HOMEWORK 9

Exercise 1. Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function such that $f \ge 0$ and

$$\int_{a}^{b} f(x) \, dx = 0.$$

Show that if $x \in [a, b]$ is a point of continuity for f then f(x) = 0.

Exercise 2. Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function such that

$$\int_{a}^{b} x^{n} f(x) \, dx = 0 \quad \text{for all} \quad n \ge 0.$$

Show that if $x \in [a, b]$ is a point of continuity for f then f(x) = 0.

Exercise 3. Let $f, g: [a, b] \to \mathbb{R}$ be Riemann integrable functions such that g is monotone. Show that there exists $x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = g(a) \int_{a}^{x_{0}} f(x) \, dx + g(b) \int_{x_{0}}^{b} f(x) \, dx.$$

Hint: Show that if g is monotonically decreasing on [a, b] with g(b) = 0, then

$$g(a) \inf_{x \in [a,b]} \int_{a}^{x} f(t) \, dt \le \int_{a}^{b} f(x)g(x) \, dx \le g(a) \sup_{x \in [a,b]} \int_{a}^{x} f(t) \, dt.$$

Exercise 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and define $F : \mathbb{R} \to \mathbb{R}$ via

$$F(x) = \int_{x-1}^{x+1} f(t) \, dt.$$

Show that F is differentiable and compute its derivative.

Exercise 5. Let $f : [a, b] \to \mathbb{R}$ be a twice differentiable function such that f'' is Riemann integrable on [a, b].

(a) Show that

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \left[f(a) + f(b) \right] + \frac{1}{2} \int_{a}^{b} f''(x) (x-a) (x-b) \, dx.$$

(b) If additionally f'' is continuous, show that there exists $x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \left[f(a) + f(b) \right] - \frac{(b-a)^{3}}{12} f''(x_{0}).$$

Exercise 6. For $n \ge 1$, let $f_n : [a, b] \to \mathbb{R}$ be a continuous function. Assume that f_n converges pointwise to a continuous function $f : [a, b] \to \mathbb{R}$. Assume that there exists M > 0 such that

$$|f_n(x)| \le M$$
 for all $x \in [a, b]$ and all $n \ge 1$.

Show that

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$$

Exercise 7. For $n \ge 1$, let $f_n : [0,1] \to \mathbb{R}$ be a continuous function satisfying

$$|f_n(x)| \le 1 + \frac{n}{1 + n^2 x^2}$$

and define $F_n: [0,1] \to \mathbb{R}$ via

$$F_n(x) = \int_0^x f_n(t) \, dt.$$

Show that the sequence $\{F_n\}_{n\geq 1}$ admits a subsequence that converges pointwise on [0, 1].