HOMEWORK 6

Exercise 1. Study the convergence of the series

1) $\sum_{n \geq 2} \frac{1}{\left[n+(-1)^{n}\right]^{2}}$
2) $\sum_{n \geq 1}[\sqrt{n+1}-\sqrt{n}]$
3) $\sum_{n \geq 1} \frac{n!}{n^{n}}$

Exercise 2. Study the convergence of the series

1) $\sum_{n \geq 2} \frac{n^{\ln n}}{(\ln n)^{n}}$
2) $\sum_{n \geq 2} \frac{1}{(\ln n)^{\ln n}}$
3) $\sum_{n \geq 1} \frac{(-1)^{n} n!}{2^{n}}$.

Exercise 3.

(1) Give an example of a divergent series $\sum a_{n}$ for which $\sum a_{n}^{2}$ converges.
(2) Show that if $\sum a_{n}$ is absolutely convergent, then the series $\sum a_{n}^{2}$ also converges.
(3) Give an example of a convergent series $\sum a_{n}$, for which $\sum a_{n}^{2}$ diverges.

Exercise 4. Prove that

$$
\sum_{n \geq 1} \frac{1}{n(n+1)}=1
$$

Exercise 5.

(1) Prove that

$$
\sum_{n \geq 1} \frac{n-1}{2^{n+1}}=\frac{1}{2}
$$

(2) Use part (1) to calculate

$$
\sum_{n \geq 1} \frac{n}{2^{n}}
$$

Hint: Note that $\frac{n-1}{2^{n+1}}=\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}$.
Exercise 6. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of non-negative numbers such that $\sum_{n \geq 1} a_{n}$ diverges. For $n \geq 1$, let $s_{n}=a_{1}+\ldots+a_{n}$.
(1) Prove that the series

$$
\sum_{n \geq 1} \frac{a_{n}}{a_{n}+1}
$$

diverges.
(2) Prove that for all $N \geq 1$ and all $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+n}}
$$

Deduce that the series $\sum \frac{a_{n}}{s_{n}}$ diverges.
(3) Prove that for all $n \geq 2$,

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

Deduce that the series $\sum \frac{a_{n}}{s_{n}^{2}}$ converges.

Exercise 7. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a decreasing sequence of non-negative numbers such that $\sum_{n \geq 1} a_{n}<\infty$. Show that

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

