HOMEWORK 10

Exercise 1. Let (X, d) be a metric space and let $A \subseteq X$ be complete. Show that A is closed.

Exercise 2. Let (X, d) be a complete metric space and let $F \subseteq X$ be a closed set. Show that F is complete.

Exercise 3. Consider the metric space $(X, d) = (\mathbb{R}, |\cdot|)$. For each of the following subsets of \mathbb{R} decide if they are open, closed, or not open and not closed, connected or not connected. Also, in each case write down the set of accumulation points. Justify your answers.

 $\begin{array}{l} 1) \ A = \mathbb{Q}. \\ 2) \ A = \mathbb{Q} \cap [0,1]. \\ 3) \ A = \{(-1)^n (1+\frac{1}{n})\}. \\ 4) \ A = \bigcup_{n \in \mathbb{N}} [n,n+\frac{1}{n}]. \\ 5) \ A = \bigcup_{n \in \mathbb{N}} [\frac{1}{2^{n+1}},\frac{1}{2^n}]. \end{array}$

Exercise 4. Give an example of a set $\emptyset \neq A \subsetneq \mathbb{Q}$ that that is both open and closed in \mathbb{Q} . Justify your answer.

Exercise 5. Assume that the sets A and B are separated and that the sets A and C are separated. Prove that the sets A and $B \cup C$ are separated.

Exercise 6. Let (X, d) be a connected metric space and let A be a connected subset of X. Assume that the complement of A is the union of two separated sets B and C. Prove that $A \cup B$ and $A \cup C$ are connected. Prove also that if A is closed, then so are $A \cup B$ and $A \cup C$.

Exercise 7. Let (X, d) be a metric space and let A, B be two closed subsets of X such that $A \cup B$ and $A \cap B$ are connected. Prove that A is connected.

Exercise 8. Let (X, d) be a complete metric space and let $\{G_n\}_{n\geq 1}$ be a sequence of dense open subsets of X. Show that $\bigcap_{n\geq 1}G_n$ has the Baire property.

Exercise 9. Show that $\mathbb{R} \setminus \mathbb{Q}$ has the Baire property.