HOMEWORK 4

Exercise 1. Show that if a sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers converges to a, then the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|. Show (via an example) that the converse is not true.

Exercise 2. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of rational numbers defined as follows:

$$a_1 = 1$$
 and $a_{n+1} = a_n + \frac{1}{3^n}$ for all $n \ge 1$.

Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ converges and find its limit.

Exercise 3. Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two sequences of real numbers such that $\{a_n\}_{n\geq 1}$ is bounded and $\{b_n\}_{n\geq 1}$ converges to 0. Show that the sequence $\{a_nb_n\}_{n\geq 1}$ converges to 0.

Exercise 4. Let $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$ and $\{c_n\}_{n\geq 1}$ be three convergent sequences of real numbers such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n \quad \text{and} \quad a_n \le b_n \le c_n \text{ for all } n \ge 1.$$

Show that $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

Exercise 5. Prove that

$$\lim_{n \to \infty} \sqrt{4n^2 + n} - 2n = \frac{1}{4}.$$

Exercise 6. Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers.

1) Show that if for all but finitely many a_n we have $a_n \ge a$, then $\lim_{n\to\infty} a_n \ge a$. 2) Show that if for all but finitely many a_n we have $a_n \le b$, then $\lim_{n\to\infty} a_n \le b$. 3) Conclude that if all but finitely many a_n belong to the interval [a, b], then $\lim_{n\to\infty} a_n \in [a, b]$.

Exercise 7. Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers and let $a \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n > a$. Show that there exist $n_0 \in \mathbb{N}$ such that $a_n > a$ for all $n \geq n_0$.

Exercise 8. Let $\{a_n\}_{n\geq 1}$ be a Cauchy sequence of real numbers. Show that $\{a_n^2\}_{n\geq 1}$ is also a Cauchy sequence.

Exercise 9. (In this exercise you will see a Cauchy sequence of rational numbers converging to an irrational number.) Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence defined by the following rule:

$$a_1 = 3$$
 and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$ for all $n \ge 1$.

1) Show that the sequence is bounded below.

²⁾ Show that this is a sequence of rational numbers.

³⁾ Prove that the sequence is monotonically decreasing.

⁴⁾ Deduce that $\{a_n\}_{n \in \mathbb{N}}$ converges and find its limit.

Exercise 10. Consider the following sequence:

$$a_1 = \sqrt{2}$$
 and $a_{n+1} = \sqrt{2+a_n}$ for all $n \ge 1$.

1) Show that the sequence $\{a_n\}_{n \in \mathbb{N}}$ is bounded above.

2) Prove that the sequence is monotonically increasing.

3) Deduce that $\{a_n\}_{n \in \mathbb{N}}$ converges and find its limit.

Exercise 11. Let a_1, b_1 be two real numbers such that $0 < a_1 < b_1$. For $n \ge 1$, we define

$$a_{n+1} = \sqrt{a_n b_n}$$
 and $b_{n+1} = \frac{a_n + b_n}{2}$.

1) Prove that the sequence $\{a_n\}_{n\in N}$ is monotonically increasing and that the sequence $\{b_n\}_{n\in N}$ is monotonically decreasing.

2) Show that the sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are bounded.

3) Deduce that the two sequences converge and prove that they converge to the same limit.