HOMEWORK 8

Exercise 1. Fix $n \ge 1$. Show that if A_1, A_2, \ldots, A_n are countable sets, then the cartesian product $A_1 \times A_2 \times \ldots \times A_n$ is countable.

Exercise 2. If the sets A and B are equipotent $(A \sim B)$, show that $\mathcal{P}(A) \sim \mathcal{P}(B)$.

Exercise 3. Prove that $\mathcal{P}(\mathbb{N})$ is equipotent with the set of functions

 $2^{\mathbb{N}} = \{f : \mathbb{N} \to \{0, 1\} : f \text{ is a function}\}.$

In particular, the cardinality of $\mathcal{P}(\mathbb{N})$ is 2^{\aleph_0} .

Exercise 4. Show that $\mathbb{N}^{\mathbb{N}} \sim 2^{\mathbb{N}}$, that is, the set of sequences with values in \mathbb{N} is equipotent with the set of sequences with values in $\{0, 1\}$.

Exercise 5. Fix $n \ge 1$ and let \mathcal{P} denote the set of polynomials of degree n with integer coefficients, that is,

 $\mathcal{P} = \{ a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 : a_i \in \mathbb{Z} \text{ for all } 1 \le i \le n \text{ and } a_n \ne 0 \}.$

Show that the set of all real roots of all polynomials in \mathcal{P} , that is,

$$\mathcal{A} = \{x \in \mathbb{R} : \text{ there exists } p \in \mathcal{P} \text{ such that } p(x) = 0\}$$

is countable.

Exercise 6. Fix $n \ge 1$. Show that the set of all subsets of \mathbb{N} with n distinct elements is countable.

Exercise 7. Show that the cardinality of \mathbb{R} is 2^{\aleph_0} . You may use the fact that the interval (0,1) has cardinality 2^{\aleph_0} .

Exercise 8. Prove that the set of irrational numbers has the cardinality of \mathbb{R} .