HOMEWORK 5

Due on Wednesday, February 11th, in class.

Exercise 1. Let $q \in \mathbb{Z}$ such that $q \geq 2$. Recall the equivalence relation on \mathbb{Z} defined as follows: for $m, n \in \mathbb{Z}$, we write $m \sim n$ if q|(m-n). For $n \in \mathbb{Z}$, denote by C(n) the equivalence class of n. Let $\mathbb{Z}/q\mathbb{Z}$ denote the set of equivalence classes. Define addition and multiplication on $\mathbb{Z}/q\mathbb{Z}$ as follows:

$$C(n) + C(m) = C(n+m)$$
 and $C(n) \cdot C(m) = C(nm)$.

1) Prove that addition and multiplication are well defined, that is, the result is independent of the representatives chosen from the equivalence classes.

2) Verify that with these operations $\mathbb{Z}/q\mathbb{Z}$ is a commutative ring with 1.

3) Show that if q is a prime number then $\mathbb{Z}/q\mathbb{Z}$ is a field.

4) Show that there is no order relation on $\mathbb{Z}/q\mathbb{Z}$ that makes it an ordered field.

Exercise 2. Define two internal laws of composition on $R = \mathbb{R} \times \mathbb{R}$ as follows

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1).$$

1) Show that with these operations R is a commutative field.

2) Show that there is no order relation on R that makes R an ordered ring.

Exercise 3. (In this exercise we will see how for any integral domain R there is a natural (smallest) field F containing it, called the field of fractions of R.) Let R be an integral domain and let \sim be the equivalence relation on the set $A = \{(a,b) \in R \times R | b \neq 0\}$ defined as follows: $(a,b) \sim (c,d)$ if ad = bc. For any $(a,b) \in A$ let [(a,b)] denote its equivalence class and let F denote the set of equivalence classes. Define two internal laws of composition on F as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$
$$[(a,b)] \cdot [(c,d)] = [(ac,bd)].$$

1) Prove that \sim is an equivalence relation on A.

2) Show that the internal laws of composition defined above are well defined.

3) Show that with these internal laws of composition, F is a commutative field.

Exercise 4. Solve 3.1.9 from the textbook.

Exercise 5. Solve 3.1.14 from the textbook.