HOMEWORK 5

Exercise 1. Let $\{f_n\}_{n\geq 1} \subset C([0,1])$. Show that the following statements are equivalent:

(a) $\{f_n\}_{n\geq 1}$ converges uniformly on [0,1],

(b) $\{f_n\}_{n\geq 1}$ is equicontinuous on [0, 1] and converges pointwise on [0, 1].

Exercise 2. For $n \ge 1$, let $f_n : [0,1] \to \mathbb{R}$ be given by

$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}}.$$

Show that $\{f_n\}_{n\geq 1}$ is equicontinuous on [0,1].

Exercise 3. Prove that a polynomial of degree n is uniformly continuous on \mathbb{R} if and only if n = 0 or n = 1.

Exercise 4. Let $f : [0,1] \to [0,1]$ be a continuous function such that f(0) = 0 and f(1) = 1. Consider the sequence of functions $f_n : [0,1] \to [0,1]$ defined as follows:

$$f_1 = f$$
 and $f_{n+1} = f \circ f_n$ for $n \ge 1$.

Prove that if $\{f_n\}_{n\geq 1}$ converges uniformly, then f(x) = x for all $x \in [0, 1]$.

Exercise 5. Let

$$\mathcal{F} = \big\{ f \in C(\mathbb{R}) : \lim_{|x| \to \infty} f(x) = 0 \big\}.$$

Show that \mathcal{F} is closed in $C(\mathbb{R})$.

Exercise 6. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$. Find (a) an open set $D \subseteq \mathbb{R}$ such that f(D) is not open; (b) a closed set $F \subseteq \mathbb{R}$ such that f(F) is not closed; (c) a set $A \subseteq \mathbb{R}$ such that $f(\overline{A}) \neq f(A)$.

Exercise 7. Let $\{F_n\}_{n\geq 1}$ be a sequence of closed sets such that $F_n \subseteq F_{n+1}$ for all $n \geq 1$. Set $F = \bigcup_{n\geq 1} F_n$ and $F_0 = \emptyset$. For $n \geq 1$ we define

$$A_n = \left[(F_n \setminus F_{n-1}) \setminus \operatorname{Int}(F_n \setminus F_{n-1}) \right] \cup \left[\operatorname{Int}(F_n \setminus F_{n-1}) \cap \mathbb{Q} \right].$$

Let $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 2^{-n} & \text{if } x \in A_n \\ 0 & \text{if } x \notin \bigcup_{n \ge 1} A_n. \end{cases}$$

Show that f is discontinuous on F and continuous on $\mathbb{R} \setminus F$. *Remark:* This exercise shows that given any F_{σ} subset of \mathbb{R} , there is a function whose set of discontinuities is precisely that set.