HOMEWORK 2

Exercise 1. Let $(F, +, \cdot, <)$ be an ordered field and let $a, b, c \in F$. Show that

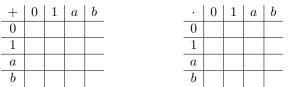
$$2ab \le a^2 + b^2$$

and

$$ab + bc + ca \le a^2 + b^2 + c^2.$$

Specify what axioms you are using at each step.

Exercise 2. Let $(F, +, \cdot)$ be a field with exactly four distinct elements $F = \{0, 1, a, b\}$ where 0 and 1 denote the identities for + and \cdot , respectively, and a, b denote the remaining two elements of F. Fill in the addition and multiplication tables below. Use the axioms to justify your answer. (Note that for each table entry there is a *unique* correct solution.)



Hint: Show that in the addition table each row and each column contain every element of F exactly once (as in Sudoku). Show that the same is true for the rows and columns of the multiplication table that are not identically zero.

Exercise 3. Let $q \ge 2$ be a prime number. Recall the equivalence relation on \mathbb{Z} defined as follows: for $m, n \in \mathbb{Z}$, we write $m \sim n$ if and only if q|(m-n). For $n \in \mathbb{Z}$, denote by C(n) the equivalence class of n. Let $\mathbb{Z}/q\mathbb{Z}$ denote the set of equivalence classes. We define addition and multiplication on $\mathbb{Z}/q\mathbb{Z}$ as follows:

$$C(n) + C(m) = C(n+m)$$
 and $C(n) \cdot C(m) = C(nm)$

1) Prove that addition and multiplication are well defined, that is, the result is independent of the representatives chosen from the equivalence classes.

2) Verify that with these operations $\mathbb{Z}/q\mathbb{Z}$ is a field.

3) Show that there is no order relation on $\mathbb{Z}/q\mathbb{Z}$ that makes it an ordered field.

Exercise 4. Define two internal laws of composition on $F = \mathbb{R} \times \mathbb{R}$ as follows:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1).$

1) Show that with these operations F is a field.

2) Show that there is no order relation on F that makes F an ordered field.

Definition 0.1. We say that a non-empty set R endowed with addition and multiplication is a ring if it satisfies the axioms $(A1), \ldots, (A5), (M1), \ldots, (M4)$, and (D). If < denotes an order relation on R satisfying the axioms (O1) and (O2), we say R is an ordered ring.

Exercise 5. Define two internal laws of composition on $R = \mathbb{Z} \times \mathbb{Z}$ as follows

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1 + 2a_2b_2, a_1b_2 + a_2b_1).$$

1) Show that with these operations R is a ring.

2) For $(a_1, a_2), (b_1, b_2) \in R$ we write $(a_1, a_2) < (b_1, b_2)$ if $a_1 + a_2\sqrt{2} < b_1 + b_2\sqrt{2}$ in the usual sense on \mathbb{R} . Prove that this is an order relation on R and that with it, R is an ordered ring.

Exercise 6. Let S be a non-empty bounded subset of \mathbb{R} .

1) Prove that $\inf S \leq \sup S$.

2) What can you say about S if $\inf S = \sup S$?

Exercise 7. Let S and T be two non-empty bounded subsets of \mathbb{R} .

1) Prove that if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.

2) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$

Exercise 8. Let A be a non-empty subset of \mathbb{R} which is bounded below and let

$$-A = \{-a : a \in A\}.$$

Prove that $\inf A = -\sup(-A)$.