HOMEWORK 8

Exercise 1. Let X be a non-empty set and let $d : X \times X \to \mathbb{R}$ be the discrete metric on X defined as follows: for any $x, y \in X$,

$$d(x,y) = \begin{cases} 0, & \text{if } x = y\\ 1, & \text{if } x \neq y. \end{cases}$$

Find the open and the closed subsets of this metric space.

Exercise 2. Let (X, d_1) be a metric space and let $d_2 : X \times X \to \mathbb{R}$ be the metric defined as follows: for any $x, y \in X$,

$$d_2(x,y) = \frac{d_1(x,y)}{1+d_1(x,y)}.$$

Prove that a subset A of X is open with respect to the metric d_1 if and only if it is open with respect to the metric d_2 .

Exercise 3. Let $1 \le p, q \le \infty$ and consider the two metrics on \mathbb{R}^n given by

$$d_p(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{1/p}$$
 and $d_q(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^q\right)^{1/q}$,

with the obvious modifications if p or q are infinity. Prove that a set $A \subseteq \mathbb{R}^n$ is open with respect to the metric d_p if and only if it is open with respect to the metric d_q .

Exercise 4. Let (X, d) be a metric space and let A be a non-empty subset of X. Prove that A is open if and only if it can be written as the union of a family of open balls of the form $B_r(x) = \{y \in X : d(x, y) < r\}.$

Exercise 5. Let (X, d) be a metric space. The diameter of a set $\emptyset \neq A \subseteq X$ is given by

$$\delta(A) = \sup\{d(x, y) : x, y \in A\},\$$

with the convention that $\delta(A) = \infty$ if the set $\{d(x, y) : x, y \in A\}$ is unbounded.

Prove that the diameter of A is equal to the diameter of the closure of A, that is, $\delta(A) = \delta(\overline{A})$.

Exercise 6. Let (X, d) be a metric space and let A be a subset of X and O be an open subset of X. Prove that

$$O \cap \overline{A} \subseteq \overline{O \cap A}$$
 and $O \cap \overline{A} = \overline{O \cap A}$.

Conclude that if $O \cap A = \emptyset$, then $O \cap \overline{A} = \emptyset$.

Exercise 7. Let (X, d) be a metric space and let $a \in X$ and r > 0. Prove that the closed ball $K_r(a) = \{x \in X : d(x, a) \le r\}$ is a closed set.

HOMEWORK 8

Exercise 8. Let (X, d) be a metric space and let A, B be two subsets of X. Prove that

 $\mathrm{Fr}(A\cup B)\subseteq \mathrm{Fr}(A)\cup \mathrm{Fr}(B).$ Show also that if $\bar{A}\cap \bar{B}=\emptyset$, then $\mathrm{Fr}(A\cup B)=\mathrm{Fr}(A)\cup \mathrm{Fr}(B).$

Exercise 9. Let (X, d) be a metric space and let A be a subset of X. Prove that

$$\operatorname{Fr}(A) \subseteq \operatorname{Fr}(A)$$
$$\operatorname{Fr}(A^{\circ}) \subseteq \operatorname{Fr}(A)$$
$$\bar{A} = A^{\circ} \cup \operatorname{Fr}(A)$$

Exercise 10. Let (X, d) be a metric space and let A be a subset of X. Prove that A is closed if and only if $Fr(A) \subseteq A$.

Exercise 11. Let (X, d) be a metric space and let A be a subset of X. Prove that A is open if and only if $Fr(A) \cap A = \emptyset$.