
HOMEWORK 2

Problem 1. a) Show that

‖fN‖p + ‖f≤N‖p . ‖f‖p for all 1 ≤ p ≤ ∞.
b) Show that for a Schwartz function f ,

|fN (x)|+ |f≤N (x)| . [Mf ](x),

where Mf denotes the Hardy–Littlewood maximal function of f .
c) For f ∈ Lp with 1 < p < ∞ show that

∑
N∈2Z fN converges in Lp and that the

limit is f .
d) Show that

‖fN‖q + ‖f≤N‖q . N
d
p−

d
q ‖f‖p for all 1 ≤ p ≤ q ≤ ∞.

e) Show that

‖|∇|sfN‖p ∼ Ns‖fN‖p for all s ∈ R and 1 ≤ p ≤ ∞.
Deduce that

‖|∇|sf≤N‖p . Ns‖f‖p and ‖f≥N‖p . N−s‖|∇|sf‖p
for all s ≥ 0 and 1 ≤ p ≤ ∞.

Remark. Using the fattened Littlewood–Paley projections P̃N = PN/2+PN+P2N ,
one can a posteriori strengthen the statement in part (d) above to read

‖fN‖q . N
d
p−

d
q ‖fN‖p and ‖f≤N‖q . N

d
p−

d
q ‖f≤N‖p for all 1 ≤ p ≤ q ≤ ∞.

Problem 2. Show that for f ∈ L1(Rd) the sum
∑
N∈2Z fN need not converge to

f in L1. However, f≤N converges to f in L1 as N →∞.

Problem 3 (Schur’s test with weights). Suppose (X, dµ) and (Y, dν) are measure
spaces and let w(x, y) be a positive measurable function defined on X × Y . Let
K(x, y) : X × Y → C satisfy

sup
x∈X

∫
Y

w(x, y)
1
p |K(x, y)| dν(y) = C0 <∞, (1)

sup
y∈Y

∫
X

w(x, y)
− 1

p′ |K(x, y)| dµ(x) = C1 <∞, (2)

for some 1 < p <∞. Then the operator defined by

Tf(x) =

∫
Y

K(x, y)f(y) dν(y)

is a bounded operator from Lp(Y, dν) to Lp(X, dµ). In particular,

‖Tf‖Lp(X,dµ) . C
1
p′

0 C
1
p

1 ‖f‖Lp(Y,dν).

Remark. This is essentially a theorem of Aronszajn. When K ≥ 0, Gagliardo
has shown that the existence of a weight w(x, y) = a(x)b(y) obeying (1) and (2) is
necessary for the Lp boundedness of T .
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Problem 4 (Hardy’s inequality). Let f ∈ S(Rd) and 0 ≤ s < d. Show that∥∥∥f(x)

|x|s
∥∥∥
p
. ‖|∇|sf‖p for all 1 < p <

d

s
.

Hint: Show that there exists g ∈ Lp so that f = |∇|−sg and then use Problem 3
for the kernel K(x, y) = |x|−s|x− y|s−d.

Problem 5. Let f ∈ S(Rd). Show that∥∥∥ ∂2f

∂xj∂xk

∥∥∥
p
.p ‖∆f‖p for all 1 < p <∞ and 1 ≤ j, k ≤ d,

where ∆f =
∑d
j=1

∂2f
∂x2

j
.

Problem 6 (Gagliardo–Nirenberg inequality). Fix d ≥ 1 and 0 < p < ∞ for
d = 1, 2 or 0 < p < 4

d−2 for d ≥ 3. Show that for all f ∈ S(Rd),∥∥f∥∥p+2

p+2
≤
∥∥f∥∥p+2− pd

2

2

∥∥∇f∥∥ pd
2

2
.

Problem 7 (Brezis–Wainger inequality). Let f ∈ S(R2). Show that

‖f‖L∞ . ‖f‖H1

[
1 + log

(‖f‖Hs

‖f‖H1

)]1/2
for all s > 1.

Recall that for s > 0, the Sobolev space Hs(Rd) is defined as the completion of
S(Rd) under the norm

‖f‖Hs = ‖〈∇〉sf‖L2

where 〈x〉 := (1 + |x|2)1/2.

Problem 8. Given a Schwartz vector field F : R3 → C3, define vector and scalar
fields A and φ via

φ̂(ξ) =
ξ · F̂ (ξ)

2πi|ξ|2
and Â(ξ) = −ξ × F̂ (ξ)

2πi|ξ|2
.

Note that φ and A are smooth functions, but need not be Schwartz.
(a) Show that

‖φ‖Lq + ‖A‖Lq . ‖F‖Lp

for 1 < p < q <∞ obeying 1 + d
q = d

p .

(b) Show that F = ∇×A+∇φ and hence that

‖F‖Lp ∼ ‖∇×A‖Lp + ‖∇φ‖Lp

for any 1 < p <∞.
(c) Show that all (first-order) derivatives of all components of A are under control
(not just the curl):

‖∂kAl‖Lp . ‖F‖Lp

for any 1 < p <∞ and any k, l ∈ {1, 2, 3}.

Remark. Observe that F = ∇×A+∇φ decomposes F into a divergence-free part
and a curl-free part. Indeed, this (Helmholtz–Hodge) decomposition is orthogonal
under the natural inner product on vector-valued functions. Note however, that
the choice of A is far from unique; consider A 7→ A+∇ψ. Our choice corresponds
to the Coulomb gauge: ∇ ·A = 0.
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Problem 9. Let f ∈ L∞(Rd) and fix 0 < α < 1. Show that f is α-Hölder
continuous if and only if ‖P≥Nf‖L∞ . N−α for all N ≥ 1.

Problem 10. Let f, g ∈ S(Rd) and 1 < p, q, r <∞ with 1
p = 1

q + 1
r . Show that∥∥∥∑

N∈2Z
fNg≤N

∥∥∥
Lp

. ‖f‖Lq‖g‖Lr .


