Exercise 1. Let \(\{f_n\}_{n \geq 1} \subset C([0,1]) \). Show that the following statements are equivalent:

(a) \(\{f_n\}_{n \geq 1} \) converges uniformly on \([0,1]\),
(b) \(\{f_n\}_{n \geq 1} \) is equicontinuous on \([0,1]\) and converges pointwise on \([0,1]\).

Exercise 2. For \(n \geq 1 \), let \(f_n : [0,1] \to \mathbb{R} \) be given by

\[
f_n(x) = \frac{\sin(nx)}{\sqrt{n}}.
\]

Show that \(\{f_n\}_{n \geq 1} \) is equicontinuous on \([0,1]\).

Exercise 3. Prove that a polynomial of degree \(n \) is uniformly continuous on \(\mathbb{R} \) if and only if \(n = 0 \) or \(n = 1 \).

Exercise 4. Let \(f : [0,1] \to [0,1] \) be a continuous function such that \(f(0) = 0 \) and \(f(1) = 1 \). Consider the sequence of functions \(f_n : [0,1] \to [0,1] \) defined as follows:

\[
f_1 = f \quad \text{and} \quad f_{n+1} = f \circ f_n \quad \text{for} \quad n \geq 1.
\]

Prove that if \(\{f_n\}_{n \geq 1} \) converges uniformly, then \(f(x) = x \) for all \(x \in [0,1] \).

Exercise 5. Let

\[
\mathcal{F} = \{ f \in C(\mathbb{R}) : \lim_{|x| \to \infty} f(x) = 0 \}.
\]

Show that \(\mathcal{F} \) is closed in \(C(\mathbb{R}) \).

Exercise 6. Let \(f : \mathbb{R} \to \mathbb{R}, f(x) = e^{-x^2} \). Find

(a) an open set \(D \subseteq \mathbb{R} \) such that \(f(D) \) is not open;
(b) a closed set \(F \subseteq \mathbb{R} \) such that \(f(F) \) is not closed;
(c) a set \(A \subseteq \mathbb{R} \) such that \(f(A) \neq f(A) \).

Exercise 7. Let \(\{F_n\}_{n \geq 1} \) be a sequence of closed sets such that \(F_n \subseteq F_{n+1} \) for all \(n \geq 1 \). Set \(F = \bigcup_{n \geq 1} F_n \) and \(F_0 = \emptyset \). For \(n \geq 1 \) we define

\[
A_n = [(F_n \setminus F_{n-1}) \setminus \text{Int}(F_n \setminus F_{n-1})] \cup \text{Int}(F_n \setminus F_{n-1}) \cap \mathbb{Q}.
\]

Let \(f : \mathbb{R} \to \mathbb{R} \) given by

\[
f(x) = \begin{cases} 2^{-n} & \text{if } x \in A_n \\ 0 & \text{if } x \notin \bigcup_{n \geq 1} A_n. \end{cases}
\]

Show that \(f \) is discontinuous on \(F \) and continuous on \(\mathbb{R} \setminus F \).

Remark: This exercise shows that given any \(F_\alpha \) subset of \(\mathbb{R} \), there is a function whose set of discontinuities is precisely that set.