HOMEWORK 8

Exercise 1. Show that if $f : [a, b] \to \mathbb{R}$ is Riemann integrable, then f is bounded on [a, b].

Exercise 2. Let $f : [a, b] \to \mathbb{R}$ be integrable and let $g : [a, b] \to \mathbb{R}$ be a function such that f(x) = g(x) except for finitely many x in [a, b]. Show that g is integrable on [a, b] and that

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g(x) \, dx$$

Exercise 3. Let $f : [a, b] \to \mathbb{R}$ be a bounded function and let M > 0 such that $|f(x)| \le M$ for all $x \in [a, b]$.

(a) Show that if P is a partition of [a, b], then

 $U(f^2, P) - L(f^2, P) \le 2M [U(f, P) - L(f, P)].$

(b) Deduce that if f is integrable on [a, b], then f^2 is also integrable on [a, b].

(c) Prove that if f and g are two integrable functions on [a, b], then the product fg is integrable on [a, b].

Exercise 4. Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $f(x) \ge 0$ for all $x \in [a, b]$. Assume that

$$\int_{a}^{b} f(x) \, dx = 0.$$

Show that f(x) = 0 for all $x \in [a, b]$.

c۲

Exercise 5. Let $f, g : [a, b] \to \mathbb{R}$ be two Riemann integrable functions such that the set $\{x \in [a, b] : f(x) = g(x)\}$ is dense in [a, b]. Show that

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g(x) \, dx.$$

Exercise 6. Suppose $f : [1, \infty) \to \mathbb{R}$ is Riemann integrable on [1, a] for all a > 1. If

$$\lim_{i \to \infty} \int_{1}^{a} f(x) \, dx$$

exists and is finite, we say the integral $\int_1^\infty f(x) \, dx$ converges and we write

$$\int_{1}^{\infty} f(x) \, dx = \lim_{a \to \infty} \int_{1}^{a} f(x) \, dx$$

Now assume $f: [1, \infty) \to \mathbb{R}$ is non-negative and decreasing. Show that

$$\int_{1}^{\infty} f(x) dx \text{ converges if and only if } \sum_{n \ge 1} f(n) \text{ converges}$$