HOMEWORK 7

Exercise 1. Let $f : [0,1] \to \mathbb{R}$. We say that f is Hölder continuous of order $\alpha \in (0,1)$ and write $f \in C^{\alpha}([0,1])$ if

$$\begin{split} \|f\|_{C^{\alpha}} &= \sup\{|f(x)|: \, x \in [0,1]\} + \sup\Big\{\frac{|f(x) - f(y)|}{|x - y|^{\alpha}}: \, x, y \in [0,1] \text{ with } x \neq y\Big\} < \infty. \\ \text{Let } d_{\alpha}: C^{\alpha}([0,1]) \times C^{\alpha}([0,1]) \to \mathbb{R} \text{ be given by} \end{split}$$

$$d_{\alpha}(f,g) = \|f - g\|_{C^{\alpha}}$$

(a) Show that $(C^{\alpha}([0,1]), d_{\alpha})$ is a complete metric space.

(b) Show that any bounded sequence in $(C^{1/2}([0,1]), d_{1/2})$ admits a subsequence that converges in $(C^{1/3}([0,1]), d_{1/3})$.

Exercise 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function, that is,

$$\sup\left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in \mathbb{R} \text{ with } x \neq y\right\} < \infty.$$

Suppose that for every $x \in \mathbb{R}$,

$$\lim_{n \to \infty} n \left[f\left(x + \frac{1}{n}\right) - f(x) \right] = \lim_{n \to \infty} n \left[f\left(x - \frac{1}{n}\right) - f(x) \right] = 0.$$

Prove that f is differentiable on \mathbb{R} .

Exercise 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that

 $f(x) \ge 0$ and $f''(x) \le 0$ for all $x \in \mathbb{R}$.

Show that f is constant.

Exercise 4. Assume $f:(a,b) \to \mathbb{R}$ be a twice differentiable function. Show that for any $x \in (a,b)$, the limit

$$\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}$$

exists and equals f''(x).

Exercise 5. We say that a function $f : [a, b] \to \mathbb{R}$ is a convex function if

 $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$ for all $x, y \in [a, b]$ and for all $t \in [0, 1]$. Show that for any $x \in (a, b)$ the limits

$$\lim_{y \searrow x} \frac{f(y) - f(x)}{y - x} \quad \text{and} \quad \lim_{y \nearrow x} \frac{f(y) - f(x)}{y - x}$$

exist and are finite.

Hint: Show that for all $a \le x < y < z \le b$ we have

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}$$