HOMEWORK 7

Exercise 1. If the set A has n elements and the set B has m elements, show that there are m^n many functions from A to B.

Exercise 2. For $x, y \in \mathbb{R}$ we write $x \sim y$ if x - y is an integer.

a) Show that \sim is an equivalence relation on \mathbb{R} .

b) Show that the set $[0, 1) = \{x \in \mathbb{R} : 0 \le x < 1\}$ is a set of representatives for the set of equivalence classes. More precisely, show that the map Φ sending $x \in [0, 1)$ to the equivalence class C(x) is a bijection.

Exercise 3. Fix $n \ge 1$. Show that if A_1, A_2, \ldots, A_n are countable sets, then the cartesian product $A_1 \times A_2 \times \ldots \times A_n$ is countable.

Exercise 4. If the sets A and B are equipotent $(A \sim B)$, show that $\mathcal{P}(A) \sim \mathcal{P}(B)$.

Exercise 5. Prove that $\mathcal{P}(\mathbb{N})$ is equipotent with the set of functions

 $2^{\mathbb{N}} = \{f : \mathbb{N} \to \{0,1\} : f \text{ is a function}\}.$

In particular, the cardinality of $\mathcal{P}(\mathbb{N})$ is 2^{\aleph_0} .

Exercise 6. Show that $\mathbb{N}^{\mathbb{N}} \sim 2^{\mathbb{N}}$, that is, the set of sequences with values in \mathbb{N} is equipotent with the set of sequences with values in $\{0, 1\}$.

Exercise 7. Show that the cardinality of \mathbb{R} is 2^{\aleph_0} . You may use the fact that the interval (0,1) has cardinality 2^{\aleph_0} .

Exercise 8. Prove that the set of irrational numbers has the cardinality of \mathbb{R} .