
HOMEWORK 1

Problem 1. Prove Young’s inequality: For 1 ≤ p, q, r ≤ ∞,

‖f ? g‖Lr(Rd) . ‖f‖Lp(Rd)‖g‖Lq(Rd) whenever 1 + 1
r = 1

p + 1
q .

Show that no inequalities of this type are possible for other exponents.

Problem 2. Let ω : Rd → [0,∞) given by ω(x) = |x|α.
(a) Show that ω dx is a doubling measure if and only if α > −d.
(b) Show that ω ∈ Ap with 1 < p <∞ if and only if −d < α < (p− 1)d.

Problem 3. Fix 1 ≤ p <∞ and let ω ∈ Ap.
(a) Show that Mω : L1(ω dx)→ L1,∞(ω dx), where

Mωf(x) = sup
r>0

1

ω(B(x, r))

∫
B(x,r)

|f(y)|ω(y) dy.

(b) Show that (Mf)p . Mω(fp) for all f ≥ 0, where M denotes the Hardy-
Littlewood maximal function.
(c) Conclude that M : Lp(ω dx)→ Lp,∞(ω dx).

Problem 4. The dyadic cubes in Rd are sets of the form

Qn,k = [k12n, (k1 + 1)2n)× · · · × [kd2
n, (kd + 1)2n),

where n ranges over Z and k ∈ Zd.
(a) Given a collection of dyadic cubes with bounded maximal diameter, show that
one may find a subcollection which covers the same region of Rd, but with all cubes
disjoint.
(b) Define the dyadic maximal function by

[MDf ](x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all dyadic cubes that contain x. Show MD is of
weak-type (1, 1) and of type (p, p) for all 1 < p ≤ ∞.

Problem 5. Let MD denote the dyadic maximal function defined above and let
Q0 := [0, 1)d.
(a) For α > 0, show that

|{x ∈ Rd : [MDf ](x) > α}| . 1

α

∫
|f |>cα

|f(y)| dy

for some small constant c.
(b) Deduce that if f is supported on Q0 and |f | log[2 + |f |] ∈ L1(Q0), then MDf ∈
L1(Q0).
(c) Given f ∈ L1(Q0) and α >

∫
Q0
|f(y)| dy, show that

|{x ∈ Q0 : [MDf ](x) > α}| & 1

α

∫
|f |>α

|f(y)| dy

Hint: perform a Calderon–Zygmund style decomposition.
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(d) Deduce that if MDf ∈ L1(Q0), then |f | log[2 + |f |] ∈ L1(Q0).


