HOMEWORK 3

Exercise 1. Let $f: [0, \infty) \to [0, \infty)$ be continuous with f(0) = 0. Show that if $f(t) \le 1 + \frac{1}{10}f(t)^2$ for all $t \in [0, \infty)$,

then f is uniformly bounded throughout $[0, \infty)$.

Exercise 2. Show that the function

$$H(x,y) = x^2 + y^2 + |x-y|^{-1}$$

achieves its global minimum somewhere on the set $\{(x, y) \in \mathbb{R}^2 : x \neq y\}$.

Exercise 3. Let $a, b \in \mathbb{R}$ with a < b and let $f : [a, b] \to [a, b]$ be continuous. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0$.

Exercise 4. Let $f, g: [-1, 1] \rightarrow [-1, 1]$ be defined as follows:

$$f(x) = \begin{cases} \frac{x-1}{2}, & x \in [-1,0] \\ x - \frac{1}{2}\sin\left(\frac{\pi}{x}\right), & x \in (0,\frac{1}{2}] \\ x, & x \in [\frac{1}{2},1] \end{cases}$$

and

$$g(x) = \begin{cases} \frac{1-x}{2}, & x \in [-1,0] \\ -x - \frac{1}{2}\sin\left(\frac{\pi}{x}\right), & x \in (0,\frac{1}{2}] \\ -x, & x \in [\frac{1}{2},1]. \end{cases}$$

Let A and B denote the graphs of f and g, respectively, that is,

$$A = \{(x, f(x)) : x \in [-1, 1]\} \text{ and } B = \{(x, g(x)) : x \in [-1, 1]\}.$$

(a) Show that $A \cap B = \emptyset$ and $\{(-1, -1), (1, 1)\} \subseteq A$ and $\{(-1, 1), (1, -1)\} \subseteq B$.

(b) Prove that A and B are connected subsets of $[-1, 1] \times [-1, 1]$.

Exercise 5. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ with } (p,q) = 1 \end{cases}$$

Prove that f is continuous on $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous on \mathbb{Q} .

Exercise 6. Let (X, d) be a metric space and let $f, g : X \to \mathbb{R}$ be two continuous functions.

a) Prove that the set $\{x \in X : f(x) < g(x)\}$ is open.

b) Prove that if the set $\{x \in X : f(x) \le g(x)\}$ is dense in X, then $f(x) \le g(x)$ for all $x \in X$.

Exercise 7. Let $a, b \in \mathbb{R}$ with a < b. Show that a function $f : (a, b) \to \mathbb{R}$ is uniformly continuous on (a, b) if and only if it can be extended to a continuous function \tilde{f} on [a, b].