HOMEWORK 2

Problem 1. a) Show that

 $||f_N||_p + ||f_{\leq N}||_p \lesssim ||f||_p \quad \text{for all} \quad 1 \le p \le \infty.$

b) Show that for a Schwartz function f,

$$|f_N(x)| + |f_{\leq N}(x)| \lesssim [Mf](x),$$

where Mf denotes the Hardy–Littlewood maximal function of f. c) For $f \in L^p$ with $1 show that <math>\sum_{N \in 2^{\mathbb{Z}}} f_N$ converges in L^p and that the limit is f.

d) Show that

$$||f_N||_q + ||f_{\leq N}||_q \lesssim N^{\frac{u}{p} - \frac{u}{q}} ||f||_p \text{ for all } 1 \leq p \leq q \leq \infty.$$

e) Show that

$$\||\nabla|^s f_N\|_p \sim N^s \|f_N\|_p$$
 for all $s \in \mathbb{R}$ and $1 \le p \le \infty$.

Deduce that

$$\||\nabla|^{s} f_{\leq N}\|_{p} \lesssim N^{s} \|f\|_{p}$$
 and $\|f_{\geq N}\|_{p} \lesssim N^{-s} \||\nabla|^{s} f\|_{p}$

for all $s \ge 0$ and $1 \le p \le \infty$.

Remark. Using the fattened Littlewood–Paley projections $\tilde{P}_N = P_{N/2} + P_N + P_{2N}$, one can *a posteriori* strengthen the statement in part (*d*) above to read

 $\|f_N\|_q \lesssim N^{\frac{d}{p}-\frac{d}{q}} \|f_N\|_p$ and $\|f_{\leq N}\|_q \lesssim N^{\frac{d}{p}-\frac{d}{q}} \|f_{\leq N}\|_p$ for all $1 \leq p \leq q \leq \infty$. **Problem 2.** Show that for $f \in L^1(\mathbb{R}^d)$ the sum $\sum_{N \in 2^{\mathbb{Z}}} f_N$ need not converge to f in L^1 . However, $f_{\leq N}$ converges to f in L^1 as $N \to \infty$.

Problem 3 (Schur's test with weights). Suppose $(X, d\mu)$ and $(Y, d\nu)$ are measure spaces and let w(x, y) be a positive measurable function defined on $X \times Y$. Let $K(x, y) : X \times Y \to \mathbb{C}$ satisfy

$$\sup_{x \in X} \int_{Y} w(x, y)^{\frac{1}{p}} |K(x, y)| \, d\nu(y) = C_0 < \infty, \tag{1}$$

$$\sup_{y \in Y} \int_X w(x,y)^{-\frac{1}{p'}} |K(x,y)| \, d\mu(x) = C_1 < \infty, \tag{2}$$

for some 1 . Then the operator defined by

$$Tf(x) = \int_Y K(x, y) f(y) \, d\nu(y)$$

is a bounded operator from $L^p(Y,d\nu)$ to $L^p(X,d\mu).$ In particular,

$$||Tf||_{L^p(X,d\mu)} \lesssim C_0^{\frac{1}{p'}} C_1^{\frac{1}{p}} ||f||_{L^p(Y,d\nu)}.$$

Remark. This is essentially a theorem of Aronszajn. When $K \ge 0$, Gagliardo has shown that the existence of a weight w(x, y) = a(x)b(y) obeying (1) and (2) is necessary for the L^p boundedness of T.

Problem 4 (Hardy's inequality). Let $f \in \mathcal{S}(\mathbb{R}^d)$ and $0 \leq s < d$. Show that

$$\left\|\frac{f(x)}{|x|^s}\right\|_p \lesssim \||\nabla|^s f\|_p \quad \text{for all} \quad 1$$

Hint: Show that there exists $g \in L^p$ so that $f = |\nabla|^{-s}g$ and then use Problem 3 for the kernel $K(x, y) = |x|^{-s} |x - y|^{s-d}$.

