HOMEWORK 5

Exercise 1. Let $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ be two bounded sequences. Show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

Exercise 2. Let $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ be two bounded sequences of non-negative numbers. Show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n} b_{n}\right) \leq\left(\limsup _{n \rightarrow \infty} a_{n}\right)\left(\limsup _{n \rightarrow \infty} b_{n}\right)
$$

Exercise 3. Show that a sequence $\left\{a_{n}\right\}_{n \geq 1}$ is bounded if and only if limsup $\left|a_{n}\right|<$ ∞.

Exercise 4. Let A denote the set of subsequential limits of a sequence $\left\{a_{n}\right\}_{n \geq 1}$. Suppose that $\left\{b_{n}\right\}_{n \geq 1}$ is a subsequence in $A \cap \mathbb{R}$ such that $\lim _{n \rightarrow \infty} b_{n}$ exists in $\mathbb{R} \cup\{ \pm \infty\}$. Show that $\lim _{n \rightarrow \infty} b_{n}$ belongs to A.
Exercise 5. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers that is bounded above. Prove that $L=\limsup a_{n}$ has the following properties:
(i) For every $\varepsilon>0$ there are only finitely many n for which $a_{n}>L+\varepsilon$
(ii) For every $\varepsilon>0$ there are infinitely many n for which $a_{n}>L-\varepsilon$.

Exercise 6. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. Prove that there can be at most one real number L with the following two properties:
(i) For every $\varepsilon>0$ there are only finitely many n for which $a_{n}>L+\varepsilon$
(ii) For every $\varepsilon>0$ there are infinitely many n for which $a_{n}>L-\varepsilon$.

Exercise 7. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of non-negative numbers. For $n \geq 1$, define

$$
s_{n}=\frac{a_{1}+\ldots+a_{n}}{n} .
$$

(i) Show that

$$
\liminf _{n \rightarrow \infty} a_{n} \leq \liminf _{n \rightarrow \infty} s_{n} \leq \limsup _{n \rightarrow \infty} s_{n} \leq \limsup _{n \rightarrow \infty} a_{n}
$$

(ii) Conclude that if $\lim _{n \rightarrow \infty} a_{n}$ exists, then $\lim _{n \rightarrow \infty} s_{n}$ exists and $\lim _{n \rightarrow \infty} s_{n}=$ $\lim _{n \rightarrow \infty} a_{n}$.

Exercise 8. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence such that $\liminf _{n \rightarrow \infty}\left|a_{n}\right|=0$. Prove that there is a subsequence $\left\{a_{k_{n}}\right\}_{n \geq 1}$ such that the series $\sum_{n=1}^{\infty} a_{k_{n}}$ converges.
Exercise 9. Determine which of the following series converge. Justify your answers.
(1) $\sum_{n \geq 1} \frac{n^{4}}{2^{n}}$
(2) $\sum_{n \geq 1} \frac{2^{n}}{n!}$
(3) $\sum_{n \geq 1}(-1)^{n}$
(4) $\sum_{n \geq 0} \sin \left(\frac{n \pi}{3}\right)$

