HOMEWORK 10

Exercise 1. Assume $f, g : [a, b] \to \mathbb{R}$ are continuous functions such that $g(x) \ge 0$ for all $x \in [a, b]$. Show that there exists $x_0 \in [a, b]$ such that

$$\int_a^b f(t)g(t) dt = f(x_0) \int_a^b g(t) dt.$$

Exercise 2. Let $\{f_n\}_{n\geq 1}$ be a uniformly bounded sequence of functions that are Riemann integrable on [a, b]. For $n \geq 1$ we define $F_n : [a, b] \to \mathbb{R}$ via

$$F_n(x) = \int_a^x f_n(t) \, dt.$$

Prove that there exists a subsequence of $\{F_n\}_{n\geq 1}$ that converges uniformly on [a, b].

Exercise 3. Let $f : [a, b] \to \mathbb{R}$ be a twice differentiable function such that f'' is Riemann integrable on [a, b].

(a) Show that

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \left[f(a) + f(b) \right] + \frac{1}{2} \int_{a}^{b} f''(x) (x-a) (x-b) \, dx.$$

(b) If additionally f'' is continuous, show that there exists $x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \left[f(a) + f(b) \right] - \frac{(b-a)^{3}}{12} f''(x_{0}).$$

Exercise 4. Let $f:[0,1] \to \mathbb{R}$ be a Riemann integrable function. Show that

$$\lim_{n \to \infty} \int_0^1 f(x) \sin(nx) \, dx = 0.$$

Exercise 5. For $n \ge 1$, let $f_n : [0,1] \to \mathbb{R}$ be a continuous function satisfying

$$|f_n(x)| \le 1 + \frac{n}{1 + n^2 x^2}$$

and define $F_n: [0,1] \to \mathbb{R}$ via

$$F_n(x) = \int_0^x f_n(t) \, dt$$

Show that the sequence $\{F_n\}_{n\geq 1}$ admits a subsequence that converges pointwise on [0, 1].

Exercise 6. Let $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to [0,1]$ be two Riemann integrable functions. Assume that

$$|g(x) - g(y)| \ge \alpha |x - y| \quad \text{for any} \quad x, y \in [0, 1]$$

and some fixed $\alpha \in (0, 1)$. Show that $f \circ g$ is Riemann integrable.

Exercise 7. For $x \in (0, \infty)$, let

$$F(x) = \int_0^\infty \frac{1 - e^{-tx}}{t^{\frac{3}{2}}} dt.$$

Show that $F: (0, \infty) \to (0, \infty)$ is well-defined, bijective, of class C^1 (i.e. differentiable with continuous derivative), and that its inverse is of class C^1 .