HOMEWORK 4

Exercise 1. For $n \ge 1$ let $f_n : [1,2] \to \mathbb{R}$ be defined as follows: for any $x \in [1,2]$,

$$f_1(x) = 0$$
, $f_{n+1}(x) = \sqrt{x + f_n(x)}$, $\forall n \ge 1$.

Prove that $\{f_n\}_{n\geq 1}$ converges uniformly to $f(x) = \frac{1+\sqrt{1+4x}}{2}$.

Exercise 2. For $n \ge 1$ let

$$f_n: [0, \infty) \to \mathbb{R}, \quad f_n(x) = \frac{nx^2 + 1}{nx + 1}.$$

Study the pointwise and uniform convergence of f_n on each of the intervals $[0, \infty)$, $(0, \infty)$, $[1, \infty)$.

Exercise 3. Given a metric space (X, d), let C(X) denote the set of bounded and continuous functions $f: X \to \mathbb{R}$. For $f, g \in C(X)$, we define

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

- a) Prove that (C(X), d) is a metric space.
- b) Show that C(X) is complete, connected, but not compact.

Exercise 4. Let $f:[0,1]\to\mathbb{R}$. We say that f is Hölder continuous of order $\alpha\in(0,1)$ and write $f\in C^{\alpha}([0,1])$ if

 $||f||_{C^{\alpha}} := \sup\{|f(x)| : x \in [0,1]\} + \sup\{\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} : x, y \in [0,1] \text{ with } x \neq y\} < \infty.$ For $f, g \in C^{\alpha}([0,1])$, we define

$$d(f,g) = ||f - g||_{C^{\alpha}}.$$

- (a) Show that $(C^{\alpha}([0,1]),d)$ is a complete metric space.
- (b) Prove that any bounded sequence in $C^{1/2}([0,1])$ admits a subsequence that converges in $C^{1/3}([0,1])$.

Exercise 5. Let X and Y be two metric spaces and let $f: X \to Y$ be a function. Assume A and B are open subsets of X such that $f|_A$ is continuous and $f|_B$ is continuous.

- (a) Show that $f|_{A\cup B}$ is continuous.
- (b) Is this result still true if A and B were both closed subsets of X?
- (c) Is the result true for the union of an infinite number of open sets?
- (d) Is the result true for the union of an infinite number of closed sets?

Exercise 6. Let $f:[0,1] \to \mathbb{R}$ be a function with Darboux's property such that for any $y \in \mathbb{R}$, the set $f^{-1}(\{y\})$ is closed. Prove that f is continuous.

Exercise 7. Let $f, g : [a, b] \to [a, b]$ be two continuous functions such that $f \circ g = g \circ f$. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.

1