(x, y)| \, d\mu(x) = C_1 < \infty, \tag{3}$$

for some 1 . Then the operator defined by

$$Tf(x) = \int_{Y} K(x, y) f(y) \, d\nu(y)$$

is a bounded operator from $L^p(Y, d\nu)$ to $L^p(X, d\mu)$. In particular,

$$||Tf||_{L^p(X,d\mu)} \le C_0^{\frac{1}{p'}} C_1^{\frac{1}{p}} ||f||_{L^p(Y,d\nu)}$$

Remark 0.1. This is essentially a theorem of Aronszajn. When $K \ge 0$, Gagliardo has shown that the existence of a weight w(x, y) = a(x)b(y) obeying (2) and (3) is necessary for the L^p boundedness of T.

Problem 16 (Hardy's inequality). Let $f \in \mathcal{S}(\mathbb{R}^d)$ and $0 \le s < d$. Show that

$$\left\|\frac{f(x)}{|x|^s}\right\|_p \lesssim \||\nabla|^s f\|_p \quad \text{for all} \quad 1$$

Hint: Show that there exists $g \in L^p$ so that $f = |\nabla|^{-s}g$ and then use Problem 5 for the kernel $K(x, y) = |x|^{-s} |x - y|^{s-d}$.

Problem 17 (Gagliardo–Nirenberg inequality). Fix $d \ge 1$ and 0 for <math>d = 1, 2 or $0 for <math>d \ge 3$. Show that for all $f \in \mathcal{S}(\mathbb{R}^d)$,

$$\|f\|_{p+2}^{p+2} \lesssim \|f\|_2^{p+2-\frac{pd}{2}} \|\nabla f\|_2^{\frac{pd}{2}}.$$

Problem 18. Let $f \in \mathcal{S}(\mathbb{R}^d)$. Show that

$$\begin{split} \left\| \frac{\partial^2 f}{\partial x_j \partial x_k} \right\|_p \lesssim_p \|\Delta f\|_p \quad \text{for all} \quad 1 where $\Delta f = \sum_{j=1}^d \frac{\partial^2 f}{\partial x_j^2}.$$$

Problem 19. Given a Schwartz vector field $F : \mathbb{R}^3 \to \mathbb{C}^3$, define vector and scalar fields A and ϕ via

$$\hat{\phi}(\xi) = \frac{\xi \cdot \hat{F}(\xi)}{2\pi i |\xi|^2} \quad \text{and} \quad \hat{A}(\xi) = -\frac{\xi \times \hat{F}(\xi)}{2\pi i |\xi|^2}$$

Note that ϕ and A are smooth functions, but need not be Schwartz. (a) Show that

$$\begin{split} \|\phi\|_{L^q} + \|A\|_{L^q} \lesssim \|F\|_{L^p} \\ \text{for } 1$$
 $(b) Show that <math>F = \nabla \times A + \nabla \phi$ and hence that

$$||F||_{L^p} \sim ||\nabla \times A||_{L^p} + ||\nabla \phi||_{L^p}$$

for any 1 .

(c) Show that all (first-order) derivatives of all components of A are under control (not just the curl):

$$\|\partial_k A_l\|_{L^p} \lesssim \|F\|_{L^p}$$

for any $1 and any <math>k, l \in \{1, 2, 3\}$.

Remark 0.2. Observe that $F = \nabla \times A + \nabla \phi$ decomposes F into a divergence-free part and a curl-free part. Note however, that the choice of A is far from unique; consider $A \mapsto A + \nabla \psi$. Our choice corresponds to the Coulomb gauge: $\nabla \cdot A = 0$.

Problem 20. Let $f \in L^{\infty}(\mathbb{R}^d)$ and fix $0 < \alpha < 1$. Show that f is α -Hölder continuous if and only if $\|P_{\geq N}f\|_{L^{\infty}} \leq N^{-\alpha}$ for all $N \geq 1$.

Problem 21. Let $f, g \in \mathcal{S}(\mathbb{R}^d)$ and $1 < p, q, r < \infty$ with $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Show that

$$\left\|\sum_{N\in 2^{\mathbb{Z}}} f_N g_{\leq N}\right\|_{L^p} \lesssim \|f\|_{L^q} \|g\|_{L^r}$$

Problem 22 (Brezis–Wainger inequality). Let $f \in \mathcal{S}(\mathbb{R}^2)$. Show that

$$||f||_{L^{\infty}} \lesssim ||f||_{H^1} \left[1 + \log\left(\frac{||f||_{H^s}}{||f||_{H^1}}\right)\right]^{1/2} \text{ for all } s > 1.$$

Recall that for s > 0, the Sobolev space $H^s(\mathbb{R}^2)$ is defined as the completion of $\mathcal{S}(\mathbb{R}^2)$ under the norm

$$\|f\|_{H^s} = \|\langle \nabla \rangle^s f\|_{L^2}$$

where $\langle x \rangle := (1 + |x|^2)^{1/2}$.

Problem 23. Let $d\sigma$ denote surface measure on the sphere $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$. Show that the Fourier transform of $d\sigma$ satisfies

$$|\widehat{d\sigma}(x)| \lesssim \langle x \rangle^{-\frac{d-1}{2}}$$

Problem 24. Prove the following dispersive estimate for the half-wave operator:

$$\left| e^{it|\nabla|} P_N f \right|_{L_x^{\infty}} \lesssim N^d (1+|t|N)^{-\frac{d-1}{2}} \|P_N f\|_{L_x^1},$$

where the implicit constant is independent of the frequency $N \in 2^{\mathbb{Z}}$, the time $t \in \mathbb{R}$, and the initial data $f \in \mathcal{S}(\mathbb{R}^d)$.

4