HOMEWORK 2

Exercise 1. Let $\{A_i\}_{i \in I}$ be an infinite family of closed sets with the finite intersection property. Assuming that one member of this family is compact, show that $\bigcap_{i \in I} A_i \neq \emptyset$.

Exercise 2. Let (X, d) be a metric space and let $A \subseteq X$ be a compact subset. Show that

(a) For any $y \in X$ there exists $x \in A$ so that d(y, A) = d(y, x). (b) If $B \subseteq X$ and d(A, B) = 0 then $A \cap \overline{B} \neq \emptyset$.

Exercise 3. Let (X, d_X) be a compact metric space. (a) Verify that

$$d_Y(f,g) = \sum_{n \in \mathbb{Z}} 2^{-|n|} d_X(f(n),g(n))$$

defines a metric on $Y = \{f : \mathbb{Z} \to X\}$. (b) Show that Y is compact.

Exercise 4. (a) Show that the closed unit ball in ℓ^2 , namely,

$$A = \left\{ x \in \ell^2 : \sum_{n=1}^{\infty} |x_n|^2 \le 1 \right\}$$

is not compact in ℓ^2 .

(b) Define $B \subseteq \ell^2$ by

$$B = \left\{ x \in \ell^2 : \sum_{n=1}^{\infty} n |x_n|^2 \le 1 \right\}.$$

Show that B is compact.

Exercise 5. Let A be a subset of a complete metric space. Assume that for all $\varepsilon > 0$, there exists a compact set A_{ε} so that

$$\forall x \in A, \quad d(x, A_{\varepsilon}) < \varepsilon.$$

Show that \overline{A} is compact.

Exercise 6. Let (X, d_1) and (Y, d_2) be two compact metric spaces. Show that the space $X \times Y$ endowed with the 'Euclidean' distance

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d_1^2(x_1, x_2) + d_2^2(y_1, y_2)}$$

is a compact metric space.

Remark 1. The result in Exercise 6 continues to hold if the 'Euclidean' metric is replaced by either of the equivalent metrics

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$$

or

$$d((x_1, y_1), (x_2, y_2)) = \max_{1} \{ d_1(x_1, x_2), d_2(y_1, y_2) \}.$$

Exercise 7. Consider the Cantor set

$$K = \{ x \in [0,1] : x = \sum_{n=1}^{\infty} a_n 3^{-n} \text{ with all } a_n \in \{0,2\} \}.$$

For example, $1 \in K$ because it is represented by setting all $a_n = 2$.

- (a) Show that K is compact.
- (b) Show that K is uncountable.
- (c) Show that no connected subset of K contains more than one point.