Problem 5. Let $f \in \mathcal{S}(\mathbb{R}^d)$. Show that

$$\left\| \frac{\partial^2 f}{\partial x_j \partial x_k} \right\|_p \lesssim_p \|\Delta f\|_p \quad \text{for all} \quad 1$$

where $\Delta f = \sum_{j=1}^{d} \frac{\partial^2 f}{\partial x_i^2}$.

Problem 6 (Gagliardo–Nirenberg inequality). Fix $d \ge 1$ and 0 for $d = 1, 2 \text{ or } 0 Show that for all <math>f \in \mathcal{S}(\mathbb{R}^d)$,

$$\left\|f\right\|_{p+2}^{p+2} \le \left\|f\right\|_{2}^{p+2-\frac{pd}{2}} \left\|\nabla f\right\|_{2}^{\frac{pd}{2}}.$$

Problem 7 (Brezis–Wainger inequality). Let $f \in \mathcal{S}(\mathbb{R}^2)$. Show that

$$||f||_{L^{\infty}} \lesssim ||f||_{H^1} \left[1 + \log\left(\frac{||f||_{H^s}}{||f||_{H^1}}\right)\right]^{1/2} \text{ for all } s > 1.$$

Recall that for s > 0, the Sobolev space $H^{s}(\mathbb{R}^{d})$ is defined as the completion of $\mathcal{S}(\mathbb{R}^d)$ under the norm

$$\|f\|_{H^s} = \|\langle \nabla \rangle^s f\|_{L^2}$$

where $\langle x \rangle := (1 + |x|^2)^{1/2}$.

Problem 8. Given a Schwartz vector field $F : \mathbb{R}^3 \to \mathbb{C}^3$, define vector and scalar fields A and ϕ via

$$\hat{\phi}(\xi) = \frac{\xi \cdot \hat{F}(\xi)}{2\pi i |\xi|^2}$$
 and $\hat{A}(\xi) = -\frac{\xi \times \hat{F}(\xi)}{2\pi i |\xi|^2}$.

Note that ϕ and A are smooth functions, but need not be Schwartz. (a) Show that

$$\|\phi\|_{L^q} + \|A\|_{L^q} \lesssim \|F\|_{L^p}$$

for $1 obeying <math>1 + \frac{d}{q} = \frac{d}{p}$. (b) Show that $F = \nabla \times A + \nabla \phi$ and hence that

w that
$$F = \nabla \times A + \nabla \phi$$
 and hence that

$$||F||_{L^p} \sim ||\nabla \times A||_{L^p} + ||\nabla \phi||_{L^p}$$

for any 1 .

(c) Show that all (first-order) derivatives of all components of A are under control (not just the curl):

$$\|\partial_k A_l\|_{L^p} \lesssim \|F\|_{L^p}$$

for any $1 and any <math>k, l \in \{1, 2, 3\}$.

Remark. Observe that $F = \nabla \times A + \nabla \phi$ decomposes F into a divergence-free part and a curl-free part. Indeed, this (Helmholtz–Hodge) decomposition is orthogonal under the natural inner product on vector-valued functions. Note however, that the choice of A is far from unique; consider $A \mapsto A + \nabla \psi$. Our choice corresponds to the Coulomb gauge: $\nabla \cdot A = 0$.

Problem 9. Let $f \in L^{\infty}(\mathbb{R}^d)$ and fix $0 < \alpha < 1$. Show that f is α -Hölder continuous if and only if $\|P_{\geq N}f\|_{L^{\infty}} \lesssim N^{-\alpha}$ for all $N \geq 1$.

Problem 10. Let $f, g \in \mathcal{S}(\mathbb{R}^d)$ and $1 < p, q, r < \infty$ with $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Show that

$$\left\|\sum_{N\in 2^{\mathbb{Z}}} f_N g_{\leq N}\right\|_{L^p} \lesssim \|f\|_{L^q} \|g\|_{L^r}.$$